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Parietal alpha and theta power
predict cognitive training gains in
middle-aged adults
Luka Juras, Ivana Hromatko and Andrea Vranic*

Department of Psychology, Faculty of Humanities and Social Sciences, University of Zagreb, Zagreb,
Croatia

Research on executive functions training shows inconsistent outcomes, with

factors like age, baseline cognitive abilities, and personality traits implicated

as predictive of training gains, while limited attention has been given to

neurophysiological markers. Theta and alpha band power are linked to cognitive

performance, suggesting a potential area for further study. This study aimed to

determine whether relative theta and alpha power and their ratio could predict

gains in updating and inhibition training beyond the practice effects (the order of

training session). Forty healthy middle-aged adults (aged 49–65) were randomly

assigned to either the cognitive training group (n = 20), or the communication

skills (control) group (n = 20). Both groups completed the self-administered

training sessions twice a week for 10 weeks, totaling to 20 sessions. Resting-

state EEG data were recorded before the first session. Mixed-effects model

analyses revealed that higher relative parietal alpha power positively predicted

training performance, while theta power negatively predicted performance.

Additionally, higher parietal alpha/theta ratio was associated with better training

outcomes, while the frontal alpha/theta ratio did not demonstrate significant

predictive value. Other EEG measures did not show additional predictive power

beyond what was accounted for by the session effects. The findings imply that

individuals with specific EEG pattern may change with cognitive training, making

resting-state EEG a useful tool in tailoring interventions.

KEYWORDS
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Introduction

Cognitive training, a standardized repeated practice in cognitive tasks targeting distinct
abilities, with the goal of enhancing overall cognitive and everyday functioning (Nguyen
et al., 2019), has recently garnered significant attention. The presumed benefits of cognitive
training protocols have been studied across various age groups, but the public interest
is predominantly focused on alleviation of age-related symptoms of cognitive decline.
Impairments of cognitive functioning affect up to one third of older adults (Birle et al.,
2021). Due to the growing share of older adults worldwide, even mild cognitive impairment
(MCI), an intermediary stage between normal aging and dementia, is becoming a
pressing public health issue (Petersen et al., 2017). Cognitive aging processes tax executive
functions (EF), including updating, inhibition, and cognitive flexibility, which are crucial
for daily functioning and overall cognitive health (Heckner et al., 2021). Consequently,
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many cognitive training programs are aimed specifically at
enhancing EF. Despite this growing interest, findings on the
efficacy of EF training programs remain inconsistent, with
varied outcomes among participants (Ali et al., 2022; Nguyen
et al., 2019; Soveri et al., 2017). While studies often focused
on demographic and psychological factors, the exploration of
neurophysiological markers as predictors of training gains remains
relatively underexplored.

The relevance of resting state EEG for
cognitive training research

Electroencephalography (EEG) has long been recognized as a
valuable non-invasive tool for diagnosing cognitive impairments,
and identifying abnormalities indicative of neurodevelopmental
and neurological disorders, sometimes even before pathological
symptoms are manifested (Meghdadi et al., 2021; Putman, 2011;
Canuet et al., 2011). Resting-state EEG measures brain activity
when an individual is at rest, revealing rhythmic patterns that
offer valuable insights into neurophysiological underpinnings of
cognitive processes (Buzsáki, 2006; Niedermeyer and Lopes da
Silva, 1999). Some features of resting state EEG correlate with
normal aging (Chen et al., 2023; Finnigan and Robertson, 2011;
Caplan et al., 2015; Knyazeva et al., 2018), while others reveal
specific patterns in older adults with cognitive issues, including an
increase in low-frequency (delta, theta) and a decrease in high-
frequency (alpha, beta) power (Buzi et al., 2023; Moretti et al.,
2011; Babiloni et al., 2013; Miranda et al., 2019). Such changes
in the resting-state EEG frequencies may reveal broader trends
in cognitive efficiency, marking them as promising markers of
cognitive health or decline (Choi et al., 2024, Perez et al., 2024),
which might carry the potential for preemptive interventions.

There has been an abundance of research confirming the
link between EEG features and cognitive functioning in healthy
populations. Findings suggesting human EEG as a time stable
trait of a feasible genetic base (Kondacs and Szabó, 1999; Smit
et al., 2005) provide additional support for the notion that inter-
individual variations in quantitative measures of EEG represent
valid neurophysiological markers of cognitive functioning. EEG
features have been linked to numerous aspects of cognitive
functioning, including academic achievement (Cheung et al., 2014),
problem solving (Kounios et al., 2006), processing speed (Klimesch
et al., 1996) and intelligence (Thatcher et al., 2005; Doppelmayr
et al., 2005; Jaušovec, 2000).

Pertaining to the EF training protocol, the focus of our
study is aligned with the EEG indicators of EF. Earlier studies
found a positive correlation between both, resting state alpha
peak frequency (Clark et al., 2004) and resting state theta power
(Finnigan and Robertson, 2011), and working memory (WM)
performance. Ambrosini and Vallesi (2016), found a relation
between resting state EEG alpha and beta wave asymmetry and
task-switching. This asymmetry may reflect transient and sustained
cognitive control abilities, which are crucial for adaptive behavior
and flexibility in task-switching. Basharpoor et al. (2021) found that
coherence of alpha, beta, and theta bands between left and right
frontal regions, as well as the coherence of beta and theta bands in
the left frontal regions predict EF. However, Gordon et al. (2018)

used a comprehensive set of EF tasks in healthy adult sample and
found no meaningful relation between spectral power measures
and WM, task-switching, and inhibition. More central to the aim
of our study, are findings of interventional studies, especially
those showing that cognitive training changes oscillatory activity
in alpha and theta bands (Langer et al., 2013; Spironelli and
Borella, 2021). Similarly, research on fronto-parietal transcranial
alternating current stimulation (tACS) demonstrates that targeted
EEG modulation can enhance WM, particularly by increasing the
coherence in fronto-parietal networks (Pupíková et al., 2024). This
suggests that shifts in EEG properties might be a reflection of
the effects cognitive training has on specific neural networks. The
growing body of research illustrates EEG’s potential not only to
assess, but also to modulate cognitive function, paving the way for
personalized, EEG-guided therapeutic strategies.

Resting state EEG markers as indicators
of cognitive reserve

If we consider cognitive reserve (Stern et al., 2019) as the brain’s
resilience to age-related cognitive decline and neurodegenerative
diseases, which enables the maintenance of cognitive functioning
despite brain aging or pathology, the above-mentioned EEG
markers could be considered its correlates. They are both associated
with various cognitive processes pertaining to the concept of
cognitive reserve and show specific changes in mature and older
populations. Excessive theta power in older adults has been
linked to attentional lapses and slower cognitive processing, which
are more common in individuals with lower cognitive reserve
(Katayama et al., 2024). EEG research on individuals with MCI and
dementia has consistently identified characteristic neural changes,
marked by an increase in delta and theta, alongside a decrease
in alpha and beta activity (Prichep et al., 2006; Musaeus et al.,
2018). Moreover, some studies have reported associations between
EEG power and biomarkers, such as tau protein (Smailovic et al.,
2018). Finnigan and Robertson (2011) argued that two forms of
theta-frequency oscillations may exist; one indicative of healthy
neurocognitive function and the other, EEG/alpha slowing linked
to future substantial cognitive decline. Thus, cognitive resilience
might be mediated by both, the relative theta power and the
degree of alpha slowing. Similarly, Cummins and Finnigan (2007)
found that lower theta power was associated with healthy cognitive
aging, indicating that high cognitive reserve in older adults is often
marked by the reduced (both resting and task-related) state theta.

Considering the above-mentioned findings in both healthy
and cognitively impaired populations, we opted to further explore
the notion that EEG markers could provide insights into the
mechanisms underlying cognitive training gains. More specifically,
the present study aims to investigate the role of theta and alpha
power as predictors of EF training gains among middle-aged adults.
Cognitive aging involves dynamic changes throughout the lifespan.
Although a decline in fluid abilities is generally observed beginning
in the early 50 s (e.g., Glahn et al., 2013), middle-aged adults remain
relatively underrepresented in cognitive training research. In this
population, decline in cognitive abilities is subtle, suggesting that
interventions at this stage may be especially beneficial in building
up the cognitive reserve well into older age. We hypothesized
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that, above the effects of training sessions, both alpha and theta
activity shall predict training gains, albeit in different directions.
By addressing these questions, this study seeks to contribute to
a deeper understanding of the neurophysiological mechanisms
underlying cognitive training and to inform the development of
more effective, individualized training interventions.

Methods

Participants

A sample of 40 adults, aged 47–65, participated in the study.
Participants were randomly assigned to either the Updating
training (UT; n = 20) group or the Communication skills training
(CT; n=̃ 20) group, i.e., control group. There was no significant
age difference between the two groups (MUT = 54.9, SDUT = 3.82;
MCT = 55.7, SDCT = 4.01; t (38) = −0.65, p = 0.523). Both
groups consisted predominantly of female participants (13 in the
UT group, 14 in the CT group) and had similar educational
backgrounds, with seven participants in UT and six in CT holding
a degree lower than a BA (X2 (3) = 3.27, p = 0.351). Participants
reported no severe visual or hearing impairments, psychiatric or
neurological disorders, anti-dementia medication use, or other
work-related limitations.

Procedure

Participants were informed that the study aimed to investigate
the effects of various activities on cognitive abilities. Participants
completed the criterion N-back task before first and after the
last session. EEG data were collected during a resting state
(eyes open for 2 min) before the first training session and
during the initial UT session. Testing and EEG recordings were
conducted in non-shielded environments, either at the participants’
homes or workplaces.

The study was approved by the Ethical Committee of the
research institution, and all participants provided a written
informed consent in accordance with the Declaration of Helsinki.

Outcome measure

N-back task
The n-back task (Jaeggi et al., 2010) is a widely used measure

of memory updating. In this task, participants are presented with a
sequence of stimuli for 500 ms, followed by a 2500 ms interstimulus
interval. They are instructed to press a specific key whenever
the current stimulus matches the one presented n trials earlier.
The stimuli consisted of eight photographs from the Karolinska
Directed Emotional Faces (KDEF) database (Lundqvist et al., 1998),
featuring a male or a female model displaying one of four basic
emotions: sadness, happiness, anger, or surprise. The task included
three difficulty levels: 1-back, 2-back, and 3-back. After completing
a practice round, participants progressed through a block of 20+ n
stimuli for each difficulty level, starting with 1-back, and with each
level repeated twice. The score is calculated as the proportion of hits

minus the proportion of false alarms across a session (Snodgrass
and Corwin, 1988).

Training
Both groups (UT and CT) completed two self-administered

training sessions per week for a period of 10 weeks, totaling
to 20 sessions. Each session lasted approximately 20 min and
was accessed on participants’ personal computers. Performance
was monitored throughout the training, with performance data
recorded for later analysis.

N-back training
The UT group engaged in an adaptive version of the

n-back task. Training began with the 1-back condition, and the
difficulty of subsequent blocks was adjusted based on participants’
performance. If a participant made fewer than two errors in a block,
they advanced to the next level (n + 1). Conversely, if they made
five or more errors, the next block was set to a lower level (n–1).
Points were awarded for each completed block, corresponding to
the difficulty level. At the end of each session, participants earned
virtual medals based on the highest level reached: bronze for 2-
back, silver for 3-back, and gold for 4-back or higher. In subsequent
sessions, participants started one level below the highest level
achieved in the previous session. Each training session consisted of
15 blocks, with each block containing 20 + n stimuli.

Communication skills training
The CT group participated in a computer-based

communication skills training program, adapted from Jaušovec
and Jaušovec (2012). This CT included 20 interactive online
presentations, covering both the theoretical foundations of
communication processes and practical strategies for improving
communication efficiency. At the end of each session, participants
completed a quiz. Feedback was provided in the form of points,
which were awarded based on a predefined scoring system.

EEG data recording and preprocessing
EEG data were recorded using a Mobita 32-Channel Wireless

EEG System (Biopac Systems Inc.), with electrodes placed
according to the international 10/20 extended system: Fp1, Fpz,
Fp2, F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, T7, C3, Cz, C4, T8,
TP9, CP5, CP1, CP2, CP6, TP10, P7, P3, Pz, P4, P8, PO, O1, Oz, and
O2. EEG was recorded during a 2-min resting state with eyes open
and throughout the first UT session. For the analysis, electrodes
were grouped by region: frontal electrodes included Fp1, Fp2, F7,
F3, Fz, F4, and F8, while parietal electrodes included Pz, P3, P4,
P7, P8, and PoZ.

EEG data from both conditions were preprocessed and
analyzed using MATLAB (Version R2020b) and the FieldTrip
toolbox (Oostenveld et al., 2011). Preprocessing began with filtering
the data using a high-pass filter at 1 Hz and a low-pass filter
at 40 Hz. The signals were re-referenced to the average of all
electrodes. Data were then segmented into non-overlapping 2-s
epochs for both the resting state and task performance periods.
Visual inspection and artifact rejection were performed to eliminate
noisy segments. Independent Component Analysis (ICA) was
applied to remove artifacts related to eye movements, followed by a
second visual inspection to ensure clean data.

Frontiers in Aging Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fnagi.2025.1530147
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-17-1530147 March 10, 2025 Time: 16:33 # 4

Juras et al. 10.3389/fnagi.2025.1530147

The power spectrum was computed using a multi-taper Fast
Fourier Transform (FFT) with a frequency resolution of 0.5 Hz.
Relative power was calculated as the ratio of power in a specific
frequency band to the total power from 1 to 30 Hz. The alpha
band was defined as 8–12 Hz and the theta band as 4–8 Hz.
Relative power was calculated since it takes into account individual
differences in skull thickness and volume conduction.

Data analysis

Statistical analyses were performed using R software (version
4.0.2; R Core Team, 2023) with the nlme package (Pinheiro et al.,
2024). To examine whether training led to improved performance
on the trained n-back task, we conducted a 2 (training and
control) × 2 mixed-design (pretest and posttest) ANOVA.

To examine whether theta and alpha power predicted n-back
task performance during training, we applied multilevel modeling.
The dependent variable was the average session score. We
compared multiple models: (1) a null model, (2) linear time as a
predictor, (3) quadratic time change, and (4) models incorporating
alpha and theta power across frontal and parietal sites. To
systematically assess these combinations, we used a topographical
approach, entering frequency bands from the same location and
time point (resting state and first training session) into a single
model. One model included frontal alpha and theta, another
parietal alpha and theta, and so on. For the alpha/theta ratio,
both frequencies were combined into a single marker, allowing
the inclusion of frontal and parietal sites. We used the maximum
likelihood (ML) method and compared models via chi-square tests
(p < 0.05). All predictors, including time, were mean-centered
before analysis to enhance interpretability.

Results

Results in the criterion n-back task at both pretest and posttest
in training and control group are presented in Figure 1. Based on
the two-tailed t-tests, no initial differences were found on criterion
task at the pretest (p = 0.950). Mixed design 2 × 2 ANOVA
showed a significant main effect of the measurement point (F
(1,38)=̃ 20.35; p < 0.001; η2 = 0140) and a main effect of the
group (F (1,38) = 7.84; p = 0.008; η2 = 0.097). The interaction of
the measurement point and the group is also statistically significant
(F (1,38) = 4.78; p = 0.035; η2 = 0.033). Only participants in the
n-back UT group improved in their performance. Average training
performance across 20 training sessions is shown in Figure 2.

Given that the mixed design ANOVA indicated that
participants in the UT group exhibited greater performance
improvements than those in the CT group, it is essential to explore
the individual predictors of training performance within the UT
group. To this end, we conducted a mixed-effects model (MLM)
analysis aimed at examining how specific EEG markers predict
training performance (average difficulty of each training session)
among participants in the UT group (see Table 1). The intraclass
correlation coefficient (ICC) indicated that approximately 52.6%
of the total variance could be attributed to differences between
participants, justifying the use of this analysis.

The results indicated that training performance could be
explained by both linear and quadratic functions (Model 2),
suggesting that participants improved their performance across
sessions, with greater improvements observed in the earlier sessions
and a slowing of this improvement in later sessions. We compared
Model 2, which included only training sessions as predictors, with
models that incorporated EEG markers as predictors of training
performance. To mitigate potential multicollinearity, we analyzed
six models, each containing two predictors.

The findings revealed that higher relative parietal alpha power
was a significant positive predictor of training performance,
while theta power was a significant negative predictor (Model 5).
Additionally, a higher parietal alpha/theta ratio was associated
with better training outcomes; however, the frontal alpha/theta
ratio did not demonstrate significant predictive value (Model
7). Furthermore, other predictors did not contribute additional
predictive power beyond what was accounted for by the
session effects.

Discussion

Several observations stem from this study. Firstly, our
participants improved their performance across sessions, implying
that middle aged populations do benefit from these types of
interventions, at least within the trained task limits. However, it
should also be noted that greater improvements were observed in
earlier training sessions, followed by a slowing of this improvement
in later sessions, implying that in order to keep participants’
intrinsic motivation, and still obtain similar results, training
protocols – at least for middle aged and older populations - might
be shortened. We opted for the 20 sessions protocols, as suggested
by the meta-analyses (Lampit et al., 2014), but the dropout rate (7
participants, as compared to 3 in the control group), as well as the
qualitative feedback received by our participants, suggest that most
of them struggled to keep up with the training.

Regarding our main aim, the findings revealed that higher
relative parietal alpha power positively predicted training
performance, while theta power negatively predicted performance.
Additionally, a higher parietal alpha/theta ratio was associated
with better training outcomes, while the frontal alpha/theta
ratio did not demonstrate significant predictive value. This is in
line with earlier studies showing that increased alpha activity in
parietal regions is associated with attentional control and working
memory in various populations. Studies have shown that alpha
power in these regions is linked to attentional focus and cognitive
efficiency, which supports better performance in various cognitive
tasks (Klimesch, 1999; Nunez and Srinivasan, 2006). The positive
relationship between higher parietal alpha power and cognitive
training performance in our study also suggests that participants
with a more pronounced alpha activity in this region were better
equipped to benefit from training. This could mean that individuals
who can achieve or maintain higher parietal alpha power might
have a cognitive advantage during training.

The negative association between theta power and training
performance suggests that elevated theta activity, particularly in
the parietal region, may be less conducive to successful training
outcomes. Again, this finding is in line with others, suggesting that
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FIGURE 1

Results of participants in the criterion n-back task at the pretest and the posttest in Updating training group and control group (N = 40).

FIGURE 2

Average training score across 20 training sessions in the Updating training group (N = 20).

elevated theta power can indicate a less optimal cognitive state
for certain tasks. While task-related theta power shows positive
associations with cognitive performance, resting theta power tends
to have negative correlations with cognitive performance (Tan
et al., 2024). This inverse relation between resting and task-related
powers within specific bands of EEG spectra has been observed in
several earlier studies: within alpha frequency band, high resting
state power appears to be associated with a large amount of
desynchronization during task performance, while the opposite is
true for theta, i.e., low resting power predicts large synchronization
or power gains during task performance (Doppelmayr et al., 1998;
Vogt et al., 1998; Klimesch et al., 2000).

While theta is associated with memory and learning, high levels
of theta are also related to drowsiness or cognitive fatigue, especially
in older adults, and there is a growing evidence suggesting
that higher resting theta is associated with lower EF in older
children and adolescents (Tan et al., 2024). While moderate theta
activity may support memory functions, excessive theta can be
indicative of impaired cognitive control or vigilance, impacting
task performance in aging adults. Elevated theta power has been
implicated in attentional lapses and cognitive slowing, which may
reduce effectiveness in cognitively demanding tasks.

In aging populations, heightened theta power may reflect age-
related cognitive decline or difficulties in sustaining attention and
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TABLE 1 Linear and quadratic changes in the average number of points in the Updating training group (n1 = 400 observations, n2 = 20 participants).

Model 0 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

Fixed effects

Intercept 2.98** (0.14) 3.00** (0.13) 3.10** (0.14) 3.10** (0.12) 3.10* (0.13) 3.1** (0.11) 3.1** (0.13) 3.1** (0.12) 3.1** (0.13)

Session 0.08** (0.003) 0.08** (0.003) 0.08** (0.003) 0.08** (0.003) 0.08** (0.03) 0.08** (0.03) 0.08** (0.03) 0.08** (0.03)

Session2
−0.003** (0.001) −0.004** (0.001) −0.004** (0.001) −0.004** (0.001) −0.003** (0.001) −0.003** (0.001) −0.003** (0.001)

R0 frontal alpha 2.47 (1.30)

R0 frontal theta −3.68 (2.42)

T1 frontal alpha −1.81 (1.86)

T1 frontal theta −2.42 (2.36)

R0 parietal alpha 1.75∗ (0.8)

R0 parietal theta −6.57∗∗ (2.26)

T1 parietal alpha 0.04 (1.77)

T1 parietal theta −0.02 (2.67)

R0 frontal alpha/theta −0.22 (0.27)

R0 parietal alpha/theta 0.39* (0.18)

T1 frontal alpha/theta −0.28 (0.11)

T1 parietal alpha/theta 0.15 (0.36)

Random effects

σe 0.35 0.13 0.12 0.11 0.11 0.11 0.11 0.11 0.11

σ0 0.32 0.36 0.37 0.29 0.31 0.22 0.34 0.26 0.34

Deviance statistic 740.9 384.2 350.4 346.9 348.5 341.5 353.3 344.5 351.1

Model (df): X2 0–1 (1): 356.4** 1–2 (1): 34.5** 2–3 (2): 4.1 2–4 (2): 2.3 2–5 (2): 9.3* 2–6 (2) 0.1 2–7 (2): 6.0* 2–8 (2): 0.3

Legend: R0 – resting-state; T1 – first training session. Model 0 – Null model; Model 1 – Time as a linear predictor; Model 2 – Model 1 + quadratic time as a predictor; Model 3 – Model 2 + resting-state eyes-open relative frontal alpha and theta power; Model 4 – Model
2 + relative frontal alpha and theta power during the first training session; Model 5 – Model 2 + resting-state eyes-open relative parietal alpha and theta power; Model 6 – Model 2 + relative parietal alpha and theta power during the first training session; Model 7 –
Model 2 + resting-state eyes-open frontal and parietal alpha/theta power ratio; Model 8 – Model 2 + Parietal alpha/theta power ratio during the first training session. *p < 0.05; **p < 0.01.
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processing of new information, factors which could interfere with
the learning process. Thus, lower theta power might serve as
an indicator of better baseline cognitive function or resilience
(Prichep et al., 2006; Musaeus et al., 2018), enabling more
effective engagement in training. The significant role of the parietal
alpha/theta ratio as a predictor of training gain underscores the
balance between alpha and theta activity as a potential marker of
cognitive efficiency. It has been shown that the relation between
alpha/theta ratio and cognitive performance is age-dependent
(Trammell et al., 2017) and our finding suggests that among
middle-aged participants a higher alpha/theta ratio reflects an
efficient cognitive state, potentially indicating a brain that is
less prone to distractibility, thus allowing for greater cognitive
engagement. Klimesch (1999) emphasized the importance of the
alpha/theta ratio as an indicator of brain efficiency, particularly
in relation to memory and attentional control. It seems that
in cognitive training interventions, this ratio could be used
as a biomarker for predicting or even enhancing training
responsiveness in elderly individuals.

The finding that the frontal alpha/theta ratio did not predict
performance suggests a region-specific effect, with parietal rather
than frontal brain areas playing a more central role in training-
related cognitive gains. It is widely accepted that EF are mainly
regulated by the frontal lobes (Miyake et al., 2000; Miller and
Cohen, 2001); however, some non-frontal brain regions including
the parietal cortex, as well as some sub-cortical structures, such
as the basal-ganglia and the cerebellum are also heavily involved
(Alvarez and Emory, 2006; Friedman and Miyake, 2017). The lack
of explanatory power of frontal activity could also indicate that
in this context cognitive training gains rely more on processes
related to attentional orientation and sensory integration. This
implies that training approaches tailored to engage and monitor
parietal rather than frontal activation might yield better outcomes.
Such a capitalization of the potential for cognitive plasticity in
aging midlife individuals suggests that the benefits of training may
rely as much on the sustained engagement as on the baseline
neurophysiological profiles.

Our study has several limitations. While the sample size
meets the recommended 20 participants per group (Simons et al.,
2016), it remains relatively small, potentially limiting the detection
of smaller effects. Additionally, using a convenience sample
with highly educated participants reduces the generalizability of
findings. The home-based training setting provided less control
over conditions compared to a laboratory, where training effects
are often stronger (Schwaighofer et al., 2015). Another limitation
is our focus on predicting performance during training rather than
examining transfer effects. Therefore, it is important to note that
the same task used as the outcome measure was also employed
during the training.

Potential applications

Obviously, the training process (practice, repetition, and
learning engagement) is critical to cognitive gains. The finding
that certain parameters of resting state EEG can predict training
gains beyond the practice effect adds to the current knowledge
regarding the predictors of training outcomes and potentially open

a new venue toward individualized cognitive trainings. There are
several ways in which these findings might be incorporated when
designing personalized trainings. For example, if participant’s initial
resting state alpha power is low, an intervention aimed at boosting
alpha power generally (such as relaxation exercises or mindfulness
practices) or alpha/theta ratio specifically (via neurofeedback)
might be applied before the cognitive training sessions. One might
also monitor theta power to gauge cognitive engagement vs. fatigue.
Since high theta power may indicate cognitive fatigue or difficulty
in sustaining attention, for participants with elevated theta, it
may be beneficial to reduce task complexity or session length.
This structure can help maintain attention and prevent cognitive
overload, potentially leading to better training outcomes.

Conclusion

In summary, our findings suggest that relative parietal alpha,
theta and their ratio, could serve as useful indicators for cognitive
training responsiveness in mid-aged adults. The insights into
theta power’s negative role further refines our understanding of
EEG biomarkers, highlighting the importance of maintaining an
optimal balance of brain activity for effective cognitive processing.
The results also suggest that cognitive training interventions
may benefit from a focus on parietal rather than frontal brain
activity, perhaps through targeted neurofeedback or cognitive
training protocols that reinforce parietal activity. These findings
contribute to our understanding of the brain’s adaptability in aging
populations and can be informative for the design of tailored
cognitive training programs that leverage EEG biomarkers for more
personalized and effective interventions.
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