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Untargeted urine metabolomics
reveals dynamic metabolic
differences and key biomarkers
across different stages of
Alzheimer’s disease
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1Department of Neurology, Shandong Provincial Third Hospital, Jinan, China, 2Department
of Psychiatry and Psychology, Shandong Provincial Third Hospital, Jinan, China

Background: Alzheimer’s disease (AD) is a progressive neurodegenerative

disorder, with mild cognitive impairment (MCI) often serving as its precursor

stage. Early intervention at the MCI stage can significantly delay AD onset.

Methods: This study employed untargeted urine metabolomics, with data

obtained from the MetaboLights database (MTBLS8662), combined with

orthogonal partial least squares-discriminant analysis (OPLS-DA) to examine

metabolic differences across different stages of AD progression. A decision

tree approach was used to identify key metabolites within significantly enriched

pathways. These key metabolites were then utilized to construct and validate an

AD progression prediction model.

Results: The OPLS-DA model effectively distinguished the metabolic

characteristics at different stages. Pathway enrichment analysis revealed

that Drug metabolism was significantly enriched across all stages, while

Retinol metabolism was particularly prominent during the transition stages. Key

metabolites such as Theophylline, Vanillylmandelic Acid (VMA), and Adenosine

showed significant differencesdifferencesin the early stages of the disease,

whereas 1,7-Dimethyluric Acid, Cystathionine, and Indole exhibited strong

predictive value during the MCI to AD transition. These metabolites play a

crucial role in monitoring AD progression. Predictive models based on these

metabolites demonstrated excellent classification and prediction capabilities.

Conclusion: This study systematically analyzed the dynamic metabolic

differences during the progression of AD and identified key metabolites and

pathways as potential biomarkers for early prediction and intervention. Utilizing

urinary metabolomics, the findings provide a theoretical basis for monitoring AD

progression and contribute to improving prevention and intervention strategies,

thereby potentially delaying disease progression.
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Highlights:

• A comprehensive evaluation of dynamic metabolic
differences across different stages of Alzheimer’s disease
(AD) progression was conducted using untargeted urine
metabolomics combined with orthogonal partial least squares
discriminant analysis (OPLS-DA) models.

• Key metabolic pathways, such as Drug metabolism and
Retinol metabolism, were identified as playing crucial roles in
predicting AD progression.

• Key metabolites for dynamic monitoring and prediction
of AD progression were identified. Theophylline,
Vanillylmandelic Acid (VMA), and Adenosine showed
potential as predictive biomarkers in the early stages of AD
(from cognitively normal to mild cognitive impairment),
while 1,7-Dimethyluric Acid, Cystathionine, and Indole
demonstrated stronger predictive power at the critical
transition point of AD (MCI).

• An AD progression prediction model was constructed,
showing strong classification ability of key metabolites for
disease staging.

Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative
disorder primarily affecting individuals over the age of 60, with
a global prevalence estimated at 57 million. Symptoms of AD
include memory loss, cognitive decline, and behavioral differences
(Nichols and Vos, 2022; Zvìøová M, 2019). Despite extensive
research, the precise etiology of AD is still not well understood,
and its complex pathogenesis has hindered the development of
effective treatments (Loera-Valencia et al., 2019). In recent years,
metabolomics has provided a new perspective for identifying
diagnostic biomarkers for AD. Metabolomics is a high-throughput
technique for analyzing small molecules within biological systems,
offering insights into potential disease mechanisms by examining
differences in metabolites in bodily fluids (Clish, 2015). Increasing
evidence suggests that metabolic dysregulation plays a key role
in the progression of AD (Rojas-Gutierrez et al., 2017). Existing
metabolomics studies have identified a range of potential AD
biomarkers through the analysis of blood and cerebrospinal fluid
(CSF) (Barthélemy et al., 2024; Schweickart et al., 2024). However,
blood samples are susceptible to external factors, may compromise
diagnostic accuracy, and the invasive nature of CSF collection limits
its broader clinical application. In contrast, urine metabolomics,
due to its non-invasive nature and ease of sample collection,
presents significant potential for the early diagnosis of AD (Zhang
et al., 2022).

Mild cognitive impairment (MCI), often recognized as “MCI
due to AD”, is a precursor stage to AD (Jack et al., 2018; Liss et al.,
2021). It is estimated that 21% of individuals with MCI will develop
mild AD by the age of 65 (Davis et al., 2018). Although not all
MCI cases progress to AD, with some remaining stable or even
reverting to normal cognition, it is generally observed that nearly all
MCI cases directly attributable to underlying Alzheimer’s pathology
will eventually progress to full-blown AD (Cardoso et al., 2020;

Jack et al., 2018; Pandya et al., 2016). Typical symptoms of MCI
include mild memory impairment and cognitive decline, but these
are not severe enough to significantly affect daily life (Anderson,
2019; Petersen et al., 2018). In its late stages, AD is ultimately fatal
(Seo and Holtzman, 2024). Therefore, identifying biomarkers for
early MCI and its progression to AD could greatly improve early
detection rates and slow disease progression. Although previous
studies have identified potential metabolites related to AD and
MCI through urine metabolomics (Wang et al., 2023; Yilmaz et al.,
2020), there is currently a lack of comprehensive comparative
analysis of the transition from cognitively normal (CN) to MCI and
AD, particularly concerning metabolite differences and associated
metabolic pathways at specific stages.

Thus, this study aims to systematically analyze the metabolic
dynamics across different stages of AD progression, with a focus on
metabolic differences emerging at MCI as a critical juncture in the
development of AD. Utilizing untargeted metabolomics combined
with orthogonal partial least squares-discriminant analysis (OPLS-
DA), the study seeks to identify key metabolites and associated
metabolic pathways closely linked to the dynamic differences in
AD progression. This research provides new insights into the
pathological mechanisms of AD and offers important targets
and theoretical support for early prediction and intervention
strategies for AD.

Materials and methods

Data source and metabolite identification

The metabolomics data used in this study were obtained
from the MetaboLights database (MTBLS8662). MetaboLights is
a global database for metabolomics studies including the raw
experimental data and the associated metadata (Yurekten et al.,
2024). Our dataset consisted of urine metabolomics data from
162 participants aged 50 and above. Based on cognitive tests
and medical history evaluations, participants were divided into
three groups: the AD group (57 participants), the MCI group
(43 participants), and the CN group (62 participants). AD was
clinically diagnosed according to the 2011 National Institute
on Aging-Alzheimer’s Association (NIA-AA) criteria (McKhann
et al., 2011). MCI was defined using the same 2011 NIA-
AA diagnostic criteria (Albert et al., 2011). CN controls were
defined as individuals who performed within normal limits on
standardized neuropsychological tests and had no significant
cognitive concerns or complaints during the structured interview.
Participants in the study were assessed for various comorbidities,
including hypertension, diabetes, hyperlipidemia, heart diseases,
and cerebrovascular diseases, along with demographic data such
as age, gender, and education level, as outlined in Table 1. To
control potential effects of hydration on metabolite concentrations,
200 µL of urine samples were placed in centrifuge tubes and
resuspended with prechilled 80% methanol, followed by vortexing.
After incubation on ice for 5 min, the samples were centrifuged
at 15,000 g for 20 min at 4◦C. A portion of the supernatant was
diluted with LC–MS grade water to achieve a final concentration
of 53% methanol. The samples were then transferred to new
centrifuge tubes and centrifuged again for 20 min at 15,000 g at 4◦C.
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TABLE 1 Basic information and neuropsychological assessment.

AD (n = 57) MCI (n = 43) CN (n = 62) P

Age (median, P25, P75) 79 (72.5, 82) 74 (68, 78) 70(63.75, 73.5) <0.001a

Gender (male/female) 27/30 14/29 22/40 0.253

Smoking (yes/no) 15/42 8/35 10/52 0.366

Hypertension (yes/no) 22/35 15/28 31/31 0.247

Diabetes (yes/no) 11/46 5/38 16/46 0.199

Hyperlipidemia (yes/no) 23/34 23/20 35/27 0.186

Heart diseases (yes/no) 16/41 10/33 10/52 0.288

Cerebrovascular diseases (yes/no) 14/43 8/35 11/51 0.618

Family history (yes/no) 10/47 7/36 13/49 0.808

APOE (ε4 carrier/non-carrier) 27/30 21/22 14/48 0.005ab

Global cognition

MMSE 15 (9.5, 19) 24 (22, 26) 27 (26, 28) <0.001ab

MoCA 7 (4, 12) 18 (13.75, 21) 23 (21, 26) <0.001ab

Visuospatial ability

CDT 5 (1, 17) 22 (15, 28) 26 (24, 30) <0.001ab

RCFT 0 (0, 0) 2 (0, 8.5) 11 (5, 17) <0.001ab

Language

BNT 10 (7, 16.25) 19 (15, 23) 26 (23, 27.25) <0.001ab

VFT 15 (8.75, 21) 26 (23, 34) 40 (34, 49) <0.001ab

aIndicates significant differences between AD and CN (Bonferroni-corrected P < 0.05). bIndicates significant differences between MCI and CN (Bonferroni-corrected P < 0.05).

The supernatant was collected and analyzed using an LC–MS/MS
system (Wang et al., 2023).

Peak alignment, selection, and quantification were conducted
for both positive and negative ion modes were performed using
MZmine3 software, ensuring the independence of each ion
mode dataset. The raw data was reprocessed using untargeted
metabolomics analysis, followed by quality control (QC).
Metabolites with a coefficient of variation (CV) over 30% in
QC samples were excluded to ensure data reliability. Metabolite
identification was conducted using the GNPS platform, with results
cross-referenced against multiple public databases (including
HMDB, CASMI, MSMLS, MONA, NIH, and SCIE) to ensure
accuracy. To handle missing data, we used the K-nearest neighbors
(KNN) algorithm for imputation. Specifically, missing values were
imputed by considering 10% of the sample size from each sample
group. The KNN algorithm uses the closest available samples to
estimate and fill in the missing data points.

Differential metabolite screening and
classification

To identify differential metabolites, partial least squares
discriminant analysis (PLS-DA) was performed on the entire
sample set using the Scikit-learn library in Python 3.12 to assess
the distribution characteristics of the data. PLS-DA scatter plots
were generated to visualize the distribution of samples. The samples
were divided into three comparison groups representing different

stages of AD progression: the CN-AD group, CN-MCI group,
and MCI-AD group.

The OPLS-DA model was constructed using the Numpy library,
and a 200-time permutation test was conducted to evaluate the
robustness and reliability of the model. Differential metabolites
were identified using the variable importance in projection
(VIP > 1) from the first component of the OPLS-DA model,
Wilcoxon rank-sum test p-values (p< 0.05), and fold change values
(FC < 0.8 or FC > 1.25). Volcano plots were used to visually
display the overall distribution of differential metabolites, showing
the relationship between their significance and FC values.

Pathway enrichment and construction of
a key metabolite prediction model

The differential metabolites identified were annotated using
the Kyoto Encyclopedia of Genes and Genomes (KEGG)
and the Human Metabolome Database (HMDB). Based on
these annotations, pathway enrichment analysis was performed.
A decision tree approach was then applied to select the differential
metabolites involved in these key metabolic pathways. A logistic
regression model was constructed based on these key metabolites to
predict AD progression. Upon constructing the model, ROC curves
were generated, and AUC values were calculated to evaluate the
model’s classification ability. A 200-time random sampling test was
conducted to ensure model robustness, while R2 and Q2 values were
used to assess the reliability and predictive power of the model.
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FIGURE 1

Total ion chromatogram, overall sample PCA scatter plot, and overall sample loading plot. (A) Total ion chromatogram of QC samples. (B) PLS-DA
scatter plot of overall samples. (C) Loading plot of overall samples. The upper row represents negative ion mode, and the lower row represents
positive ion mode.

Statistical analysis

All statistical analyses were performed using relevant libraries
in Python 3.12, including Scipy and Scikit-learn. Normality tests
were first conducted to assess the distribution of the data. For
normally distributed data, Hotelling’s T2 test was used to evaluate
intergroup differences; for non-normally distributed data, the
Mann-Whitney U test was applied.

Results

Metabolite identification results

After QC, a total of 1,128 metabolites were detected, with 325
metabolites identified in negative ion mode and 803 metabolites in
positive ion mode. The total ion chromatograms for all QC samples
demonstrated high consistency in response intensity and retention
time, indicating reliable data sources (Figure 1A). The PLS-DA
results demonstrated robust modeling metrics for both negative
and positive ion modes (Figure 1B). Additionally, permutation
testing confirmed the robustness of the model, verifying that the
group distinctions are statistically significant (Figure 1C).

Differential metabolite screening results

The OPLS-DA model effectively distinguished the three
comparison groups (CN-AD, CN-MCI, and MCI-AD), with
clear separation observed between the groups in both positive
and negative ion modes (Figures 2A–C). Permutation tests
further validated the robustness and reliability of the model

(Supplementary Figures S1A–C). The predictive performance
of the original model was significantly surpassed that of the
permutation model, with R2 values exceeding 0.9 and Q2 values
exceeding 0.7 in both the positive and negative ion modes
(Tables 2, 3). VIP plots demonstrated the importance of differential
metabolites in model classification (Supplementary Figures S2A–
C). The volcano plots presented the differential metabolites
identified in both positive and negative ion modes (Figures 3A–
C), while the top 15 upregulated and downregulated metabolites
in each group (Figures 3D–F).

Metabolic pathways associated with AD
progression

Enrichment analysis revealed significant enrichment of
pathways such as Drug metabolism, Retinol metabolism, and
Riboflavin metabolism in the CN-AD group (Figure 4A); Drug
metabolism, Longevity Regulation Pathways, and Parkinson’s
Disease pathways were enriched in the CN-MCI group (Figure 4B);
and Drug metabolism, Gastric Acid Secretion, Cholinergic Synapse,
and Retinol metabolism pathways were enriched in the MCI-AD
group (Figure 4C). Notably, Drug metabolism was enriched in all
three groups, while Retinol metabolism was enriched in both the
AD-CN and AD-MCI groups.

Identification of key metabolites in AD
progression

The decision tree method identified 10 key metabolites for
each group (Supplementary Figures S3A–C). In the CN-AD group,
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FIGURE 2

OPLS-DA scatter plot. (A) OPLS-DA scatter plot of the CN-AD group. (B) OPLS-DA scatter plot of the CN-MCI group. (C) OPLS-DA score plot of the
MCI-AD group. The upper row represents negative ion mode, and the lower row represents positive ion mode.

TABLE 2 R2 and Q2 values and number of differential metabolites in the
OPLS-DA model for each group in the negative ion model.

Group R2 Q2 Number of
differential
metabolites

screened

CN-AD 0.98 0.77 53

CN-MCI 0.98 0.79 56

MCI-AD 0.99 0.71 45

TABLE 3 R2 and Q2 values and number of differential metabolites in the
OPLS-DA model for each group in the positive ion model.

Group R2 Q2 Number of
differential
metabolites

screened

CN-AD 0.99 0.74 119

CN-MCI 0.98 0.79 125

MCI-AD 0.99 0.72 115

5α-Androsterone and Theophylline were significantly upregulated,
while Adenosine and Capsaicin were significantly downregulated
(Figure 5A). In the CN-MCI group, Theophylline and 1,7-
Dimethyluric Acid were significantly upregulated, while Adenosine
and Arabinose were significantly downregulated (Figure 5B).
In the MCI-AD group, Citalopram and Digalacturonate
were significantly upregulated, while 1,7-Dimethyluric Acid
and N-Acetylglucosamine were significantly downregulated
(Figure 5C). Box plots showed the significant differences in key

metabolites between the comparison groups (Supplementary
Figures S4A–C).

Additionally, several metabolites exhibited consistent or
opposing differences across different groups. For example,
Vanillylmandelic Acid (VMA, DL-4-Hydroxy-3-Methoxymandelic
Acid) was significantly upregulated in both the CN-AD and CN-
MCI groups, while Adenosine was significantly downregulated
in both groups. 1,7-Dimethyluric Acid and Cystathionine were
significantly upregulated in the CN-MCI group but significantly
downregulated in the MCI-AD group. Conversely, Indole was
significantly downregulated in the CN-MCI group but significantly
upregulated in the MCI-AD group.

Construction and validation of AD
progression prediction model

The sample distribution plots demonstrated the excellent
classification ability of the AD progression prediction model based
on key metabolites across different groups (Figures 6A–C). The
ROC curve showed outstanding predictive power of the model in
distinguishing different stages of AD, with combined AUC values
of 0.999, 0.940, and 0.996 for the CN-AD, CN-MCI, and MCI-AD
groups, respectively (Figures 6D–F). The results from the random
sampling tests showed that the model had good predictive accuracy
(Figures 6G–I).

Discussion

This study employed untargeted urine metabolomics combined
with OPLS-DA to analyze metabolic differences across various
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FIGURE 3

Volcano plots of differential metabolites and bar charts of differential metabolites. (A) Volcano plot of differential metabolites in the CN-AD group.
(B) Volcano plot of differential metabolites in the CN-MCI group. (C) Volcano plot of differential metabolites in the MCI-AD group. (D) Bar chart of
the top 15 upregulated and downregulated differential metabolites in the CN-AD group. (E) Bar chart of the top 15 upregulated and downregulated
differential metabolites in the CN-MCI group. (F) Bar chart of the top 15 upregulated and downregulated differential metabolites in the MCI-AD
group. In the volcano plot, red dots represent metabolites that are significantly upregulated (p < 0.05), green dots indicate metabolites that are
significantly downregulated (p < 0.05), and gray dots denote metabolites with no significant differential expression.

FIGURE 4

Pathway enrichment analysis. (A) Pathway enrichment analysis for the CN-AD group. (B) Pathway enrichment analysis for the CN-MCI group.
(C) Pathway enrichment analysis for the MCI-AD group. (D) Mechanism diagram illustrating the relationships at different stages of AD.

stages of AD, identifying significantly enriched metabolic pathways
and key metabolites at each stage. Based on these findings, an AD
progression prediction model was constructed. Previous studies
have primarily focused on blood and brain metabolism in MCI and
AD patients (Pillai et al., 2023; Salmon et al., 2024), while urine
metabolomics research remains relatively scarce and preliminary
(Wang et al., 2023; Yilmaz et al., 2020). The innovation of this study
lies in its systematic analysis of urine metabolic differences across all
stages of AD, revealing differences in key metabolites and pathways
with significant potential for predicting AD progression.

Our study included 162 participants categorized into AD, MCI,
and CN groups. We observed significant age differences: median
ages were 79 for AD, 74 for MCI, and 70 for CN groups (P < 0.001).
Gender distribution was consistent across groups (P = 0.253),
ensuring gender neutrality in our findings. Lifestyle and health
factors such as smoking, hypertension, diabetes, hyperlipidemia,
heart conditions, cerebrovascular diseases, and family history of
AD showed no significant differences across groups, minimizing
their impact as confounders. Notably, the APOE ε4 allele was
significantly more prevalent among AD patients (P = 0.005).
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FIGURE 5

Heatmaps of key metabolites in each group. (A) Heatmap of key metabolites in the CN-AD group. (B) Heatmap of key metabolites in the CN-MCI
group. (C) Heatmap of key metabolites in the MCI-AD group.

FIGURE 6

Sample distribution, ROC curves, and random sampling tests. (A) Sample distribution plot of the CN-AD group. (B) Sample distribution plot of the
CN-MCI group. (C) Sample distribution plot of the MCI-AD group. (D) ROC curve of the CN-AD group. (E) ROC curve of the CN-MCI group. (F) ROC
curve of the MCI-AD group. (G) Random sampling test for the CN-AD group. (H) Random sampling test for the CN-MCI group. (I) Random sampling
test for the MCI-AD group.

Cognitive function, assessed through MMSE and MoCA scores,
deteriorated progressively from CN to AD (P < 0.001), confirming
the expected clinical trajectory.

The study corroborates and extends the understanding of
drug metabolism and retinol metabolism pathways, which are

crucial in predicting AD progression. While drug metabolism
pathways are known to be significantly enriched in AD, impacting
drug clearance, liver metabolism, and neurotransmitter balance
(Dhurjad et al., 2022; Monteiro et al., 2023; Zhao et al., 2021),
our findings provide further insight into the dynamic alterations
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of these pathways across various stages of the disease.. Initially, in
the early stages from cognitively normal (CN) to mild cognitive
impairment (MCI), the impact of drug metabolism pathways
appears relatively minor. However, even at this phase, we observe
stability in the levels of drug metabolites such as Citalopram,
indicating that drug metabolism remains functionally robust
in MCI patients. This phase also marks the onset of subtle
changes in the activity of metabolic enzymes such as CYP2C19,
CYP2D6, and CYP3A4, which are involved in the N-demethylation
of Citalopram to demethylcitalopram (Rao, 2007). As patients
transition from MCI to AD, there is a pronounced shift in
drug metabolism pathways, characterized by increased variability
and altered levels of drugs like Codeine. This alteration reflects
significant metabolic dysfunction, with Codeine’s metabolism
through CYP2D6 to morphine—a potent opioid—undergoing
substantial changes (Ashraf et al., 2024). These changes mirror
the physiological shifts associated with advancing AD and suggest
a significant impact on drug clearance rates, liver metabolism,
and overall pharmacokinetics. These findings emphasize how the
progression of AD increasingly compromises drug metabolism,
which could significantly impact the pharmacodynamics and
therapeutic outcomes of medications used in this population. Such
insights suggest that monitoring drug metabolism pathways could
serve as an early warning system for AD progression, assisting in
identifying high-risk individuals and enhancing opportunities for
timely intervention and treatment. Retinol metabolism played a key
role in predicting AD progression.

Retinol and its derivatives are vital for several brain health-
related processes, including neuronal differentiation, synaptic
plasticity, and gene expression regulation (Dumetz et al.,
2022; Moramarco and McCaffery, 2023). Notably, vitamin
A, a primary form of retinol, significantly influences AD
pathogenesis by modulating the deposition and clearance of
amyloid-beta plaques, central to AD pathology (Chen et al., 2021).
This connection underscores retinol’s potential impact on the
underlying neurodegenerative processes of AD. Previous studies
have linked Retinol metabolism to neuroprotection and antioxidant
processes, suggesting its association with cognitive decline in AD
patients (Wołoszynowska-Fraser et al., 2020). The present study
further indicates that Retinol metabolism is significantly enriched
during the transition from MCI to AD, possibly playing a critical
role in this process. However, it is important to note that previous
study (Bourdel-Marchasson, 2001) reported low plasma retinol
concentrations in AD patients, which seems to contradict our
findings. This discrepancy may be attributed to differences in the
biological matrices (plasma vs. urine) used for measurements. The
difference in retinol levels between plasma and urine can be due to
the matrices used for measurement, where urine levels reflect the
body’s excretion and metabolic processing rather than immediate
bioavailability. The enrichment of retinol in urine could suggest
the presence of compensatory mechanisms or adaptive responses
aimed at maintaining retinol homeostasis, potentially due to
decreased bioavailability in plasma. This increase in metabolic
activity might be the body’s attempt to regulate or respond
to the neurodegenerative processes inherent in AD progression.
Therefore, the observed alterations in Retinol metabolism pathways
may not only serve as a monitor for the transition from MCI to AD
but also highlight potential targets for future interventions aimed
at modulating this pathway to benefit AD patients.

This study also identified key metabolites for dynamically
monitoring and predicting AD progression. Among these,
Theophylline, VMA, and Adenosine demonstrated potential as
early predictive markers during the initial stages of AD, while 1,7-
Dimethyluric Acid, Cystathionine, and Indole exhibited stronger
predictive power at the key transition point of AD progression
(MCI). In the early stages of AD, the differential expression
of Theophylline, VMA, and Adenosine were more pronounced,
indicating their potential as early biomarkers. Theophylline, a
xanthine derivative, has been shown to have anti-inflammatory
and immunomodulatory properties, protecting neurons from
inflammatory damage through the regulation of the Adenosine
receptor (Janitschke et al., 2021). It is noteworthy that our results
indicate the presence of caffeine metabolism, suggesting that
Theophylline could potentially be a byproduct of this process
(Monteiro et al., 2016). However, while Theophylline is a known
metabolite of caffeine, it is important to clarify that our study
does not determine whether the caffeine originates from dietary
consumption or pharmaceutical applications. This uncertainty
underscores the complexities of interpreting Theophylline’s origin
in metabolic studies and highlights the need for further research to
distinguish between these potential sources. VMA is closely related
to neurotransmitter metabolism, particularly in oxidative stress
defense (Lee et al., 2017). Oxidative stress has been confirmed to
play a crucial role in AD pathology (Bai et al., 2022), and VMA may
influence neuronal health by regulating oxidative stress balance.
Previous studies have found that VMA levels are significantly
elevated in the CSF of AD patients (Kaddurah-Daouk et al., 2013).
Adenosine, a neuromodulator, regulates neurotransmitter release
and inflammatory responses through the activation of its coupled
receptors (Borea et al., 2018). Dysregulation of the Adenosine
system in AD patients may accelerate neurotransmitter imbalances
and inflammatory responses (Chang et al., 2021; Trinh et al., 2022).
The dynamic differences in these metabolites not only provide
earlier warning signals for CN individuals but also offer critical
clues for identifying metabolic differences in the early progression
of AD, which is of significant clinical importance.

Furthermore, at the key transition point of AD progression, 1,7-
Dimethyluric Acid, Cystathionine, and Indole demonstrated strong
predictive potential. First, 1,7-Dimethyluric Acid was significantly
expressed in the early stages of AD progression, possibly
reflecting its protective role in counteracting neurodegenerative
differences . However, as AD progresses, 1,7-Dimethyluric Acid
levels significantly decrease in the later stages of the disease,
suggesting that its protective effects may diminish or disappear. 1,7-
Dimethyluric Acid is one of the metabolites of caffeine, and studies
have shown that caffeine and its metabolites can protect against AD
through antioxidant, anti-inflammatory, and Adenosine receptor-
mediated mechanisms (Fu et al., 2023; Iranpour et al., 2020;
Takeshige-Amano et al., 2020). Secondly, Cystathionine was
significantly expressed in the early stages of AD, possibly reflecting
enhanced metabolic defense mechanisms. However, its rapid
decline as the disease progresses may indicate a weakening of
the antioxidant defense system, exacerbating AD progression.
Cystathionine is closely associated with oxidative stress and
Glutathione metabolism, processes that play important roles in
AD pathology (Korczowska-Ła̧cka et al., 2023; Xi et al., 2023).
Previous studies have found significant differential expression
of Cystathionine in both AD and Parkinson’s disease patients
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(Kalecký et al., 2022), and its decline may reflect increased
oxidative damage (Haddad et al., 2021; Korczowska-Ła̧cka
et al., 2023). Finally, Indole was found to be metabolically
suppressed in the early stages of AD but significantly increased
in the later stages, possibly related to the activation of
late-stage inflammatory or immune responses. Indole is an
important metabolite of Tryptophan metabolism, involved
in regulating the immune system, neuroprotection, and the
interaction between the gut microbiota and the nervous
system (Zhou et al., 2023). Previous research has identified
Indole as a potential target for AD treatment (Azmy et al.,
2023; Zhou et al., 2023), and this study further reveals
the dynamic differences of Indole during the transition
to AD.

Monitoring the dynamic differences of metabolites during
AD progression is crucial for early prediction and intervention.
However, this study has certain limitations. The relatively
small sample size may not adequately represent the broader
population, potentially leading to variations that could
impact the generalizability of our findings. Additionally, the
lack of controlled conditions for urine collection, such as
specific collection times and dietary restrictions prior to
sampling, might introduce variability that could affect the
observed metabolic profiles. Moreover, this study did not
account for the potential effects of medications, particularly
cholinesterase inhibitors, which are commonly prescribed
to manage symptoms of AD. The absence of controls for
medication use represents a significant limitation, as such
treatments could influence the metabolic profiles observed. Future
research would benefit from addressing these factors, potentially
including comprehensive data on medication usage to better
understand its impact on metabolic changes associated with AD
progression. Finally, although the AD progression prediction
model demonstrated strong classification abilities, it requires
further validation with larger clinical datasets to confirm its
efficacy and robustness.

In conclusion, this study deepens the understanding of
dynamic metabolic differences during AD progression, providing
a foundation for future research and clinical applications. Further
studies should validate these findings in larger cohorts and explore
the specific roles of these metabolites in the pathogenesis of AD.

Conclusion

This study conducted a comprehensive analysis of the
metabolic differences in key metabolites and pathways at various
stages of AD progression, highlighting their potential as biomarkers
for early detection and intervention. The development of an
AD progression prediction model has further validated the
effectiveness of these biomarkers. By establishing these metabolites
and pathways as reliable indicators, this research provides critical
insights into the early stages of Alzheimer’s disease and lays the

foundation for the development of more targeted and effective
intervention strategies.
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