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Objectives: To propose a multimodal functional brain network (FBN) and

structural brain network (SBN) topological feature fusion technique based

on resting-state functional magnetic resonance imaging (rs-fMRI), diffusion

tensor imaging (DTI), 3D-T1-weighted imaging (3D-T1WI), and demographic

characteristics to diagnose mild cognitive impairment (MCI) in patients with

unilateral middle cerebral artery (MCA) steno-occlusive disease.

Methods: The performances of different algorithms on the MCI dataset were

evaluated using 5-fold cross-validation. The diagnostic results of the multimodal

performance were evaluated using t-distributed stochastic neighbor embedding

(t-SNE) analysis. The four-modal analysis method proposed in this study was

applied to identify brain regions and connections associated with MCI, thus

confirming its validity.

Results: Based on the fusion of the topological features of the multimodal FBN

and SBN, the accuracy for the diagnosis of MCI in patients with unilateral MCA

steno-occlusive disease reached 90.00%. The accuracy, recall, sensitivity, and

F1-score were higher than those of the other methods, as was the diagnostic

efficacy (AUC = 0.9149).

Conclusion: The multimodal FBN and SBN topological feature fusion technique,

which incorporates rs-fMRI, DTI, 3D-T1WI, and demographic characteristics,

obtains the most discriminative features of MCI in patients with unilateral MCA

steno-occlusive disease and can effectively identify disease-related brain areas
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and connections. Efficient automated diagnosis facilitates the early and accurate

detection of MCI and timely intervention and treatment to delay or prevent

disease progression.

KEYWORDS

middle cerebral artery, stenosis, multimodality imaging, mild cognitive impairment,
Montreal cognitive assessment

1 Introduction

Intracranial arterial stenosis (ICAS) is an independent risk
factor for cerebral ischaemia. Stenosis of the middle cerebral
artery (MCA) is the most frequent subtype of ICAS (Zhang L.
et al., 2022). Persistent arterial stenosis can lead to intracranial
ischaemic damage, resulting in brain atrophy and secondary
neurodegeneration, which may affect cognitive function. Mild
cognitive impairment (MCI) is an intermediate state between
normal aging and dementia (Petersen et al., 2018; Cheng et al., 2017;
Langa and Levine, 2014). Various scales are used to diagnose MCI,
such as the Mini-Mental State Examination (MMSE), Montreal
cognitive assessment (MoCA), and AD8 (Pinto et al., 2019;
Nasreddine et al., 2005; Usarel et al., 2019). Different scales use
slightly different criteria and methods to assess cognitive function,
which may result in different diagnostic results (Zhuang et al.,
2021). In addition, the scale assessment process is limited by
a certain degree of subjectivity because the scoring criteria and
results may be affected by the assessor’s personal experience and
bias, leading to incorrect or missed diagnoses. The characteristics
and symptoms of MCI vary among different populations. For
example, factors such as age, cultural background, and education
level may affect the accuracy of assessment results. Therefore, it is
of great clinical significance to investigate intelligent diagnostic and
analytical methods for MCI as crucial interventions to ensure early
diagnosis and timely treatment.

With the development of imaging technology, multimodal
magnetic resonance imaging (MRI) has provided objective
supplementary disease biomarkers for the computer-aided
diagnosis of MCI. Structural MRI shows specific cerebral gray
and white matter atrophy (Pennanen et al., 2004). Resting-state
functional MRI (rs-fMRI) indirectly detects neural activity in the
brain based on blood oxygen level-dependent (BOLD) signals
and can detect abnormalities in brain function in patients with
MCI (Li et al., 2016; Liu et al., 2016). Diffusion tensor imaging
(DTI) is widely used to study the orientation and integrity of
white matter fiber tracts by measuring the Brownian motion of
water molecules in neural tissues (Le Bihan, 2003), indirectly
reflecting tissue microstructure and pathological changes (Jiang
et al., 2006). Significant differences in anisotropy scores (FA) and
mean diffusivity (MD) have been found in the white matter of
patients with MCI compared to normal subjects (Sexton et al.,
2011; Yu et al., 2017; Shim et al., 2017).

Despite the utility of the techniques, learning disease features
and identifying imaging markers by using a single modality
have limitations. Multimodal MRI can integrate complementary
information from different modalities, thereby improving disease
diagnosis by detecting subtle structural alterations in the brain

more accurately than with a single modality. Therefore, several
studies investigating MCI have used combinations of functional
and structural connectivity networks, with results indicating that
network features based on multimodal images are advantageous
for the diagnosis of MCI (Zhu et al., 2014; Zhang et al., 2011;
Song et al., 2023). For example, studies have shown that the
integration of multiple modalities, such as genetic, epigenomic,
and neuroimaging data, using hyper-graph-based sparse canonical
correlation analysis (HGSCCA) can extract meaningful biomarkers
related to MCI (Shao et al., 2021). Joint neuroimaging synthesis
representation learning (JSRL) has been proposed for conversion
using incomplete multi-modal neuroimaging data and has shown
superior performance for MCI cross-database synthesis compared
to several state-of-the-art methods (Liu et al., 2022). In addition,
feature selection methods, such as a multi-classification prediction
model based on fusing multi-modal features, have been developed
to accurately diagnose and predict the progression of MCI.
The proposed feature selection method with a multikernel
support vector machine (MK-SVM) showed better classification
performance than state-of-the-art multimodality-based methods
(Hao et al., 2020). In another study, Lei et al. (2021) constructed
a functional brain network (FBN) and structural brain network
(SBN) based on rs-fMRI and DTI, respectively, and used an
automatic weighted centralized multitasking learning framework
to integrate these structural and functional connectivity features,
achieving diagnostic accuracies higher than 84.80% between
normal controls and patients with subjective cognitive impairment
with MCI. This suggests that connected networks based on
multimodal images have significant potential for MCI classification
and diagnosis.

Studies have demonstrated that extracranial arterial stenosis is
an independent risk factor for cognitive dysfunction (Huang et al.,
2018; Dempsey et al., 2018; Wang et al., 2017). However, few studies
have investigated the correlation between intracranial arterial
stenosis, particularly MCA stenosis, and cognitive impairment.
In additionally, uniform diagnostic imaging criteria for cognitive
impairment caused by intracranial vascular stenosis are lacking.
Therefore, this study tested a novel fusion technique based on
the topological features of multimodal FBN and SBN to improve
early diagnosis of MCI in patients with unilateral MCA steno-
occlusive disease. The main contributions of the proposed method
are summarized as follows:

• We developed a multimodal framework that combines rs-
fMRI, DTI, three-dimensional-T1-weighted imaging (3D-
T1WI), and demographic data, leveraging the complementary
strengths of these modalities for diagnosing MCI in patients
with unilateral MCA steno-occlusive disease.
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• A topological feature fusion technique was introduced that
preserves SBN and FBN properties while using attention
mechanisms to integrate multi-channel topological features
and identify MCI-related brain regions and connections.
• Our method achieved superior performance, with an accuracy

(ACC) of 90.00% and an area under the receiver operating
characteristic (ROC) curve (AUC) of 0.9149, surpassing
existing techniques and providing an effective tool for early
MCI detection and intervention.

2 Materials and methods

2.1 Participants

Forty patients with unilateral MCA steno-occlusive disease,
diagnosed based on magnetic resonance angiography (MRA)
between January 2017 and August 2023, were recruited and
divided into two groups based on MoCA results. The MCI
and non-MCI (NMCI) groups comprised 11 and 29 patients,
respectively. According to Chinese MoCA norms (Lu et al., 2011),
the level of cognitive impairment is defined by the following
scores: ≤ 13 for illiterate individuals, ≤ 19 for individuals
with 1–6 years of education, and ≤ 24 for those with 7 or
more years of education. The inclusion criteria were as follows:
(a) asymptomatic or subjective memory decline; (b) unilateral
MCA stenosis > 70%; (c) absence of stroke, TIA, or dementia;
(d) right-handed; (e) ability to complete the MRI examination
with a qualifying high-resolution MRI image; (f) no history of
drug use that could affect cognitive function; and (g) normal-
appearing white matter (normal brain parenchymal signals or
lacunar infarcts < 3 mm in diameter on T2-weighted and fluid
attenuated inversion recovery [FLAIR] sequences). The exclusion
criteria were as follows: (a) other cerebral artery stenosis ≥ 30%;
(b) severe visual or auditory impairment preventing completion
of cognitive function assessment; (c) history of severe systemic
or neuropsychiatric diseases; (d) history of frequent dizziness
and headache; (e) history of acute or chronic cerebral infarction,
bleeding, tumor, infectious disease, or metabolic disease detected
by MRI; (f) history of drug or alcohol dependence during the
last 6 months; and (g) contraindications for MRI. This study was
approved by the Medical Ethics Committee of Q Hospital, and
informed consent was obtained from all participants. The detailed
demographic characteristics of the participants are presented in
Table 1.

Hypertension was defined as a self-reported diagnosis by a
physician, antihypertensive medication use, or systolic or diastolic
blood pressure ≥ 140 or ≥ 90 mmHg, respectively. Diabetes was
defined as a self-reported history of antidiabetic medication use
or glycated hemoglobin A1C level ≥ 6.5%. Hyperlipidaemia was
defined as a history of hyperlipidemia, a clinical diagnosis of
hyperlipidaemia during hospitalization, or the use of lipid-lowering
medication (American Diabetes Association, 2020; Israelsson et al.,
2017; Jaraj et al., 2016). A current smoker was defined as someone
who smoked >100 cigarettes in their lifetime and was currently
smoking cigarettes at the time of the survey (Adeloye et al., 2019).
A current drinker was defined as someone who consumed at least
one alcoholic beverage per week during the past month.

2.2 MRI data acquisition

Brain MRI was performed using a 3.0T MRI scanner (Ingenia;
Philips Medical Systems, Netherlands). A matched head coil with
foam padding and earplugs were used to reduce head motion
and scanner noise. The scanning sessions were performed using
the following parameters: (1) T2-weighted imaging (T2WI): 18
axial slices, 6-mm slice thickness with a 1-mm gap, repetition
time/time to echo (TR/TE) = 2,369/107 ms, matrix = 352 × 352;
(2) T2WI- FLAIR: 18 axial slices, 6-mm slice thickness with a 1-
mm gap, TR/TE = 7,000/125 ms, matrix = 288 × 163; (3) diffusion
weighted imaging (DWI): 18 axial slices, 6-mm slice thickness
with a 1-mm gap, TR/TE = 2,235/76 ms, matrix = 176 × 134;
(4) 3D-T1WI: 170 sagittal slices, 1-mm slice thickness with no
gap, TR/TE = 6.7/3.0 ms; (5) DTI: (70 axial slices, 2 mm slice
thickness with no gap, TR/TE = 4,900/95 ms, matrix = 122 × 110,
b values = 1,000 s/mm2) in 32 directions; and (6) rs-fMRI:
32 axial slices, 4-mm slice thickness with a 0.5-mm gap, 240
time points, TR/TE = 2,000/30 ms, flip angle = 90◦, field
of view = 230 mm2

× 230 mm2, data matrix = 68 × 66,
voxel = 3.5 mm3

× 3.5 mm3
× 4 mm3.

2.3 Data preprocessing

(1) rs-fMRI processing: All rs-fMRI data were pre-processed
using the DPARSF toolbox (Chao-Gan and Yu-Feng, 2010).
Following the general fMRI preprocessing pipeline, the serialized
data were split into several pieces and adjusted to the echo-
planar imaging template to correct and rectify the initial image
(Zhang J. et al., 2022; Zhu et al., 2024). Detrending was used
to reduce the effects of head motion and interference from the
cerebrospinal fluid (CSF) and white matter. After linear detrending,
the data were filtered using a typical time bandpass filter to
reduce low-frequency drift and high-frequency physiological noise.
Next, the motion parameters, global mean signal, white matter,
and CSF were employed as interference covariates to reduce the
effects of head movement and non-neuronal blood oxygenation
level dependent fluctuations. After processing, we employed an
automated anatomical labeling (AAL) atlas (Craddock et al.,
2012) to partition the rs-fMRI date into 90 brain regions, each
containing blood oxygen level signals at 240 time points, with
feature dimensions of 90× 240.

(2) DTI processing: DTI distortions were first corrected using
the FSL-based PANDA toolbox (Cui et al., 2013). The processing
procedure inclouded the following steps: b0-based brain extraction
utilizing the bet function and correction for eddy currents and head
motion employing the eddy_correct function with b0 serving as the
reference volume. Based on each subject’s co-registered T1 images,
TrackVis was used to obtain fiber images using a deterministic
tracking method, and the anatomic areas were defined using AAL
conventions. Finally, the number of fibers was used to measure the
structural connectivity with feature dimensions of 90× 90.

(3) 3D-T1WI processing: The CAT12 toolbox of Statistical
Parametric Mapping (SPM12) (Ashburner and Friston, 2005) was
used to segment the 3D-T1WI. Regions of interest (ROIs) refer
to specific areas of the brain selected for detailed analysis, which
are often based on prior knowledge or anatomical templates. In
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TABLE 1 Demographic characteristics of the subjects.

NMCI (n = 29) MCI (n = 11) χ 2/T/Z p-value

Age (years, median, IQR) 59.3 (16.00) 64.2 (2.00) −1.352 0.176c

Sex (female, %) 16 (55.17%) 6 (54.55%) 0.000 1.000a

Education (years, mean± SD) 9.03± 4.64 9.18± 2.04 −0.139 0.890b

Hypertension (%) 24 (82.76%) 8 (72.73%) 0.071 0.791a

Diabetes (%) 13 (44.83%) 3 (27.27%) 0.423 0.515a

Hyperlipidemia (%) 13 (44.83%) 7 (63.64%) 1.129 0.288a

Current smoker (%) 6 (20.69%) 2 (18.18%) 0.000 1.000a

Current drinker (%) 6 (20.69%) 3 (27.27%) 0.000 0.983a

Severe stenosis or occlusion side (right, %) 13 (44.83%) 7 (63.64%) 1.129 0.288a

aFisher’s exact test. bIndependent-samples t-test. cMann–Whitney U test. p-value significant cut-off 0.05. IQR, interquartile range; SD, standard deviation.

this case, the AAL template was used to extract the volume of the
116 ROIs from the segmented gray matter. Given that we focused
exclusively on the brain, brain regions 91–116 were removed as
features, resulting in feature dimensions of 90× 1. The last 26 brain
regions were removed to exclude those that were less relevant to
the specific analysis, thus ensuring a more focused and meaningful
feature set for the given task.

(4) Demographic characteristic processing: Participant
information was coded with dimensions of 90× 9.

2.4 Multimodal imaging technique based
on rs-fMRI, DTI, 3D-T1WI, and
demographic characteristics

In this study, we proposed a framework that fuses multimodal
(four-modality) FBN and SBN topological features, focusing on
multimodal classification using four modalities: rs-fMRI, DTI, 3D-
T1WI, and demographic characteristics. Figure 1 shows a schematic
of the proposed multimodal data fusion and classification system.
The construction of FBNs and SBNs plays a key role in generating
brain network data with topological properties. A multichannel
graph attention network was utilized to extract spatial features from
multichannel graph-structured data. The attention mechanism
effectively fuses features from different channels, and a multilayer
perceptron (MLP) (Rosenblatt, 1958; Zhou et al., 2023) classifier
was then applied to classify the extracted features.

As illustrated in Figure 2, our framework initiated a
comprehensive data processing phase that standardizes the fMRI,
DTI, and 3D-T1WI data. These processes include distortion
correction, brain extraction, eddy current and head motion
correction, image segmentation, ROI extraction, and time-
point signal extraction, along with the integration of encoded
demographic characteristics. Subsequently, FBNs and SBNs were
constructed to reveal dynamic functional connectivity and physical
connections between brain regions, respectively. A multichannel
graph attention network was then employed to extract the
topological features from these networks. The network utilizes
an attention mechanism to enhance the representation of
brain regions associated with MCI and integrates multimodal
information to improve the comprehensiveness and accuracy of
features. The extracted features were then fed into an optimized

classifier, which was designed to enhance the accuracy, recall,
specificity, and F1 score for MCI diagnosis, and the model’s
diagnostic performance was further assessed through the ROC
curve. Figure 2 provides a clear visual representation of the entire
process, from data preprocessing to brain network construction
to feature extraction and classification, offering a transparent view
of how the various components of the multimodal brain network
analysis workflow interact and collaborate to effectively diagnose
MCI. This integrated approach allows a more comprehensive
capture of brain network changes related to MCI, thereby providing
a scientific basis for early diagnosis and intervention.

2.4.1 Construction of functional brain networks
and structural brain networks

In the diagnosis of diseases, single-modal brain imaging
data such as 3D-T1WI, rs-fMRI, and DTI contain complex
and unique discriminative information. A vector representation
constructed as an Euclidean space is not conducive to data
fusion or information extraction. 3D-T1WI can generate static
images to obtain information regarding the patient’s body, rs-
fMRI reflects changes in brain activity in the temporal dimension,
and DTI reflects the physical connectivity of brain intervals in
the spatial dimension. In addition, demographic characteristics,
including years of education, type of MCA stenosis, sex, age,
disease history, and other information comprehensively reflect the
background of the subjects. Changes in the brain connectivity
patterns are important features of brain disorders. Constructing
the brain networks of subjects is a common method for intelligent
diagnosis of brain diseases. For each subject, we defined the
demographic characteristics matrix E = (e, e, · · · ,eP)T ∈ RP,
where P represents the amount of background information in
demographic characteristics. The feature matrix of 3D-T1WI
was defined as T = (t1, t, · · · ,tN)T ∈ RN , where N denotes the
number of ROIs. We further introduced a multilayer perceptron
to transform the dimensions of the demographic characteristic
matrix. The process is as follows:

E
′

= f1 (w1,E)+b1 (1)

where f1 is parameterised by the network weights w1 ∈ RN×P

and the learnable bias term b1 ∈ RN . We further performed a
preliminary fusion of E

′

and T to obtain the feature F:F = E
′

+T.
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FIGURE 1

The framework of the proposed multimodal brain networks fusion for brain disease diagnosis. Our framework can be divided into three parts:
construction of FBN and SBN, multi-channel graph attention network and classifier.

FIGURE 2

Application flow chart of multimodal brain network construction and feature fusion in MCI diagnosis.

Next, we transformed the dimensions of the fused feature matrix as
follows:

R= f2 (w2, F)+b2 (2)

where f2 is parameterised by the network weights w2 ∈ RN×N

and b2 ∈ RN is the learnable bias term, R ∈ RN . At the same
time, we defined the rs-fMRI time-series data for each subject
as X = (x1, x2, · · · ,xN)T ∈ RN×M , where N denotes the number
of brain regions and M represents the number of consecutive
time series points collected. Pearson’s correlation coefficients

were calculated for the paired ROIs to measure functional
connectivity.

cij =
Cov(xi,xj)

σxiσxj
(3)

where Cov
(−→x i,

−→x j
)

denotes the covariance of −→x i and −→x j and σ

denotes the standard deviation. Thus, we obtained the functional
connectivity matrix C = (c1, c2, · · · ,cN)T ∈ RN×N , where vector
−→c i denotes functional connectivity feature of the ith brain region.
The DTI feature matrix is D = (d1, d2, · · · , dN)T, di ∈ RN , and
the values in the matrix reflect the strength of brain interval
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connectivity. To achieve further fusion of different modalities, we
defined the FBN as GF = (R,C), and the SBN as GS = (R,D).

2.4.2 Multichannel graph attention network
To maintain the topological information of FBNs and SBNs,

we developed a method to extract the topological features of brain
networks using multi-channel graph attention networks. A multi-
channel graph attention network is primarily composed of two
graph-attention networks, as shown in Figure 1. The input to
each channel is a series of feature vectors of the brain regions
and connections. Taking the FBNGF = (R,C) as an example, its
node feature can be expressed as R = (r1, r2, · · · , rN)T, ri ∈ RN ,
where the number of brain regions and feature dimension are N.
If brain regions i to brain regions j have an edge, the brain area
concentration coefficient eij = LeakyReLU

(
−→a T [Wri ‖Wrj

])
,

where a∈ R2N denotes a learnable attention vector, W denotes
a learnable weight matrix, and ‖ represents the concatenation
operation. LeakyReLU is the LeakyReLU activation function, where
the parameter α is typically set to 0.2, allowing a small gradient for
negative input values to prevent neurones from becoming inactive.

We employed a masking mechanism to embed the graph
structure from the adjacency matrix C into the attention
coefficients. Subsequently, attention coefficient eij is updated as
follows:

eij =

{
0, cij = 0
eij, cij> 0

(4)

We further applied the SoftMax function to normalize eijfor
neighboring brain regions j ∈ Ni of the ith brain region. The
SoftMax function converts the input values into a probability
distribution, ensuring that the normalized values sum to 1 across
the neighboring regions. The normalized attention coefficient can
then be obtained as follows:

αij = softmax

(
exp
(
LeakyReLU

(
−→a T[Wri‖Wrj]

))
∑

k∈Ni
exp
(
LeakyReLU

(
−→a T [Wri‖Wrk]

))
)

(5)

The normalized attention coefficient is used to update the brain
network features, and the updated features of the ith brain region
are expressed as follows.

ziF = σ
(∑

j∈Ni
αijWrj

)
(6)

2.4.3 Attention mechanism
The attention mechanism plays a pivotal role in feature

fusion, because it enables the model to selectively prioritize the
most informative features from each embedding. By assigning
adaptive weights to different features, the attention mechanism
enhances the capacity of the model to discern and leverage
complex interactions between brain regions, leading to more
refined and accurate classifications. Furthermore, this approach
increases the interpretability of the model, as it provides insight
into which specific features or regions contribute most significantly
to the decision-making process. Using the multi-channel graph
attention network, we obtained two feature embeddings: ZF
and ZS. Considering that the labels of the brain network
are related to their pair combinations, we used the attention
mechanism (γF, γS ) = att(ZF, ZS) to fuse them, where γF, γS ∈

RN×1 represent the attention values of the ith brain embedded

regions ZF and ZS, respectively. For the brain region i, its
embedding in Z was z. We first transformed the embedding
by nonlinear transformation, and subsequently used a shared
attention algorithm q ∈ RN×1 to obtain the attention value δiF as
follows:

δiF = qT tanh
(
W
(
ziF
)T
+ b

)
where W is the weight matrix, and b is the bias vector. We
normalized the attention values using the SoftMax function:

wi
F = softmax

(
δiF
)
=

exp
(
δiF
)

exp
(
δiF
)
+exp

(
δiS
) (7)

Similarly, wi
s = softmax(δiS), a larger attention weight indicated

that the corresponding embedding is more important. For N
brain regions, there were learnable weights wF,wS ∈ RN×1, and
γF = diag(wF), γS = diag(wS). We then combined the embedding
output from the multi-channel graph attention network to obtain
the final embedding:

Z = γF · ZF+γS · ZS (8)

2.4.4 MLP classifier
MLP, also known as an artificial neural network (ANN),

contains an input layer, output layer, and several hidden layers. The
hidden layer is fully connected to the input layer. Assuming that the
vector of the input layer is x and h(x) is selected as a linear function,
the hidden layer is: g = Hx+ · k, and the vector y of the output
layeris:

y= f
(
g (x)

)
= f

(
Hx+k

)
(9)

where H denotes the weight coefficient, k is the bias term, and the
function f mostly uses the sigmoid, tanh, and ReLU functions. Core
complex multilayer perceptron can contain several hidden layers.
After the experiments, an MLP model with the following structure
was selected: each hidden layer used a linear function, the input was
the final embedding Z, and the output was the probability vector
of MCI and NMCI. In the experiments, we adopted ReLU as the
activation function and employed cross-entropy loss to supervise
the learning of the multimodal brain network topological features.

2.5 Validation

To evaluate the performance of the different classification
methods, we used a 5-fold cross-validation strategy to compute
the classification accuracy (ACC), sensitivity (SEN), specificity
(SPE), precision (PRE), recall (REC), F-measure (F1), and AUC.
Specifically, five approximately equally sized, mutually exclusive
subsets were partitioned from the entire dataset, four of which were
used for training and the remaining for testing. Each algorithm
was applied to the MCI recognition task, where the MCI dataset
contained two classification labels (MCI group and NMCI group),
which we considered a binary task to determine whether the subject
had cognitive impairment.

2.6 Statistical analysis

Fisher’s exact test, independent samples t-test, and Mann–
Whitney U test were used to determine whether there were
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TABLE 2 Comparative experimental results based on rs-fMRI, DTI, and 3D-T1WI data.

Method MCI vs. NMCI

ACC PRE REC F1 AUC SEN SPE

GraphSAGE 80.00 53.33 46.67 46.00 70.50 46.67 96.67

GCN 70.00 59.24 83.33 61.33 57.57 83.33 65.24

GAT 82.50 53.33 53.33 53.33 75.00 53.33 96.00

MLP 80.00 63.33 53.33 54.00 69.67 53.33 92.67

BrainNetCNN 75.00 50.00 56.67 51.33 57.00 56.67 80.67

SAGPool 67.50 52.00 46.67 40.48 59.00 46.67 76.67

AM-GCN 77.50 53.33 46.67 48.10 61.00 46.67 84.67

PageRank 85.00 80.00 40.00 52.67 65.67 40.00 92.67

SVM 60.00 43.75 63.64 51.85 42.67 63.64 68.97

CNN 70.00 59.24 83.33 61.33 57.57 83.33 65.24

Cross-GNN 80.00 66.67 43.75 46.67 63.91 43.75 96.88

RH-BrainFS 80.00 66.67 39.58 42.50 69.49 39.58 96.88

Ours 87.50 91.67 83.33 82.50 87.50 83.33 96.88

ACC, accuracy; PRE, precision; REC, recall; F1, F-measure; AUC, area under the curve; SEN, sensitivity; SPE, specificity.

TABLE 3 Comparative experimental results based on rs-fMRI, DTI, 3D-T1WI, and demographic characteristic data.

Method MCI vs. NMCI

ACC PRE REC F1 AUC SEN SPE p-value

GraphSAGE 85.00 80.00 53.33 62.67 70.00 53.33 96.00 0.542

GCN 75.00** 68.00 63.33 56.10 67.14 63.33 83.14 0.048

GAT 82.50* 48.33 60.00 53.14 70.00 60.00 92.67 0.133

MLP 82.50* 66.67 56.67 60.00 77.00 56.67 92.00 0.140

BrainNetCNN 72.50** 41.90 80.00 54.67 66.14 80.00 65.81 0.033

SAGPool 77.50** 50.00 70.00 56.67 70.33 70.00 78.00 0.043

AM-GCN 82.50 70.00 50.00 52.67 59.33 50.00 93.33 0.176

PageRank 85.00 80.00 45.00 54.67 73.15 45.00 87.14 0.542

SVM 75.00** 62.50 45.45 52.63 78.00 45.45 89.66 0.047

CNN 85.00 60.00 80.00 67.62 73.33 80.00 85.33 0.360

Cross-GNN 85.00 66.67 52.08 53.93 84.89 52.08 96.87 0.255

RH-BrainFS 81.25* 16.67 16.67 16.67 24.05 16.67 95.00 0.149

Ours 90.00 91.67 81.67 83.75 91.49 81.67 96.88 –

ACC, accuracy; PRE, precision; REC, recall; F1, F-measure; AUC, area under the curve; SEN, sensitivity; SPE, specificity. p-value between the comparison methods and the proposed method:
*indicating p ≤ 0.15, **indicating p ≤ 0.05.

statistically significant differences between the groups. Statistical
analyses of demographic characteristics and neurobehavioural
assessment results were performed using the Statistical Package for
the Social Sciences, version 25 (SPSS 25, Chicago, Illinois, USA),
with a significance level set at p < 0.05.

3 Experiment results

3.1 Multimodal classification

To validate the effectiveness of the proposed method, we
compared it with the following ten FBN methods: GraphSAGE

(Hamilton et al., 2017), GCN (Kipf and Welling, 2017), GAT
(Veličković et al., 2018), MLP (Rosenblatt, 1958, Zhou et al., 2023),
BrainNetCNN (Kawahara et al., 2017), SAGPool (Lee et al., 2019),
AM-GCN (Wang et al., 2020), PageRank (Page et al., 1999), SVM
(Cortes and Vapnik, 1995), and CNN (Lecun et al., 1998), Cross-
GNN (Yang et al., 2024), and RH-BrainFS (Ye et al., 2023). The
classification performance results of the different brain network
construction methods are presented in Tables 2, 3. The evaluation
metrics were ACC, PRE, REC, F1, AUC, SEN, and SPE. The best
results are shown in bold. In addition, we plotted the ROC curves
of the proposed methods and compared them (Figures 3, 4).

First, we tested the performance of our multimodal
classification method using rs-fMRI, DTI, and 3D-T1WI for
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FIGURE 3

ROC curve analysis of different modes and different methods. (A) Three-modality analysis (fMRI, DTI, and 3D-T1WI data). (B) Four-modality analysis
(rs-fMRI, DTI, 3D-T1WI, and demographic characteristics).

FIGURE 4

Parameter analysis of the model’s performance: (A) Accuracy (ACC%) with varying learning rates. (B) Accuracy (ACC%) with different numbers of GAT
layers, showing optimal configurations for improved performance.

differentiating MCI from NMCI. Table 2 shows the classification
with our multimodal method compared with other methods. In the
MCI and NMCI classification tasks, the ACC of the three-modal
approach was 87.50% (SEN: 83.33%; SPE: 96.88%). The AUC value
was 0.8750, which was higher than the AUC values of the other ten
methods, indicating that the three-modal approach is effective and
has good generalis ability in MCI diagnosis.

The performances of the different methods in the MCI and
NMCI classification tasks after adding demographic characteristics
are shown in Table 3. When demographic characteristics were
combined with the three-modal approach, the ACC of the four-
modal classification reached 90.00% (sensitivity = 81.67% and
specificity = 96.88%) and the AUC reached 0.9149, which were
higher than those of the other 10 methods. Compared with using

only the three-modal approach, except for a slight decrease in
SEN and REC, the ACC, F1, and AUC values improved, with a
3.99% increase in the AUC value (Table 1). The p-values presented
in Table 3 highlight the statistical significance of the proposed
method compared with the existing approaches. Specifically, the
p-values for comparisons with the GCN (p = 0.048), BrainNetCNN
(p = 0.033), SAGPool (p = 0.043), and SVM (p = 0.047) were all
less than 0.05, indicating that the improvements achieved by the
proposed method were statistically significant. Furthermore, when
compared with the RH-BrainFS (p = 0.149), GAT (p = 0.133),
and MLP (p = 0.140), the p-values are < 0.15, demonstrating a
trend toward significance. These results substantiate the superior
performance of the proposed method, while underscoring the
reliability of the observed improvements across various metrics.
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TABLE 4 Results of the ablation experiments.

Modality MCI vs. NMCI

ACC PRE REC F1 AUC SEN SPE

w/o rs-fMRI 82.50 53.33 45.00 44.00 65.95 45.00 96.67

w/o DTI 87.50 85.42 77.08 80.42 88.39 77.08 92.26

w/o 3D-T1WI 87.50 73.33 70.00 69.33 81.67 70.00 90.00

w/o demographic
characteristics

87.50 75.00 63.33 66.48 75.67 63.33 96.00

rs-fMRI 80.00 46.67 70.00 54.29 76.14 70.00 82.95

DTI 85.00 66.67 50.00 52.50 53.13 50.00 91.67

3D-T1WI 87.50 75.00 47.92 55.00 77.43 47.92 96.67

Demographic characteristics 85.00 92.00 66.67 71.67 68.67 66.67 92.00

Ours 90.00 91.67 81.67 83.75 91.49 81.67 96.88

w/o, without.

FIGURE 5

t-SNE visualizations of the different methods: (A) The scattered distribution of the original sample in the representation space. (B–G) The
representation space of different methods on tasks MCI vs. NMCI, and (H) is the distribution of the features of our proposed methods in the
representation space. In particular, the t-SNE scatter plot in our method exhibits a clearer separation between classes, demonstrating superior
clustering and boundary delineation compared to the other methods.

The experimental results indicated that the four-modal approach
had superior classification ability for MCI. In addition, from the
experimental results, we can found that rs-fMRI, DTI, 3D-T1WI,
and demographic features complemented each other and jointly
improved ACC of MCI diagnosis. Extensive experimental results
further demonstrate that our method is effective and outperforms
other algorithms.

Figure 3 shows the ROC curves of the proposed method and the
comparison methods, where the proposed method is represented
by a thick red curve. These graphs show that the ROC curves of
the comparison methods are mostly located below and to the right
of the ROC curve of our method, whereas the area under the ROC
curve of the comparative methods is significantly smaller than that
of our method.

In general, from these tables, we find that our method
achieved the optimal performance in all metrics compared
with the comparison methods. This is because the proposed

method effectively captured the complex topological information
of brain networks and fused complementary information from the
different modalities.

Figure 4 illustrates the impact of the learning rate and number
of GAT layers on the model performance (measured by percentage
accuracy, ACC%). In panel (a), the accuracy initially improves
as the learning rate increases, before stabilizing or declining,
indicating that selecting an appropriate learning rate is crucial
for effective model optimisation. The optimal learning rate was
determined using grid search over the range {1e-6, 1e-5, 1e-4, 1e-
3, 1e-2, 1e-1, 1, 10}. Panel (b) shows that the accuracy increases
with the number of GAT layers up to a certain point, after
which it starts to decline. The optimal number of GAT layers
was determined through a grid search within the range of {1,
2, 3, 4, 5}. These results suggest that while additional layers can
enhance the representational capacity of the model, an excessive
number of layers may lead to overfitting or gradient-related issues.
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TABLE 5 Top 20 SACs between the MCI and NMCI groups.

No Brain region Weight

1 Olfactory_L 2.0813

2 Frontal_Sup_Medial_L 0.8685

3 Calcarine_L 0.8178

4 Frontal_Inf_Oper_L 0.8059

5 Temporal_Pole_Mid_L 0.7753

6 Amygdala_L 0.7066

7 Parietal_Sup_L 0.6641

8 Frontal_Sup_Orb_R 0.5934

9 Precentral_R 0.5196

10 Hippocampus_L 0.5095

11 Frontal_Sup_Orb_L 0.4984

12 Occipital_Sup_L 0.4941

13 Frontal_Inf_Tri_R 0.4638

14 Paracentral_Lobule_L 0.4350

15 Frontal_Mid_R 0.4264

16 Caudate_R 0.3770

17 Parietal_Sup_R 0.3687

18 Temporal_Pole_Sup_R 0.3671

19 Cuneus_L 0.3148

20 Frontal_Mid_L 0.2635

These findings emphasize the importance of systematically tuning
hyperparameters such as the learning rate and layer number to
balance model performance and complexity and ensure optimal
outcomes during training.

In addition, we evaluated the computational efficiency of the
proposed approach to highlight its practicality. The experimental
results indicated that the model incorporated 9.1579 million
trainable parameters and required 9.8855 million floating-
point operations per forward pass. These values reflect the
lightweight nature of the framework, allowing it to deliver
high diagnostic accuracy with minimal computational demands.
This balance between performance and efficiency underscores
its potential for real-world applications, particularly in resource-
constrained environments.

3.2 Ablation experiments

Different modalities provide complementary information for
the diagnosis of cognitive impairment and other diseases, allowing
the distinguishing features of the disease to be captured from
multiple perspectives. We further studied the effectiveness of
using discriminative information provided by multimodal data
to enhance the diagnostic performance for diseases involving
cognitive impairment. First, the existing architecture of the model
was maintained throughout the analysis to ensure consistency.
We then removed the rs-fMRI, DTI, 3D-T1WI, and demographic
characteristic data to diagnose diseases with cognitive impairment
while retaining the rs-fMRI, DTI, 3D-T1WI, and demographic

characteristics for diagnosis. Finally, we integrated the four modal
datasets to validate the improvement in multimodal information
and the role of each modality. The results of the ablation
experiments are listed in Table 4, which shows an improvement in
the classification performance compared to the fusion of all four
modalities.

3.3 t-SNE visualization

To validate the feature extraction capability of the proposed
method, we compared the learned features extracted using different
methods. First, we reduced the dimensionality of the representation
vectors using the t-SNE method (Maaten and Hinton, 2008), which
is commonly used to visualize high-dimensional data by mapping it
into a lower-dimensional space, typically two or three dimensions,
while preserving the local structure of the data. We projected the
two-dimensional vectors onto a public space for visualization, as
shown in Figure 5. Further, we visualized the results of the original
sample data and comparison methods, as shown in Figures 5A–
G, respectively. According to the experimental results, our method
demonstrates a higher clustering of samples from the same class
and clear boundaries between different categories of samples.

3.4 Discriminative ROIs

In addition to the diagnostic performance of the classification,
significant changes in brain regions and connections can be
used to evaluate the performance of the brain network. Because
not all ROIs are closely related to cognitive impairment, we
used our proposed method to identify the most discriminative
ROIs to understand brain abnormalities. By calculating the
significant alterations in connectivity (SAC), we demonstrated
local differences in brain networks. SAC quantifies the changes in
connectivity strength between specific brain regions by comparing
the brain network structures of different groups. Specifically,
SAC is calculated by measuring the difference in connectivity
values between corresponding brain regions across groups.
Specifically, we applied a non-negative elastic net to measure the
important brain regions in the brain network embedded prior to
classification for each subject. We subsequent visualized the 20
most relevant ROIs and the top ten connections between them in
the NMCI and MCI task.

The top 20 brain regions with significant weights in the
MCI and NMCI classifications are presented in Table 5 and
Figure 6. The English abbreviations corresponding to the
Chinese and English names of the brain regions are listed
in the Supplementary Appendix 1. The larger the weight of
a brain region, the more likely it was to undergo significant
changes. Brain regions with significant structural changes found
using this method were confirmed to be associated with MCI,
including Olfactory_L, Frontal_Sup_Medial_L, Parietal_Sup_L,
Temporal_Pole_Mid_L, Frontal_Inf_Tri_R, Amygdala_L,
Hippocampus_L, Frontal_Sup_Orb_R, and Paracentral_Lobule_L.

In the classification of MCI and NMCI, the 10 brain
connections with higher weights, as shown in Table 6 and Figure 7,
the abnormal connections were distributed throughout the brain,
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FIGURE 6

Top 20 SACs between the MCI and NMCI groups. Brain regions with significant structural changes include Olfactory_L, Frontal_Sup_Medial_L,
Parietal_Sup_L, Temporal_Pole_Mid_L, Frontal_Inf_Tri_R, Amygdala_L, Hippocampus_L, Frontal_Sup_Orb_R, and Paracentral_Lobule_L. Different
brain regions are represented by different colors.

TABLE 6 Top 10 brain connections between the MCI and NMCI groups.

NO Connection Weight

1 Fusiform_R—Precentral_R 91.2125

2 Fusiform_R—Occipital_Sup_L 89.9365

3 Fusiform_R—Temporal_Mid_L 85.2252

4 Cuneus_R—Supp_Motor_Area_R 82.1950

5 Cuneus_R—Frontal_Sup_Orb_L 79.3418

6 Fusiform_R—Frontal_Inf_Orb_L 75.7217

7 Cuneus_R—Putamen_R 74.0230

8 Cuneus_R—Insula_R 61.9906

9 Supp_Motor_Area_L—Putamen_R 39.3506

10 Supp_Motor_Area_L—
Frontal_Sup_Orb_L

39.1733

showing asymmetry between the left and right hemispheres.
Specifically, the connections between the Fusiform_R, Cuneus_R,
and Supp_Motor_Area_L, and other brain regions showed
significant changes.

4 Discussion

MCI increasingly poses a significant economic and social
burden on patients with unilateral MCA steno-occlusive disease.
Early diagnosis of MCI is of paramount importance for maximizing
treatment effectiveness. Therefore, in this study, we proposed
a multimodal imaging technique based on rs-fMRI, DTI, 3D-
T1WI, and demographic characteristics for the identification of
MCI in patients with unilateral MCA steno-occlusive disease.
This technique obtains the most discriminative features of MCI

and NMCI by combining the information of multiple modalities,
obtains a better classification result, and improves the ACC
of diagnosis. Efficient automated diagnosis facilitates early and
accurate detection of MCI and timely intervention and treatment
to delay or prevent disease progression.

Overall, the results of the present study indicate that the
discrepant regions are widely distributed throughout the brain,
including the Olfactory_L, Frontal_Sup_Medial_L, Calcarine_L,
Frontal_Inf_Oper_L, Temporal_Pole_Mid_L, and Amygdala_L
(Whitwell et al., 2007; Bozzali et al., 2006; Hämäläinen et al.,
2007; Chen et al., 2020). Previous studies have shown that
intracranial stenosis (ICS) is associated with cognitive impairment,
independent of vascular risk factors. This association may be
attributed to subtle cortical and subcortical ischaemic damage,
including increased resistance and reduced vascular reactivity
of small vessels, or to reduction in anatomic connectivity and
perfusion deficits secondary to ICS (Hilal et al., 2015; Hilal et al.,
2017). All of above regions are commonly involved in MCI-
related pathology; as such, their involvement may represent the
early features of MCI pathology. The frontal lobe has the largest
number of differential brain regions, which primarily include the
centers of higher cortical nerves and motor speech centers. Several
studies have shown that reduced frontal lobe volume compared
to the normal group can be found at the MCI stage (Yener et al.,
2016). In addition, the present study found that the inner olfactory
cortex had the greatest weight and showed the most significant
differences. Consistent with our findings, the olfactory decline
caused by lesions in this region was previously found to be highly
discriminatory for MCI (Roberts et al., 2016). Previous studies have
shown that volume loss in the internal olfactory cortex is greater
than hippocampal volume loss in patients with MCI (Pennanen
et al., 2004), suggesting that the volume of the internal olfactory
cortex is better able to differentiate between patients with MCI and
controls than the hippocampal volume. One meta-analysis found
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FIGURE 7

Top 10 brain connections between the MCI and NMCI groups. The 10 brain connections with higher weights in the MCI and NMCI classifications are
represented by yellow dots. These connections include Fusiform_R—Precentral_R, Fusiform_R—Occipital_Sup_L, Fusiform_R—Temporal_Mid_L,
Cuneus_R—Supp_Motor_Area_R, Cuneus_R—Frontal_Sup_Orb_L, Fusiform_R—Frontal_Inf_Orb_L, Cuneus_R—Putamen_R, Cuneus_R—Insula_R,
Supp_Motor_Area_L—Putamen_R, and Supp_Motor_Area_L—Frontal_Sup_Orb_L.

a reduced gray matter volumes in patients with MCI compared
to controls, most notably in the hippocampus, parahippocampal
gyrus, and amygdala (Raine and Rao, 2022). In addition, at the
neuropsychological level, an 18F-AV-1451 PET imaging study
showed that tau proteins accumulated only in the internal olfactory
cortex of patients with MCI (Cho et al., 2016).

This study also found that the brain connections that
distinguished MCI from NMCI were primarily located in the
fusiform R, cuneus R, and supplementary motor area L. The
fusiform gyrus, the largest component of the ventral temporal
cortex, plays a key role in visual categorization and is associated
with high-level tasks related to visual processing (Grill-Spector
and Weiner, 2014; Palejwala et al., 2020). In one analysis based
on fMRI data, Spagna et al. (2021) found that the fusiform gyrus
is associated with visual images, and that damage to it causes
deficits in the construction of visual images, which in turn leads
to a decrease in visual memory capacity (Bartolomeo et al., 2020;
Tabi et al., 2022). The cuneus is a part of the occipital lobe,
forming the primary visual cortex along with the surrounding
cortex, which is involved in the integration of visual space and
visual motion, and plays an important role in non-visual functions
such as language and memory (Tanglay et al., 2022; Palejwala et al.,
2021). The supplementary motor area forms part of the secondary
motor system and is mainly responsible for somatosensory motor
functions, with extensive fiber connections to the cingulate gyrus
and frontal lobe, playing a key role in the integration of functions
as well as emotions, behaviors, and cognitive functions (Leisman
et al., 2016). Ye et al. (2019) used multivariate distance matrix
regression to investigate abnormal connectivity patterns of the
SBN, identifying abnormalities in the supplementary motor area
in patients with MCI. These findings are consistent with those of
previous studies, showing that brain regions and connections may

play important roles in the development of cognitive impairment
in patients with unilateral MCA occlusion. Exploring the exact
mechanism of these regions in cognitive dysfunction will help to
enrich our knowledge of the developmental process of this disease,
and to provide a scientific basis for future clinical practice.

This study adopted a fully automatic brain segmentation
software, which has high automation, high data consistency,
fast analysis, and high accuracy and can ensure data analysis
of large sample sizes, thereby ensuring the reliability of the
research results. Further, we propose a framework integrating
the topological features of a multimodal (four modalities) FBN
and SBN, and design a multi-channel graph attention network
to extract the topological features of multimodal brain networks
to allow using attention mechanisms. This proposed model can
detect subtle pathological physiological abnormalities in the brain
more accurately than a single modality, thus improving diagnostic
efficiency. Intracranial arterial stenosis has attracted significant
attention owing to its high incidence in the Asian population and
the potential for long-term adverse events such as stroke. Many
studies have further focused on the effects of carotid artery stenosis
on cognition. However, studies on the impact of intracranial vessels
on cognition are rare, and no unified conclusions have yet been
reached. As such, this study is innovative.

This study has some limitations. First, the small sample size
and imbalance between the MCI and NMCI groups are limitations
of the current study, limitations commonly attributed to single-
center studies and disease specificity. We used statistical methods
such as 5-fold cross-validation to minimize the impact and ensure
the accuracy of the results. Second, we recognize the limitations
of single-center studies and plan to increase the sample size in
the future through collaborative multi-center studies to ensure
that device parameters are consistent across centers to further
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improve the reliability and generalisability of the data. Third,
we plan to conduct a long-term follow-up study to validate and
extend the results of the current study. With a long-term follow-
up, we can gain a deeper understanding of disease progression,
observe the performance of the model at different time points,
comprehensively assess its validity and generalisability, and predict
future cognitive decline.

5 Conclusion

In this study, we propose a multimodality (four-modalities)
FBN and SBN fusion framework that can effectively fuse rs-
fMRI, DTI, 3D-T1WI, and demographic characteristic data.
This framework can also embed the characteristics of different
modalities into the fusion model, which can effectively extract
complex and complementary topological structural information
from the brain network. The experimental results show that our
method not only achieves good performance in the diagnosis of
MCI, but can also effectively identify disease-related brain areas and
connections, which provides a promising prospect for the diagnosis
of auxiliary brain diseases. Temporal changes in brain activity are
extremely important in the analysis brain networks. Therefore,
the investigation of brain networks’ spatiotemporal evolution,
leveraging their dynamic transformational properties, stands as
a promising research pathway for deepening our understanding
of brain disease mechanisms. However, the proposed method
primarily studies static brain networks and ignores the dynamic
attributes of the brain. In future research, we will design
methods to extract the spatio-temporal features of dynamic brain
networks to comprehensively capture the evolutionary information
of brain networks.
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