
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Aging Neurosci.
Sec. Parkinson’s Disease and Aging-related Movement Disorders
Volume 17 - 2025 | doi: 10.3389/fnagi.2025.1524755
This article is part of the Research Topic Transcranial Magnetic Stimulation (TMS) in Motor Control and Motor Rehabilitation: Current Trends and Future Directions View all 8 articles
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Background: Impaired motor inhibition in Parkinson's disease (PD) is associated with functional alterations in the frontal-basal ganglia (BG) neural circuits. The right dorsolateral prefrontal cortex (DLPFC), pre-supplementary motor area (pre-SMA), and primary motor cortex (M1) play key roles in regulating this inhibition. However, the changes in interhemispheric interactions during motor inhibition in PD have not been clearly defined.Methods: We used dual-site paired-pulse transcranial magnetic stimulation (ppTMS) to examine the interactions between the right DLPFC and pre-SMA and the left M1 in 30 patients with early-stage PD and 30 age-matched healthy controls (HC) during both resting and active conditions, specifically while performing a stop-signal task (SST).Results: Stop-signal reaction times (SSRT) were significantly longer in PD patients compared to HC. The right DLPFC–left M1 interaction, at both short- and long-latency intervals, showed enhanced inhibition in PD following the stop-signal. In PD patients, SSRT was correlated with the inhibition of the right DLPFC–left M1 interaction, with stronger inhibition associated with shorter SSRT.Conclusions: The deficit in reactive inhibition observed in PD is linked to an abnormal modulation of the right DLPFC–left M1 interaction during the stopping process.
Keywords: Parkinson's disease, motor inhibition, Interhemispheric interaction, dorsolateral prefrontal cortex, pre-supplementary motor area
Received: 19 Nov 2024; Accepted: 18 Feb 2025.
Copyright: © 2025 Wang, Wei, Song, Li, Wu, Chen, Wang, Zhang, Tan and Liu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Jianing Wei, Henan University of Science and Technology, Luoyang, 471003, Henan Province, China
Yuyu Song, Shanghai University of Sport, Shanghai, 200072, Shanghai Municipality, China
Xiaoyin Tan, Macao Polytechnic University, Macau, Macao, SAR China
Ke Liu, Shanghai Punan Hospital of Pudong New District, Shanghai, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.