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Background: The aging population imposes significant economic and societal

challenges, underscoring the need for early detection of individuals at risk of

cognitive decline prior to the onset of clinical symptoms. This study explores the

association between gamma-band Auditory Steady-State Responses (ASSRs) and

subclinical cognitive decline using longitudinal data from healthy volunteers in

the Metropolit Birth Cohort (MBC).

Methods: Longitudinal recordings of cognitive test results and ASSRs at 40 Hz

stimulation were analyzed. Generalized Linear Models (GLMs) were employed

to determine the association between ASSR characteristics and cognitive

performance with an emphasis on Executive Function (EF) at ages 61–68.

Additionally, Vision Transformers (ViTs) were trained to distinguish between

individuals with declining and stable cognitive performance.

Results: Subjects with declining cognitive performance through midlife showed

a larger area of entrainment and delayed neural assembly of ASSRs compared

to those with stable cognitive performance. These neurophysiological changes

were correlated with poorer EF, as measured by the Stockings of Cambridge

(SOC) task. The ViTs trained and cross-validated on time-frequency-transformed

Electroencephalograms (EEGs) achieved an average cross-subject accuracy of

51.8% in identifying cognitive decline.

Conclusion: Gamma-band ASSR characteristics are linked to early cognitive

decline in middle-aged individuals, o�ering potential as biomarkers. However,

the limited predictive accuracy of ML models emphasizes the need for further

refinement to enhance their clinical applicability.

KEYWORDS

electroencephalogram (EEG), auditory steady state response (ASSR), gamma-band,

cognitive decline, executive function (EF), machine learning (ML)

1 Introduction

Healthy aging is a major achievement for society, but it comes with significant

challenges in delivering healthcare and supporting the wellbeing of a growing elderly

population. It is crucial to ensure that these extra years of life are not only free

from serious illnesses but also marked by good mental and physical health. This will

help reduce the heavy economic and social pressures of an aging population and

contribute to a healthier, more sustainable future for everyone l (Livingston et al., 2020).

Longitudinal and multimodal biomarker studies have demonstrated that Alzheimer’s

Disease (AD) encompasses a prolonged latent phase known as preclinical AD, which occurs
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decades before the onset of symptoms. Treating AD during this

preclinical phase presents an ideal opportunity to slow down

the disease progression. However, designing clinical trials for this

population remains a complex challenge (Rafii and Aisen, 2023).

Detecting cognitive decline years before memory loss begins could

allow for early interventions, potentially changing the course of this

challenging condition. However, diagnosing cognitive decline early

is difficult due to issues like low reliability, invasive methods, and

high costs.

Research shows a possible connection between hearing loss

and dementia, with estimates suggesting that hearing loss might

contribute to about 9% of dementia cases (Livingston et al., 2020).

Based on our earlier findings (Wiegand et al., 2018; Horwitz

et al., 2019, 2017), our current study aims to identify connections

between preclinical cognitive decline and Auditory Steady-State

Responses (ASSRs). To address these challenges, this study seeks

to find the correlation between ASSRs and EF. EF is a complex

cognitive control responsible for making adaptive changes in

physical and social environments. It consists of sub-components,

such as inhibition, shifting, and updating workingmemory (Miyake

et al., 2000). A prominent feature of cognitive aging is the decline

of EF abilities. Numerous studies have reported that older adults

perform poorer than the younger in such tasks (Idowu and

Szameitat, 2023; Hasher and Zacks, 1988). The main question is

how and why do brain networks deteriorate differently during

the lifespan and what controls the differences between high-

functioning and declining individuals? The ASSR is a result of

entrainment of the brain’s oscillatory activity to the frequency and

phase of temporally modulated stimuli.

In this study, we hypothesize that ASSRs can distinguish

and predict subjects with declining cognition. Our objective

is to identify changes in perceptive networks that predict

cognitive decline. Building on these insights, we have also

trained a state-of-the-art Machine Learning (ML) algorithm

to detect healthy middle-aged individuals at risk of cognitive

deterioration. By leveraging Deep Learning (DL) techniques

with accessible Electroencephalography (EEG) technology, we

investigate the possibility of a cost-effective solution. Furthermore,

interpreting DLmodels can reveal deep insights into the underlying

mechanisms of the disease, enhancing our understanding of its

progression and facilitating early detection (Kim et al., 2023;

Sibilano et al., 2023).

2 Subjects and methods

Participants for this study were selected from the Metropolit

Danish male Birth Cohort (MBC), which includes 11,532 men born

in 1953 in the Copenhagen Municipality region (Osler et al., 2006).

The cohort was cognitively assessed at the age of 18 years as part

of the Danish draft board examination using Børge Priens Prøve

(BPP), an Intelligence Quotient (IQ) test consisting of 4 paper-

pencil subtests involving logical, verbal, numerical, and spatial

reasoning (Teasdale, 2009; Teasdale et al., 2011). A subset of

participants of the original sample was assessed again at the age

of 56 years as part of the Copenhagen Aging and Midlife Biobank

(CAMB) project (Avlund et al., 2014; Lund et al., 2016; Mortensen

et al., 2014). In the CAMB project, IQ was measured using a

version of the Intelligens Struktur Test 2000 Revised (IST-2000-

R), which included 3 subtests involving verbal analogies, number

series, and sentence completion. Linear regression was generated

between cognitive scores at youth (BPP+IQ) (18 years) and (IST-

2000-R total test score) in late-middle age (56 years) (Osler et al.,

2006; Wiegand et al., 2018). Participants (n = 178) for the present

study were selected among those with stable cognitive function

(n = 83) and the cognitively declining group (n = 95) using

a BPP and an IST-2000-R test. We retrospectively collected ASSR

recordings between 2014 and 2016 as part of the CESA 2 study.

Figure 1 illustrates an overview of the data acquisition process.

2.1 Standard protocol approvals,
registrations, and patient consents

The study was approved by the Capital Region of Denmark’s

Health Research Ethics Committee (H-1–2014032) and conducted

according to the Declaration of Helsinki. All participants provided

written informed consent regarding their participation and

publication of the current data.

2.2 Recordings

EEG was recorded with a 64-channel elastic Quick-

Cap connected to a Neuroscan bio-amplifier (SynAmpsRT,

Compumedics, http://compumedicsneuroscan.com/). Electrodes

were placed according to the international 10-20 system. Curry7

(http://compumedicsneuroscan.com/) (Curry version 7.0.12) was

used to record EEG signals with a sampling frequency of 2 kHz.

All EEG electrodes were referenced to a physical reference between

Cz and Cpz. The ground electrode was between Fz and Fpz. Two

horizontal Electrooculography (EOG) electrodes were positioned

laterally to the right and left eyes, while two vertical EOG electrodes

were placed above and below the left eye. The Electrocardiogram

(ECG) and Electromyography (EMG) electrodes were included to

detect and remove ECG and muscle artifacts from the EEG signal

during signal processing. For the ECG, one electrode was placed

just under the right clavicle and the other at the left lower chest. In

addition, two electrodes were placed under the chin lateral to the

midline for the EMG.

Participants were exposed to auditory stimuli delivered through

noise-isolating headsets and controlled by a separate computer

using the STIM2 program (developed by Compumedics Neuroscan

for precise stimulus presentation). The experiment took place in

a shielded medical examination room at Rigshospitalet, Glostrup,

Denmark. During the session, participants were seated in front

of a monitor, focusing on a red fixation cross while listening to

a sequence of clicks. These clicks used a 1 kHz carrier frequency

and were amplitude-modulated at 40 Hz. For each participant,

40 trials were conducted, with each trial consisting of 6 seconds

of auditory stimulation recorded continuously using EEG. The

interval between trials (Inter-Trial Interval or ITI) was set at 5

seconds, resulting in a total session duration of approximately 7

minutes and 15 seconds per participant.
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FIGURE 1

Timeline of the studies behind the provided data. The intelligence tests are from BPP and IST-2000R while the two CESA studies investigate the ASSRs

and EF. BPP, Børge Priens Prøve; IST-2000R, Intelligens Struktur Test 2000 Revised; CAMB, Copenhagen Aging and Midlife Biobank.

2.3 Signal analysis

Preprocessing and artifact reduction were carried out

using the EEGLAB v.2023.1 (Delorme and Makeig, 2004;

Nagabhushan Kalburgi et al., 2024) toolbox in MATLAB (R2022a,

MathWorks, Natick, MA, USA). All EEG electrodes were re-

referenced to the common average and downsampled to 250 Hz. A

Chebyshev type 2 Infinite Impulse Response (IIR) band-pass filter

of order 18 was applied to filter the EEG between 0.5 and 90 Hz. A

Chebyshev type 2 IIR notch-filter of order 8 was used to filter the

50 Hz power-line interference. Both filters were applied with zero

phase using the MATLAB function filtfilt.

Independent Component Analysis (ICA) was applied to detect

and remove components that contain eye blinks and muscle

artifacts with ≥ 90% classification accuracy, respectively, using

the ICLabel plugin in EEGLAB, which automatically classified the

source of the independent components. A mixed brain region was

selected and included the channels FT7, T7, TP7, P7, P5, Fz, FCz,

Cz, CPz, FT8, T8, TP8, P6, and P8. This selection reflects the

physiological behavior of the brain toward the auditory stimulus

(Purves et al., 2019; Parciauskaite et al., 2019). The frontal region

with the channels F7, F5, F3, F1, Fz, F2, F4, F6, and F8 was

also investigated due to the implication of the frontal region in

EF (Stuss, 2011). Additionally, we investigated the whole head to

look into the ASSR power distribution and fluctuations. The EEG

data was epoched around the stimulus period (–1 s to 6 s relative

to stimulus onset) and then baseline-corrected (–0.5 s to –0.25 s

relative to stimulus onset). By denoting the stimulus onset time

with t0, the event with a and the EEG channel with i, each epoch

is defined as:

epochEEG =

[

x
(a)
i, t0 − 1 s, x

(a)
i, t0 + 6 s

]

− baseline, (1)

where xi is a single-channel EEG from the EEG matrix E. baseline
represents the average background EEG activity and is used to

correct the baseline shift of the ASSR (Kashiwase et al., 2012;

Parciauskaite et al., 2019; Nam et al., 2018):

baseline = E

{[

x
(a)
i, t0 − 0.5 s, x

(a)
i, t0 − 0.25 s

]}

, (2)

where E{·} is the expectation operator. The flow diagram in

Figure 2 details all the signal processing steps.

2.3.1 Dimensionality reduction using Rhythmic
Entrainment Source Separation (RESS)

The preprocessed EEG has 14 channels for the mixed

region and 9 channels for the frontal region. To enhance the

Signal-to-Noise-Ratio (SNR) and to use the information in all

available channels, a spatial filtering technique entitled Rhythmic

Entrainment Source Separation (RESS) was applied (Cohen and

Gulbinaite, 2017). In brief, RESS uses the covariance matrix of the

peak stimulus frequency (40 Hz), denoted S and the covariance

matrix of the neighboring frequencies, denoted R, in an eigen-

decomposition to enhance the SNR. More specifically, the eigen-

decomposition is applied to R−1S to calculate the matrix V, which

contains the spatial filters as eigenvectors (Cohen and Gulbinaite,

2017):

R−1S= V3V−1, (3)

where 3 is a diagonal matrix containing the corresponding

eigenvalues. In practice, however,V is found by solvingSV = RV3

for numerical stability:

SV = RV3 ⇔ R−1SV = V3 ⇔ R−1S= V3V−1.

(4)

It is important to notice that R−1S is non-symmetric, so the

eigenvectors are non-orthogonal compared to e.g. the eigenvectors

from PCA (Cohen and Gulbinaite, 2017). The signal length

for ASSR is selected as the total duration of the stimulation

i.e., 6 s because this gives the greatest SNR calculated from

non-stimulation frequencies. The Full Width at Half Maximum

(FWHM) of 40 Hz is set to 0.5 Hz. The distance of neighboring

frequencies is set to 1 Hz, and the FWHM of the neighboring

frequencies is set to 1 Hz. The eigenvector corresponding to the

largest eigenvalue is transposed and multiplied with the EEG

matrix. As a result, a single-channel time series is returned for each

trial with accentuated 40 Hz content, which can be processed using

the so-called Complex Demodulation (CD).

2.3.2 Calculation of average ASSR power
We used the MATLAB function bandpower to compute

the power for the 40 Hz signal in each epoch. Subsequently, we

calculated the average power over all signal epochs. The ASSR

power was calculated as the average power estimate for the mixed

region at the stimulation frequency of 40 Hz.
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FIGURE 2

Flow diagram showing the raw EEG preprocessing. In short, the procedures involve noise minimization (filtering in block 2, average referencing in

block 3, and ICA-cleaning in block 5), down-sampling (block 4), epoching (block 7), and baseline correction (block 8). C: number of EEG channels. N:

number of data points. M: number of epochs.

2.3.3 Complex demodulation of the signal
CD is a fundamental signal processing technique used to

extract the temporal characteristics of a signal (Puthusserypady,

2021; Richard et al., 2020; Kashiwase et al., 2012; Draganova and

Popivanov, 1999).

The temporal characteristics include an envelope A(t) and a

phase φ(t) of the real and continuous RESS signal R(t):

R(t) = A(t) cos[2π ft + φ(t)]+ N(t)

= A(t)
ej[2π ft+φ(t)] + e−j[2π ft+φ(t)]

2
+ N(t), (5)

where f is the frequency of the signal, t is the continuous time, and

N(t) is the noise from all frequencies except the 40 Hz (Kashiwase

et al., 2012). Sometimes, N(t) strongly reduced the quality of the

CD. Hence, a narrow-band Chebyshev type 2 IIR bandpass filter

was used to remove N(t) before the next steps:

RBP(t) = R(t)⊗ hBP(t) ≈ A(t)
ej[2π ft+φ(t)] + e−j[2π ft+φ(t)]

2
, (6)

where the “⊗” sign denotes convolution, hBP(t) is the impulse

response function of the selected bandpass filter with cutoff

frequencies of 39.5 and 40.5 Hz. The sharp transition bands of a

Chebyshev type 2 IIR filter are beneficial to preserving the 40 Hz

signal without distorting it too much.

To extract the amplitude and phase modulations from

the bandpass-filtered RBP(t), the signal is frequency-shifted by

multiplying a linear combination of sine and cosine functions

(Puthusserypady, 2021; Kashiwase et al., 2012; Draganova and

Popivanov, 1999):

R̃BP(t) = RBP(t)e
−j2π ft = A(t)

ejφ(t)

2
+ A(t)

e−j[4π ft+φ(t)]

2
, (7)

where R̃BP(t) is a complex analytic signal (Puthusserypady, 2021).

We then applied a lowpass filter to reduce the remaining noise in

Equation 7:

R̃filt(t) = R̃BP(t)⊗ hLP(t) = A(t)
ejφ(t)

2
, (8)

where hLP(t) denotes the impulse response function of the lowpass

filter. We used a Chebyshev type 2 IIR lowpass filter with a cutoff

frequency of 2 Hz. This is because its sharp transition bands

were advantageous in producing smooth modulation profiles with

appropriate amplitudes. R̃filt is therefore the filtered and processed

RESS EEG signal.

The final step is to calculate the Amplitude Modulation (AM)

and phase modulation (ITPC), which together constitute the CD

(Kashiwase et al., 2012):

AM(t) =

[

1

K

K
∑

k=1

2
∣

∣R̃filt(t, k)
∣

∣

]

− baselineAM, (9)

ITPC(t) =

∣

∣

∣

∣

∣

1

K

K
∑

k=1

R̃filt(t, k)
∣

∣R̃filt(t, k)
∣

∣

∣

∣

∣

∣

∣

− baselineITPC, (10)

where k denotes one single epoch in the total K epochs of R̃filt.

Physiologically, amplitude and phase modulation reveal different

aspects of the neural response toward a stimulus. AM describes

the magnitude and speed of the Action Potential (AP) generated

by the neurons. Hence, the magnitude of AM increases when the

neurons depolarize simultaneously, and it decreases if the neurons

depolarize asynchronously (Richard et al., 2020). ITPC, on the

other hand, describes the consistency of the neural synchronization

across the EEG trials and varies between 0 and 1 (Kashiwase et al.,

2012).
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2.3.4 Modified Cumulative Gaussian function
In other related studies, a Modified Cumulative Gaussian

function (MCGF) has been fitted to both the amplitude and phase

modulation (Richard et al., 2020; Kashiwase et al., 2012). It is a

linear combination of two cumulative Gaussian functions with five

parameters:

MCGF(t) =
Ad

d + 1
e{µα+0.5σ 2α2−αt}G(t,µ + σ 2α, σ )

+
A

d + 1
G(t,µ, σ ), (11)

where A is the amplitude, d is the ratio between the first and

second term of the function, and G(·) is the normal cumulative

Gaussian function with mean µ and standard deviation σ . α is the

inverse time constant and decay of the function. Please note that

MCGF(t) is used to estimate and visually display these parameters

after MCGF(t) is fitted to AM or ITPC. Physiologically, A denotes

the magnitude of AM or ITPC. µ denotes the latency, and σ is

the slope of the fitted curve. α is used to investigate attentional

behavior after the stimulus onset. Figure 3 illustrates anMCGFwith

the parameters highlighted in their respective colors. In practice,

the period before the stimulus onset is set to zero, and the MCGF is

fitted between 0 s and 5 s. In this study, all these five parameters

are applied to model AM and ITPC. However, the main focus

is on the parameters A, µ, and their interaction. The next step

is investigating the correlations between the ASSR parameters,

cognition, and EF.

2.4 Stockings Of Cambridge

The Stockings of Cambridge (SOC) test is a key component

of the CANTAB test battery developed by Cambridge Cognition,

used to evaluate EF, particularly strategic thinking and planning.

In this study, the SOC test was the primary focus. Participants

were shown two displays, each with three colored balls and three

positions, known as “stockings,” where the balls can be placed. The

test had two phases: in the “copy” phase, participants replicated a

pattern from the upper display to the lower one, and in the “follow”

phase, they mimicked the previous movements (Robbins et al.,

1998; Coull et al., 1995). The test measuring variables like initial

thinking time, subsequent thinking time, number of moves, and

problems solved inminimummoves, etc., all reflect the participant’s

cognitive processing efficiency.

EF is investigated using the SOC test (as part of the CANTAB

test battery provided by Cambridge Cognition). During this test,

two displays are shown to the subject (see Figure 4). Both displays

contain three balls of different colors and three spaces (called

stockings), which the balls can be put into. The upper display

contains a particular pattern, which the subject needs to copy

on the lower display by moving around the balls. This is called

the “copy” phase, which involves strategic thinking and planning.

Subsequently, the upper display would move the balls the same

way as the subject has just done while the subject now needs

to follow suit and move the balls in the same way in the lower

display. This is called the “follow” phase. The “follow” phase is

intended to record the time taken to initiate the movement and

the time of the actual execution (Robbins et al., 1998; Coull

et al., 1995). As for the outcome measures, the following variables

are recorded:

• Mean initial thinking time for n-move problems: The mean

initial thinking time refers to the mean time taken before

making the first move in a n-move problem. The time of the

“follow” phase is subtracted from the time of the “copy” phase.

If the time of the “follow” phase is longer than the time of the

“copy” phase, the mean initial thinking time becomes zero.

• Mean subsequent thinking time for n-move problems: The

mean time after the first ball is selected until an n-move

problem is completed divided by the total number of moves

made. Likewise, this variable becomes zero if the time of the

“follow” phase is longer than the time of the “copy” phase.

FIGURE 3

Visualization of the MCGF. The parameters A, µ, σ , and α are highlighted using di�erent colors. The parameters used in this figure are: A = 1, d = 1,

µ = 0.5, σ = 0.1 and α = 0.1.
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Display 1: program-controlled

Display 2: user-controlled No. of moves: 0

FIGURE 4

Displays for the SOC test. Display 1 shows a particular pattern,

which the subject needs to copy in Display 2 by moving the balls

into the stockings. The image is inspired by Cambridge Cognition

web page for SOC.

• Mean moves for n-move problems: The mean number of

moves the subject makes to complete a problem requiring

minimum n moves. The lower the outcome is, the better the

performance is.

• Problems solved in minimum moves: The number of

problems the subject has solved in minimum moves. A

maximum of 12 problems can be achieved for this outcome

measure. Hence, the more problems are solved, the better the

performance is.

For the above-mentioned SOC variables, the number n is

limited to n ∈ [2, 3, 4, 5]. The SOC test was taken for all participants

during the same visit when their ASSR was recorded.

2.4.1 Statistical tests
A two-sample t-test was used to assess the difference between

the cognitively stable group (highCog) and the cognitively

declining group (lowCog). More specifically, the tested variables

include CAMB IST-2000-R (at 56 years) and CESA 2 IST-2000-R

(at 60 years) because these variables follow a normal distribution

(see also Figure 5). There are 13 SOC variables. However, not all

SOC variables are relevant depending on the difficulty of the SOC

problem. According to Teubner-Rhodes (2020), the difficulty of

a cognitive task is defined by task demand and cognitive ability.

If a task is too easy, the subject with a high cognitive ability will

not put in sufficient effort. On the other hand, if a task is too

difficult, a subject with low cognitive ability will give up more easily

(Teubner-Rhodes, 2020). All these factors can lead to inaccurate

SOC outcomes, where the EF cannot be assessed.

To select the SOC variables that differentiate the groups the

most, a non-parametric statistical test called the Wilcoxon rank-

sum test was conducted (Gibbons and Chakraborti, 2014; Ford,

2017). This test was used instead of the two-sample t-test because

the SOC variables are not normally distributed (see the diagonal

elements in Figure 5) and, sometimes, the number of observations

is too small. In addition, Bonferroni correction was applied to the

two-sample t-tests and the Wilcoxon rank-sum tests, respectively.

Permutation tests were performed to compare all the topographies

of the highCog and lowCog groups, respectively, where the brain

areas with a p-value lower than 0.05 were highlighted (Wilcox,

2011).

2.4.2 Generalized Linear Model
Generalized Linear Model (GLM) was generated to analyze

the relationship between IQ and ASSR and between the EF (SOC

variables) and ASSR, respectively. The cognition index (IST-2000R)

taken at around 60 years from CESA 2, visit 1, was used as the IQ

index. A Z-score transformation was applied to the IQ index, so

it had zero mean and a variance of one. From the matrix plot in

Figure 5, it is clear to see that IQ above age 18 generally follows a

normal distribution, but the number of SOC problems solved in

minimum moves is left-skewed, while the mean SOC moves for

4-move problems is right-skewed. After applying the appropriate

transformations and link functions, the response variables for IQ

(yIQ), SOC mean moves (4 moves) (ySOCmove), and SOC problems

solved in minimum moves (ySOCprob
) are defined as:

yIQ = Z(IQ) = XβIQ, (12)

ySOCmove =
1

SOCmove
= XβSOCmove, (13)

ySOCprob = log
[

max(SOCprob)− SOCprob

]

= XβSOCprob. (14)

After back-transforming yIQ, ySOCmove, and ySOCprob, the

following equations are used for interpreting the GLM parameters:

E[Z(IQ)] = XβIQ; (positive and large β means higher IQ),

(15)

E(SOCmove) =
1

XβSOCmove

;

(positive and large β means better performance), (16)

E(SOCprob) = max(SOCprob)− e{XβSOCprob};

(positive and large β means worse performance). (17)

The predictor variables X and the coefficients β are defined as:

Xβ = [1+ αAM + αITPC + σAM + σITPC + (18)

g=2
∑

i=1

groupi ∗ (AAM + µAM + AAMµAM + AITPC + µITPC

+ AITPCµITPC + P)]β , (19)
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FIGURE 5

Correlations between the di�erent non-EEG attributes presented as a matrix plot. The diagonal subplots are distributions of each attribute, while the

o�-diagonal subplots are simply scatter plots between every pair of attributes. The purpose of this matrix plot is to give a clearer understanding of

the correlations and the sample distributions. BPP, Børge Priens Prøve; IST-2000R, Intelligens Struktur Test 2000 Revised; CAMB, Copenhagen Aging

and Midlife Biobank; Initial think time, SOC mean initial thinking time; Think time, SOC mean subsequent thinking time; Problems solved, SOC

problems solved in minimum moves.

where P denote the average ASSR band power values. From fitting

the modulation profiles, A are the amplitudes, µ are the latencies,

σ are the slopes, and α are the decays. The variable groupi is

categorical, and it represents highCog group as group1 and lowCog

group as group2. The symbol “∗” follows the Wilkinson notation,

i.e., a∗b = a+b+ab. Please note that only the interactions between

A and µ are included directly due to the study’s focus.

2.4.3 Cognition classification using Vision
Transformer

The Vision Transformer (ViT) base model with 86 million

parameters was selected in this study. The model weights were pre-

trained on the ImageNet-21k dataset, containing over 14 million

images and over 21 thousand classes (Dosovitskiy et al., 2020). The

input to the ViT was a 2D-transformed RESS EEG with dimensions

224×224. During training, all layers except the final fully connected

layer were frozen to prevent overfitting. The 2D-transform, Evoked

spectral perturbation (ERSP), is defined as (Mørup et al., 2007):

ERSP(f , t) =
1

N

N
∑

n

|X(f , t, n)|2, (20)

where N is the total number of trials. A 5-fold Cross-Validation

(CV) scheme was used to fit the five ViT models on our dataset (see

Supplementary Figure S2). Subsequently, the hyperparameters of

these five models were optimized using RandomizedSearchCV

of the sklearn module combined with the skorch module in

Python.

3 Results

3.1 Statistical tests

The clinical characteristics of the participants are shown in

Table 1. There is no significant difference in the BPP test scores

at the age of 18. However, there is a significant difference in the

later IST tests at age 56 and age 60 and in the subsequent SOC

tests. In the group of participants with lower cognitive abilities,

there were significantly more movements made to complete the

task (p = 0.001), and they solved fewer problems within the allotted

time p = 0.000168). The correlations between some of the non-

EEG attributes are shown using scatter plots and histograms in

Figure 5. It was based on this initial data visualization that the

statistical test types were decided.

3.2 Complex demodulation

The topographies of the 40 Hz ASSR power and spectrogram

in the time domain are depicted for two subjects of the lowCog

and highCog group separately for qualitative assessment (see

one example in Figure 6). We found a consistent qualitative

difference between the two groups. The 40 Hz power of highCog
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TABLE 1 Di�erence between the cognitively stable group (highCog) and

the cognitively declining group (lowCog) expressed in P-values.

Participants
(n = 178)

Group 1
(highCog)

Group 2
(lowCog)

Di�erence
(p-value)

No. of participants 83 95 -

Mean BPP (18 yrs) 46.4 45.4 0.182‡

Mean IST (56 yrs) 40.9 23.9 8.80 · 10−40†∗

Mean IST (60 yrs) 37.6 25.5 7.70 · 10−18†∗

SOC moves for 4-move

problems (mean)

4.94 5.40 0.00170‡∗

SOC problems solved

in min moves (mean)

9.45 8.31 0.000168‡∗

For normally distributed variables, including age and the two IST-2000R scores, a two-sample

t-test was applied to calculate the P-value. A Wilcoxon rank-sum test was then done for the

remaining variables, which follow a skewed distribution.
†Calculated using two-sample t-test.
‡Calculated using Wilcoxon rank-sum test.
∗Significant (P-value < 0.0031).

subject in Figure 6A was more focused at the temporal region,

whereas the lowCog subject in Figure 6B has a stronger and

more diffuse 40 Hz power involving a larger area on the

cortex. Additionally, this difference is reflected by the averaged

topographies presented in Figure 7. Here, we found a strong

and highly significant frontotemporal response for the highCog

group, which is completely absent for the lowCog group. On the

other hand, the lowCog group has shown a strong frontocentral

response. The p-values in Figure 7 were obtained from exploratory

permutation tests between both groups. A similar statistical

comparison can also be made for the spectrograms, where each

pixel from the averaged highCog spectrogram is compared to

the corresponding pixel from the averaged lowCog spectrogram.

However, this part is omitted because of redundancy and heavy

computation.

The MCGF was fitted to the mixed region RESS EEG and

can be seen in Figure 8. The AM MCGF profiles in Figure 8A

show that the highCog subjects have larger amplitudes than the

lowCog subjects. On the other hand, the ITPC MCGF profiles

in Figure 8B showed a delayed latency modulation for lowCog

individuals. The raw average AM and ITPC profiles are shown in

Supplementary Figure S1).

3.3 Generalized linear models

Two GLMs are fitted to the mixed region, while one GLM is

fitted to the frontal region. The response variables are yIQ, ySOCmove,

and ySOCprob
, respectively. The R2 value and the log-likelihood

indicate how good the model is. The closer the R2 value is to

1, the more variability is explained by the model (Montgomery,

2017). The more positive the log-likelihood is, the better fitted

the model is Madsen (2007). For the mixed region, the GLMs of

yIQ and ySOCmove are greatly significant compared to the constant

models (for yIQ: F = 23.5, p = 3.56 × 10−20, R2 value =

0.452, and loglikelihood = −199; for ySOCmove: F = 4.75 and

p = 0.000430, R2 value = 0.126, and loglikelihood = −231). In the

GLM for yIQ, the AM magnitude (Estimate = 5.24 ± 1.33, t =

3.93, p = 0.000123) is proportional to IQ. On the other hand,

the magnitude of ITPC is also proportional to IQ (Estimate =

1.99± 0.738, t = 2.69, p = 0.00779). Lastly, the average ASSR band

power (Estimate = −16.5 ± 4.45, t = −3.70, p = 0.000290) is

negatively proportional to IQ, indicating that the larger the ASSR

power is, the worse the cognition is (see Table 2).

In the GLM for ySOCmove, the magnitude of AM is once again

positive and significant (Estimate = 0.124 ± 0.0409, t = 3.04, p =

0.00276) (see also Equation 16). The more steps the participant

needs to complete the test, the lower the AMmagnitude.

Regarding the number of SOC problems solved in minimum

moves ySOCprob
, the GLM from the frontal region is the most

informative. This model is significant compared to the constant

model (χ2 = 26.3, p = 2.69 × 10−5, R2 value = 0.128, and

loglikelihood = −339). Moreover, the latency coefficent of AM is

negative and significant for both groups (Estimate = −2.41 ±

0.671, t = −3.59, p = 0.000325). According to Equation 17, a low

AM latency means that the term eXβ becomes smaller, leading to

more SOC problems solved (better EF). This model is shown in

Table 3.

Comparing the GLM results to Figure 8A, it is clear that

the highCog subjects exhibit a larger AM amplitude than the

lowCog subjects. This aligns well with Tables 2, 4. On the other

hand, Figure 6 also aligns well with Table 2, where a strong power

distribution is present for the lowCog subject, worsening his

cognition.

3.4 Cognition classification using Vision
Transformer

The performance of the trained and optimized ViT models is

shown in Table 5. This result shows that each fold generally yields a

performance of around 50%.

4 Discussion

The main finding of the study is that men with declining

cognitive function show prolonged phase modulation, higher

amplitude, and a larger area of entrainment in their ASSR. These

distinct declines are linked to significantly poorer EF, as measured

by the SOC task. Other recent studies have shown that increased

40 Hz ASSR power correlated to worse cognitive performance

in patients with Alzheimer’s Disease (AD) compared to Mild

Cognitive Impairment (MCI) and controls (Tada et al., 2020;

Van Deursen et al., 2011). In our study, we used healthy subjects

without clinical symptoms of MCI or dementia. Nevertheless, we

still found significant increased ASSR power in our low cognition

group. This finding suggests that the decline observed from young

to middle age possibly represents preclinical cognitive decline.

4.1 EF and 40 Hz ASSR

Previous studies on healthy young individuals have highlighted

a positive correlation between EF and strength and synchronicity
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FIGURE 6

Topographies and spectrograms for a highCog subject (A) and a lowCog subject (B), respectively. The topographies indicate that the highCog subject

has visibly weaker but more stable responses in the overall brain, while the lowCog subject has particularly strong responses in the central parts.

Furthermore, the spectrograms indicate that the highCog subject has a stronger ability to maintain the 40 Hz ASSR than the lowCog subject, who has

a more di�use power distribution.
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FIGURE 7

From left to right: averaged topographies computed for all highCog and lowCog subjects along with the p-values from the permutation tests. The

figure depicts statistical di�erences mostly around the temporal cortex, while other parts of the cortex showed similar activation patterns comparing

the two groups.

measures of 40 Hz ASSR (Parciauskaite et al., 2019). The ASSR

at 40 Hz might represent top-down mechanisms that are related

to cognitive functioning (Parciauskaite et al., 2019; Müller et al.,

2009). Alterations in gamma-range ASSR indicate the degree

of attentional control and the capacity to temporarily store

and manipulate information. These abilities are essential for a

broad spectrum of complex cognitive activities, in both healthy

individuals and those with impairments (Parciauskaite et al., 2021).

ASSRs are considered to represent purely sensory processes and

to reflect the integrity of auditory circuits. Additionally, they

are thought to index globally synchronized neural activity and

facilitate information transfer (Tada et al., 2016; Teale et al., 2003).

Moreover, 40 Hz ASSRs are perceived as an index of neurochemical

excitation/inhibition balance in the brain maintained by N-methyl-

d-aspartate (NMDA) and γ -aminobutyric acid (GABA) systems,

as shown in animal studies (Vohs et al., 2010; Sivarao et al., 2016;

Sullivan et al., 2015). Changes in the NMDA/GABA balance in the

prefrontal cortex causes delay in a persons ability to respond (Auger

and Floresco, 2017).

4.2 Delayed synchronization

However, our study is the first describing delayed neural

assembly during auditory synchronization of healthy aging

individuals and connecting the delayed phase synchronization to

advanced cognitive aging. This association potentially indicates

that the late-latency gamma in response to auditory 40 Hz

stimulationmight index abilities for planning and problem-solving.

This finding correlates to our former studies on visually evoked

steady-state responses where we confirmed age-related changes

in gamma oscillations, including a posterior-to-anterior shift in

oscillatory activity and a reduction in gamma band synchrony

(Bakhtiari et al., 2023). These alterations in gamma power

precede potential changes in alpha band power. Furthermore,

our data underscore the critical role of gamma synchrony in

maintaining cognitive functions (Bakhtiari et al., 2023). The latency

of gamma frequency Steady-State Visually Evoked Potentials

(SSVEPs) also increases with cognitive decline. This indicates

that the disruption of SSVEP facilitation initially occurs at

gamma frequencies, followed by alpha frequencies (Richard et al.,

2020). We hypothesize that our findings on delayed or unstable

phase synchronization of ASSR in cognitive and age-related

cognitive decline may result from a reduced ability to maintain

and coordinate perceptual information. This is consistent with

previous meta-analyses on inhibition deficits in older adults

(Rey-Mermet and Gade, 2018; Hsieh et al., 2012).

4.3 Cognitive decline

Our study population is all healthy individuals without any

clinical signs of cognitive decline. However, similarities of our

present neurophysiological, earlier imaging findings (Rosemann

and Thiel, 2020) highlight distinct changes in our declining group

that are quite similar to and eventually could precede MCI and

AD. Cognitive decline is a result of multiple life factors as previous

studies on the same subjects also indicated that; decreases in IQ,

less physical activity, and poorermental health were associated with

decreased whole brain volumes (Zarnani et al., 2020). Our study

population differs based on the relative decline between 18 to 56

years of age, which was in line with continuing or discontinued

education in our two groups. Recent large-scale community-

based, longitudinal clinical, and pathological studies demonstrated

that early-life cognitive enrichment was associated with lower

AD pathology indices and slower late-life cognitive decline

(Oveisgharan et al., 2020).

Recently, a cognitive reserve hypothesis has been proposed

to explain how individuals with similar neuropathological

conditions differ substantially in their ability to make

efficient use of brain reserve during tasks (Stern et al., 2019).

Intelligence (Alexander et al., 1997) and higher education

(Amieva et al., 2014), occupational level (Staff et al., 2004),

participation in leisure activities (Scarmeas et al., 2001), and

social networking (Fratiglioni et al., 2000) are considered

to be contributing factors to the cognitive reserve. In our

study, subjects with declining intelligence between 18 and 56

years did worse on cognitive tests in late life, strengthening

the hypothesis of protective factor of brain reserve against

cognitive decline.
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FIGURE 8

Amplitude modulation profiles (A) and phase modulation profiles (B) fitted using the MCGF for both cognition groups. The solid lines represent the

average modulation curves, while the dashed lines represent standard errors. Generally, the highCog group seems to have a larger amplitude

modulation than the lowCog group.

TABLE 2 IQ GLM for the mixed region.

Response variable Predictor variable Parameter
estimate

Standard t-statistic Pr(>|t|)

yIQ Interceptmodel –2.03 0.365 –5.57 9.84 · 10−8

IntercepthighCog 2.94 0.423 6.96 7.36 · 10−11

Magnitude (ITPC) –1.41 0.506 –2.79 0.00588

Slope (AM) 1.35 0.465 2.91 0.00408

Magnitude (AM) · lowCog 5.24 1.33 3.93 0.000123

Magnitude (ITPC) · lowCog 1.99 0.738 2.69 0.00779

ASSR power · lowCog –16.5 4.45 –3.70 0.000290

The model is given in Equation 15. R2 value = 0.452, and loglikelihood =−199.
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TABLE 3 SOCprob GLM for the frontal region.

Response variable Predictor variable Parameter
estimate

Standard
error

t-statistic Pr(>|t|)

ySOCprob Interceptmodel 1.35 0.0641 21.0 7.18 · 10−98

Latency (AM) –2.41 0.671 –3.59 0.000325

Magnitude (AM) · highCog –2.11 0.584 –3.61 0.000302

Magnitude (AM) · Latency (AM) · highCog 10.7 2.52 4.23 2.38 · 10−5

Latency (AM) · lowCog 2.18 0.662 3.30 0.000969

The model is given in Equation 17. R2 value = 0.128, and loglikelihood =−339.

TABLE 4 SOCmove GLM for the mixed region.

Response variable Predictor variable Parameter
estimate

Standard
error

t-statistic Pr(>|t|)

ySOCmove Interceptmodel 0.172 0.00790 21.8 3.86 · 10−51

IntercepthighCog 0.0572 0.0149 3.85 0.000164

ASSR power -0.444 0.127 -3.50 0.000598

Latency (AM) · highCog -0.107 0.0502 -2.13 0.0344

Magnitide (AM) · Latency (AM) · highCog 0.284 0.121 2.34 0.0205

Magnitude (AM) · lowCog 0.124 0.0409 3.04 0.00276

The model is given in Equation 16. R2 value = 0.126, and loglikelihood =−231.

TABLE 5 ViT models trained and tested on the mixed region using a

five-fold CV setup.

ERSP
on
mixed
region

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

Accuracy

(%)

50.0 55.9 52.9 47.1 52.9 51.8

Specificity

(%)

37.5 68.8 31.3 50.0 56.3 48.78

Sensitivity

(%)

61.1 44.4 72.2 44.4 50.0 54.42

Hyperparameters are fine-tuned for all models.

4.4 Auditory processing

Our finding on relatively delayed network synchronization

during auditory stimulation and worsening EF of low-performing

individuals are in line with clinical findings of hearing impaired,

who require longer latencies to make accurate perceptual

judgments (Tun et al., 2010). The connection between hearing

impairment, auditory processing and cognition is evident, and

rather complex. Aging results in pathological and physiological

changes in both peripheral and central auditory systems.

Approximately, 83% of adults 70 years and above suffer from

peripheral hearing loss (Cruickshanks et al., 1998). Peripheral

hearing loss not only affects the auditory processing of speech

sounds but also the higher-level cognitive functions required to

process linguistically demanding stimuli (Jayakody et al., 2018;

Powell et al., 2021). Hearing thresholds obtained from pure tone

audiometry and ASSR were found to be significantly correlated

in a cohort consisting of participants with normal hearing or

mild hearing loss (Tarawneh et al., 2022). The activation patterns,

summarized in the averaged topographies (Figure 7), revealed

significant differences in activation, particularly in the temporal

lobe, between the high and low cognition groups.

4.5 GLM and ML model

From a modeling viewpoint, the R2-values of the GLMs range

only between 0.13 and 0.45, which hardly indicates a good fit.

However, it is still a slight improvement compared to another

study, which only achieved a R2-value of 0.12 while using a similar

approach (Richard et al., 2020). Our second hypothesis, which is

that we can predict low-performing individuals with deep learning

at preclinical cognitive decline, showed low accuracy in our healthy

aging cohort. Nonetheless, we did optimize the ML model to its

limit while taking great care to avoid information leakage (train-

test-overlap) and overfitting. At the current time, no other study

has demonstrated a more accurate prediction of a clinically healthy

aging cohort. Nevertheless, this result emphasizes the difficulty in

assessing and thus preventing MCI and AD at an early stage using

ASSR.

4.6 Strength and limitation of the study

The strength of this study lies in its prospective longitudinal

design, following participants from birth to the age of 68,

which provides valuable insights into cognitive function over a

significant portion of the lifespan. A notable advantage is the

focus on individuals with declining cognitive function but without
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clinical signs of dementia, a group that is less frequently studied.

Additionally, the consistency of data collection, with the same

technicians using identical equipment and parameters to record

ASSR, enhances the reliability of the findings. However, the study

has limitations. For example, no female participants are included in

this study because amandatorymilitary service draft is not required

of them. Moreover, there is a potential selection bias due to the

inclusion process, as participation depended on telephone contact

with individuals previously enrolled in the cohort. This approach

may have disproportionately attracted individuals with stable life

circumstances, potentially excluding those experiencing depression

or challenging life events.

ASSR at 40 Hz is also a small signal with possible intra-

and inter-individual variability, making it challenging to compare

individuals with only slight differences in cognitive performance. A

larger dataset would improve the robustness of such comparisons.

Furthermore, the relatively small sample size limits the application

of advanced methods such as deep learning or ML algorithms. We

will continue to collect data to assess correlations between EF and

ASSR in late life in the future. As for the cognitive classifier, we will

experiment with other ML models and, if necessary, appropriate

data augmentation methods to improve the classification result.

5 Conclusion

In this study, we analyzed a longitudinal database of healthy

male Danish volunteers. By fitting Generalized Linear Models

(GLMs) to a mixed brain region consisting of temporal, central,

and parietal electrodes, we identified strong correlations between

neural assembly (AM magnitude), synchronization consistency

(ITPC magnitude), and average ASSR power with EF. More

specifically, smaller neural assemblies, higher ASSR power, and

larger areas of entrainment were highly correlated to low cognitive

outcomes. Additionally, a GLM from the frontal region revealed

a strong correlation between response latency (AM latency) and

EF, indicating that longer AM latency is predictive of poorer

EF. Finally, an ensemble of five Vision Transformer (ViT)

models demonstrated low accuracy in predicting cognitive decline,

underscoring the challenges in developing an effective cognitive

classifier and the necessity for ongoing research.

Data availability statement

The datasets presented in this article are not readily available

because the data in the article is considered confidential because it

involves sensitive patient information, which, despite the patients’

consent for use within the center, requires additional safeguards

for broader use. Protecting patient privacy is a key ethical

responsibility, and further dissemination or secondary use of

the data must be reviewed by an ethical committee to ensure

compliance with legal and ethical standards. This oversight ensures

that patient consent, privacy, and confidentiality are upheld,

safeguarding against any misuse or unauthorized access to personal

health information. Requests to access the datasets should be

directed to krben@regionsjaelland.dk.

Ethics statement

The studies involving humans were approved by the Lone

Gundelach, consulent, Sekretariatet for Den Videnskabsetiske

Komité, Region Sjælland. The studies were conducted

in accordance with the local legislation and institutional

requirements. The participants provided their written informed

consent to participate in this study.

Author contributions

XM: Conceptualization, Data curation, Formal analysis,

Investigation, Methodology, Software, Validation, Visualization,

Writing – original draft, Writing – review & editing. NS:

Conceptualization, Data curation, Formal analysis, Investigation,

Methodology, Project administration, Resources, Supervision,

Validation,Writing – review& editing. SP: Conceptualization, Data

curation, Formal analysis, Investigation, Methodology, Software,

Supervision, Validation, Visualization, Writing – review & editing.

ML: Funding acquisition, Resources, Writing – review & editing.

KB: Conceptualization, Funding acquisition, Investigation, Project

administration, Resources, Supervision, Validation, Writing –

original draft, Writing – review & editing.

Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. The data

collection for the study was supported by the Nordea Foundation

Grant to the Center for Healthy Aging at the University of

Copenhagen. The Copenhagen Aging and Midlife Biobank is

supported by grants from the Velux Foundation (VELUX26145

and 31539). The salary of the research coordinator and research

assistant was granted by the William Demant foundation, 22-2320.

Acknowledgments

We thank Roskilde University Hospital for providing the

datasets, DTU for providing the hardware needed to train the

models, and Cihan Uyanik for his helpful advice regarding EEG

processing and machine learning.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those of

Frontiers in AgingNeuroscience 13 frontiersin.org

https://doi.org/10.3389/fnagi.2025.1516932
mailto:krben@regionsjaelland.dk
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Mao et al. 10.3389/fnagi.2025.1516932

their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fnagi.2025.

1516932/full#supplementary-material

References

Alexander, G. E., Furey, M. L., Grady, C. L., Pietrini, P., Brady, D. R., Mentis, M. J.,
et al. (1997). Implications for the cognitive reserve hypothesis. Am. J. Psychiatry 154,
165–172. doi: 10.1176/ajp.154.2.165

Amieva, H., Mokri, H., Le Goff, M., Meillon, C., Jacqmin-Gadda, H., Foubert-
Samier, A., et al. (2014). Compensatory mechanisms in higher-educated subjects with
Alzheimer’s disease: a study of 20 years of cognitive decline. Brain 137, 1167–1175.
doi: 10.1093/brain/awu035

Auger, M. L., and Floresco, S. B. (2017). Prefrontal cortical gabaergic and NMDA
glutamatergic regulation of delayed responding. Neuropharmacology 113, 10–20.
doi: 10.1016/j.neuropharm.2016.09.022

Avlund, K., Osler, M., Mortensen, E. L., Christensen, U., Bruunsgaard, H., Holm-
Pedersen, P., et al. (2014). Copenhagen aging and midlife biobank (CAMB): an
introduction. J. Aging Health 26, 5–20. doi: 10.1177/0898264313509277

Bakhtiari, A., Petersen, J., Urdanibia-Centelles, O., Ghazi, M. M., Fagerlund,
B., Mortensen, E. L., et al. (2023). Power and distribution of evoked gamma
oscillations in brain aging and cognitive performance. GeroScience 45, 1523–1538.
doi: 10.1007/s11357-023-00749-x

Cohen, M. X., and Gulbinaite, R. (2017). Rhythmic entrainment source separation:
Optimizing analyses of neural responses to rhythmic sensory stimulation. Neuroimage
147, 43–56. doi: 10.1016/j.neuroimage.2016.11.036

Coull, J., Middleton, H., Robbins, T., and Sahakian, B. (1995). Contrasting
effects of clonidine and diazepam on tests of working memory and planning.
Psychopharmacology 120, 311–321. doi: 10.1007/BF02311179

Cruickshanks, K. J., Wiley, T. L., Tweed, T. S., Klein, B. E., Klein, R., Mares-
Perlman, J. A., et al. (1998). Prevalence of hearing loss in older adults in beaver dam,
wisconsin: the epidemiology of hearing loss study. Am. J. Epidemiol. 148, 879–886.
doi: 10.1093/oxfordjournals.aje.a009713

Delorme, A., and Makeig, S. (2004). EEGLAB: an open source toolbox for analysis
of single-trial EEG dynamics including independent component analysis. J. Neurosci.
Methods 134, 9–21. doi: 10.1016/j.jneumeth.2003.10.009

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., et al. (2020). An image is worth 16x16 words: transformers for image recognition at
scale. arXiv preprint arXiv:2010.11929.

Draganova, R., and Popivanov, D. (1999). Assessment of EEG frequency dynamics
using complex demodulation. Physiol. Res. 48, 157–165.

Ford, C. (2017). The wilcoxon rank sum test. UVA Library StatLab. Available at:
https://library.virginia.edu/data/articles/the-wilcoxon-rank-sum-test (accessed April
13, 2023).

Fratiglioni, L., Wang, H.-X., Ericsson, K., Maytan, M., and Winblad, B.
(2000). Influence of social network on occurrence of dementia: a community-
based longitudinal study. Lancet 355, 1315–1319. doi: 10.1016/S0140-6736(00)02
113-9

Gibbons, J. D., and Chakraborti, S. (2014). Nonparametric Statistical Inference:
Revised and Expanded. London: CRC press.

Hasher, L., and Zacks, R. T. (1988). Working memory, comprehension,
and aging: a review and a new view. Psychol. Learn. Motiv. 22, 193–225.
doi: 10.1016/S0079-7421(08)60041-9

Horwitz, A., Dyhr Thomsen, M., Wiegand, I., Horwitz, H., Klemp, M., Nikolic, M.,
et al. (2017). Visual steady state in relation to age and cognitive function. PLoS ONE
12:e0171859. doi: 10.1371/journal.pone.0171859

Horwitz, A., Klemp,M., Horwitz, H., Thomsen,M. D., Rostrup, E.,Mortensen, E. L.,
et al. (2019). Brain responses to passive sensory stimulation correlate with intelligence.
Front. Aging Neurosci. 11:201. doi: 10.3389/fnagi.2019.00201

Hsieh, S., Liang, Y.-C., and Tsai, Y.-C. (2012). Do age-related changes contribute to
the flanker effect? Clin. Neurophysiol. 123, 960–972. doi: 10.1016/j.clinph.2011.09.013

Idowu, M. I., and Szameitat, A. J. (2023). Executive function abilities in cognitively
healthy young and older adults–a cross-sectional study. Front. Aging Neurosci. 15, 1–18.
doi: 10.3389/fnagi.2023.976915

Jayakody, D. M., Friedland, P. L., Martins, R. N., and Sohrabi, H. R. (2018). Impact
of aging on the auditory system and related cognitive functions: a narrative review.
Front. Neurosci. 12:e125. doi: 10.3389/fnins.2018.00125

Kashiwase, Y., Matsumiya, K., Kuriki, I., and Shioiri, S. (2012). Time courses
of attentional modulation in neural amplification and synchronization measured
with steady-state visual-evoked potentials. J. Cogn. Neurosci. 24, 1779–1793.
doi: 10.1162/jocn_a_00212

Kim, M.-,j., Youn, Y. C., and Paik, J. (2023). Deep learning-based eeg analysis to
classify normal, mild cognitive impairment, and dementia: algorithms and dataset.
Neuroimage 272:120054. doi: 10.1016/j.neuroimage.2023.120054

Livingston, G., Huntley, J., Sommerlad, A., Ames, D., Ballard, C., Banerjee, S.,
et al. (2020). Dementia prevention, intervention, and care: 2020 report of the lancet
commission. Lancet 396, 413–446. doi: 10.1016/S0140-6736(20)30367-6

Lund, R., Mortensen, E. L., Christensen, U., Bruunsgaard, H., Holm-Pedersen, P.,
Fiehn, N. E., et al. (2016). Cohort profile: the Copenhagen aging and midlife biobank
(CAMB). Int. J. Epidemiol. 45, 1044–1053. doi: 10.1093/ije/dyv149

Madsen, H. (2007). Time Series Analysis. New York: Chapman and Hall/CRC.
doi: 10.1201/9781420059687

Miyake, A., Friedman, N. P., Emerson,M. J.,Witzki, A. H., Howerter, A., andWager,
T. D. (2000). The unity and diversity of executive functions and their contributions
to complex "frontal lobe" tasks: a latent variable analysis. Cogn. Psychol. 41, 49–100.
doi: 10.1006/cogp.1999.0734

Montgomery, D. C. (2017). Design and Analysis of Experiments. New York: John
wiley sons.

Mortensen, E. L., Flensborg-Madsen, T., Molbo, D., Fagerlund, B., Christensen, U.,
Lund, R., et al. (2014). The relationship between cognitive ability and demographic
factors in late midlife. J. Aging Health 26, 37–53. doi: 10.1177/0898264313508780

Mørup, M., Hansen, L. K., and Arnfred, S. M. (2007). Erpwavelab: a toolbox
for multi-channel analysis of time-frequency transformed event related potentials. J.
Neurosci. Methods 161, 361–368. doi: 10.1016/j.jneumeth.2006.11.008

Müller, N., Schlee, W., Hartmann, T., Lorenz, I., and Weisz, N. (2009). Top-down
modulation of the auditory steady-state response in a task-switch paradigm. Front.
Hum. Neurosci. 3:429. doi: 10.3389/neuro.09.001.2009

Nagabhushan Kalburgi, S., Kleinert, T., Aryan, D., Nash, K., Schiller, B., and Koenig,
T. (2024).Microstatelab: the EEGlab toolbox for resting-state microstate analysis. Brain
Topogr. 37, 621–645. doi: 10.1007/s10548-023-01003-5

Nam, C. S., Nijholt, A., and Lotte, F. (2018). Brain-Computer Interfaces
Handbook: Technological and Theoretical Advances. London: CRC Press.
doi: 10.1201/9781351231954

Osler, M., Lund, R., Kriegbaum,M., Christensen, U., and Andersen, A.M. N. (2006).
Cohort profile: the Metropolit 1953 Danish male birth cohort. Int. J. Epidemiol. 35,
541–545. doi: 10.1093/ije/dyi300

Oveisgharan, S., Wilson, R. S., Yu, L., Schneider, J. A., and Bennett,
D. A. (2020). Association of early-life cognitive enrichment with Alzheimer
disease pathological changes and cognitive decline. JAMA Neurol. 77, 1217–1224.
doi: 10.1001/jamaneurol.2020.1941

Parciauskaite, V., Bjekic, J., and Griskova-Bulanova, I. (2021). Gamma-range
auditory steady-state responses and cognitive performance: a systematic review. Brain
Sci. 11, 1–25. doi: 10.3390/brainsci11020217

Parciauskaite, V., Voicikas, A., Jurkuvenas, V., Tarailis, P., Kraulaidis, M., Pipinis,
E., et al. (2019). 40-hz auditory steady-state responses and the complex information
processing: an exploratory study in healthy young males. PLoS ONE 14:e0223127.
doi: 10.1371/journal.pone.0223127

Powell, D., Oh, E., Reed, N., Lin, F., and Deal, J. (2021). Hearing loss and
cognition: what we know and where we need to go. Front. Aging Neurosci. 13:769405.
doi: 10.3389/fnagi.2021.769405

Purves, D., Augustine, G. J., Fitzpatrick, D., Hall, W., LaMantia, A.-S., and White,
L. (2019). Neurosciences. Louvain-la-Neuve: De Boeck Supérieur.

Frontiers in AgingNeuroscience 14 frontiersin.org

https://doi.org/10.3389/fnagi.2025.1516932
https://www.frontiersin.org/articles/10.3389/fnagi.2025.1516932/full#supplementary-material
https://doi.org/10.1176/ajp.154.2.165
https://doi.org/10.1093/brain/awu035
https://doi.org/10.1016/j.neuropharm.2016.09.022
https://doi.org/10.1177/0898264313509277
https://doi.org/10.1007/s11357-023-00749-x
https://doi.org/10.1016/j.neuroimage.2016.11.036
https://doi.org/10.1007/BF02311179
https://doi.org/10.1093/oxfordjournals.aje.a009713
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://library.virginia.edu/data/articles/the-wilcoxon-rank-sum-test
https://doi.org/10.1016/S0140-6736(00)02113-9
https://doi.org/10.1016/S0079-7421(08)60041-9
https://doi.org/10.1371/journal.pone.0171859
https://doi.org/10.3389/fnagi.2019.00201
https://doi.org/10.1016/j.clinph.2011.09.013
https://doi.org/10.3389/fnagi.2023.976915
https://doi.org/10.3389/fnins.2018.00125
https://doi.org/10.1162/jocn_a_00212
https://doi.org/10.1016/j.neuroimage.2023.120054
https://doi.org/10.1016/S0140-6736(20)30367-6
https://doi.org/10.1093/ije/dyv149
https://doi.org/10.1201/9781420059687
https://doi.org/10.1006/cogp.1999.0734
https://doi.org/10.1177/0898264313508780
https://doi.org/10.1016/j.jneumeth.2006.11.008
https://doi.org/10.3389/neuro.09.001.2009
https://doi.org/10.1007/s10548-023-01003-5
https://doi.org/10.1201/9781351231954
https://doi.org/10.1093/ije/dyi300
https://doi.org/10.1001/jamaneurol.2020.1941
https://doi.org/10.3390/brainsci11020217
https://doi.org/10.1371/journal.pone.0223127
https://doi.org/10.3389/fnagi.2021.769405
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Mao et al. 10.3389/fnagi.2025.1516932

Puthusserypady, S. (2021). Applied Signal Processing. Verona: Now Publishers.
doi: 10.1561/9781680839791

Rafii, M. S., and Aisen, P. S. (2023). Detection and treatment of Alzheimer’s disease
in its preclinical stage. Nature aging 3, 520–531. doi: 10.1038/s43587-023-00410-4

Rey-Mermet, A., and Gade, M. (2018). Inhibition in aging: what is
preserved? What declines? A meta-analysis. Psychon. Bull. Rev. 25, 1695–1716.
doi: 10.3758/s13423-017-1384-7

Richard, N., Nikolic, M., Mortensen, E., Osler, M., Lauritzen, M., and Benedek,
K. (2020). Steady-state visual evoked potential temporal dynamics reveal correlates of
cognitive decline. Clin. Neurophysiol. 131, 836–846. doi: 10.1016/j.clinph.2020.01.010

Robbins, T. W., James, M., Owen, A. M., Sahakian, B. J., Lawrence, A. D., McInnes,
L., et al. (1998). A study of performance on tests from the Cantab battery sensitive
to frontal lobe dysfunction in a large sample of normal volunteers: implications for
theories of executive functioning and cognitive aging. J. Int. Neuropsychol. Soc. 4,
474–490. doi: 10.1017/S1355617798455073

Rosemann, S., and Thiel, C. M. (2020). Neuroanatomical changes associated with
age-related hearing loss and listening effort. Brain Struct. Funct. 225, 2689–2700.
doi: 10.1007/s00429-020-02148-w

Scarmeas, N., Levy, G., Tang, M.-X., Manly, J., and Stern, Y. (2001). Influence
of leisure activity on the incidence of Alzheimer’s disease. Neurology 57, 2236–2242.
doi: 10.1212/WNL.57.12.2236

Sibilano, E., Brunetti, A., Buongiorno, D., Lassi, M., Grippo, A., Bessi, V., et al.
(2023). An attention-based deep learning approach for the classification of subjective
cognitive decline andmild cognitive impairment using resting-state EEG. J. Neural Eng.
20:016048. doi: 10.1088/1741-2552/acb96e

Sivarao, D. V., Chen, P., Senapati, A., Yang, Y., Fernandes, A., Benitex,
Y., et al. (2016). 40 hz auditory steady-state response is a pharmacodynamic
biomarker for cortical NMDA receptors. Neuropsychopharmacology 41, 2232–2240.
doi: 10.1038/npp.2016.17

Staff, R. T., Murray, A. D., Deary, I. J., and Whalley, L. J. (2004). What provides
cerebral reserve? Brain 127, 1191–1199. doi: 10.1093/brain/awh144

Stern, Y., Barnes, C. A., Grady, C., Jones, R. N., and Raz, N. (2019). Brain
reserve, cognitive reserve, compensation, and maintenance: operationalization,
validity, and mechanisms of cognitive resilience. Neurobiol. Aging 83, 124–129.
doi: 10.1016/j.neurobiolaging.2019.03.022

Stuss, D. T. (2011). Functions of the frontal lobes: relation to executive functions. J.
Int. Neuropsychol. Soc. 17, 759–765. doi: 10.1017/S1355617711000695

Sullivan, E. M., Timi, P., Hong, L. E., and O’Donnell, P. (2015). Effects of nmda
and gaba-a receptor antagonism on auditory steady-state synchronization in awake
behaving rats. Int. J. Neuropsychopharmacol. 18, 1–7. doi: 10.1093/ijnp/pyu118

Tada, M., Kirihara, K., Koshiyama, D., Fujioka, M., Usui, K., Uka, T., et al.
(2020). Gamma-band auditory steady-state response as a neurophysiological

marker for excitation and inhibition balance: a review for understanding
schizophrenia and other neuropsychiatric disorders. Clin. EEG Neurosci. 51, 234–243.
doi: 10.1177/1550059419868872

Tada, M., Nagai, T., Kirihara, K., Koike, S., Suga, M., Araki, T., et al. (2016).
Differential alterations of auditory gamma oscillatory responses between pre-onset
high-risk individuals and first-episode schizophrenia. Cerebral cortex 26, 1027–1035.
doi: 10.1093/cercor/bhu278

Tarawneh, H. Y., Sohrabi, H. R., Mulders,W.H.,Martins, R. N., and Jayakody, D.M.
(2022). Comparison of auditory steady-state responses with conventional audiometry
in older adults. Front. Neurol. 13:924096. doi: 10.3389/fneur.2022.924096

Teale, P., Carlson, J., Rojas, D., and Reite, M. (2003). Reduced laterality of the
source locations for generators of the auditory steady-state field in schizophrenia. Biol.
Psychiatry 54, 1149–1153. doi: 10.1016/S0006-3223(03)00411-6

Teasdale, T. W. (2009). The Danish draft board’s intelligence test, børge priens
prøve: psychometric properties and research applications through 50 years. Scand. J.
Psychol. 50, 633–638. doi: 10.1111/j.1467-9450.2009.00789.x

Teasdale, T. W., Hartmann, P. V., Pedersen, C. H., and Bertelsen, M. (2011). The
reliability and validity of the Danish draft board cognitive ability test: børge prien’s
prøve. Scand. J. Psychol. 52, 126–130. doi: 10.1111/j.1467-9450.2010.00862.x

Teubner-Rhodes, S. (2020). Cognitive persistence and executive
function in the multilingual brain during aging. Front. Psychol. 11:568702.
doi: 10.3389/fpsyg.2020.568702

Tun, P. A., Benichov, J., and Wingfield, A. (2010). Response latencies in auditory
sentence comprehension: effects of linguistic vs. perceptual challenge. Psychol. Aging
25:730. doi: 10.1037/a0019300

Van Deursen, J., Vuurman, E., van Kranen-Mastenbroek, V., Verhey, F., and
Riedel, W. (2011). 40-hz steady state response in Alzheimer’s disease and mild
cognitive impairment. Neurobiol. Aging 32, 24–30. doi: 10.1016/j.neurobiolaging.2009.
01.002

Vohs, J. L., Chambers, R. A., Krishnan, G. P., O’Donnell, B. F., Berg, S., and
Morzorati, S. L. (2010). Gabaergic modulation of the 40 hz auditory steady-state
response in a rat model of schizophrenia. Int. J. Neuropsychopharmacol. 13, 487–497.
doi: 10.1017/S1461145709990307

Wiegand, I., Lauritzen, M. J., Osler, M., Mortensen, E. L., Rostrup, E., Rask,
L., et al. (2018). EEG correlates of visual short-term memory in older age
vary with adult lifespan cognitive development. Neurobiol. Aging 62, 210–220.
doi: 10.1016/j.neurobiolaging.2017.10.018

Wilcox, R. R. (2011). Introduction to Robust Estimation and Hypothesis Testing. New
York: Academic press. doi: 10.1016/B978-0-12-386983-8.00001-9

Zarnani, K., Smith, S. M., Alfaro-Almagro, F., Fagerlund, B., Lauritzen, M., Rostrup,
E., et al. (2020). Discovering correlates of age-related decline in a healthy late-midlife
male birth cohort. Aging (Albany NY) 12:16709. doi: 10.18632/aging.103345

Frontiers in AgingNeuroscience 15 frontiersin.org

https://doi.org/10.3389/fnagi.2025.1516932
https://doi.org/10.1561/9781680839791
https://doi.org/10.1038/s43587-023-00410-4
https://doi.org/10.3758/s13423-017-1384-7
https://doi.org/10.1016/j.clinph.2020.01.010
https://doi.org/10.1017/S1355617798455073
https://doi.org/10.1007/s00429-020-02148-w
https://doi.org/10.1212/WNL.57.12.2236
https://doi.org/10.1088/1741-2552/acb96e
https://doi.org/10.1038/npp.2016.17
https://doi.org/10.1093/brain/awh144
https://doi.org/10.1016/j.neurobiolaging.2019.03.022
https://doi.org/10.1017/S1355617711000695
https://doi.org/10.1093/ijnp/pyu118
https://doi.org/10.1177/1550059419868872
https://doi.org/10.1093/cercor/bhu278
https://doi.org/10.3389/fneur.2022.924096
https://doi.org/10.1016/S0006-3223(03)00411-6
https://doi.org/10.1111/j.1467-9450.2009.00789.x
https://doi.org/10.1111/j.1467-9450.2010.00862.x
https://doi.org/10.3389/fpsyg.2020.568702
https://doi.org/10.1037/a0019300
https://doi.org/10.1016/j.neurobiolaging.2009.01.002
https://doi.org/10.1017/S1461145709990307
https://doi.org/10.1016/j.neurobiolaging.2017.10.018
https://doi.org/10.1016/B978-0-12-386983-8.00001-9
https://doi.org/10.18632/aging.103345
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org

	Auditory steady state response can predict declining EF in healthy elderly individuals
	1 Introduction
	2 Subjects and methods
	2.1 Standard protocol approvals, registrations, and patient consents
	2.2 Recordings
	2.3 Signal analysis
	2.3.1 Dimensionality reduction using Rhythmic Entrainment Source Separation (RESS)
	2.3.2 Calculation of average ASSR power
	2.3.3 Complex demodulation of the signal
	2.3.4 Modified Cumulative Gaussian function

	2.4 Stockings Of Cambridge
	2.4.1 Statistical tests
	2.4.2 Generalized Linear Model
	2.4.3 Cognition classification using Vision Transformer


	3 Results
	3.1 Statistical tests
	3.2 Complex demodulation
	3.3 Generalized linear models
	3.4 Cognition classification using Vision Transformer

	4 Discussion
	4.1 EF and 40 Hz ASSR
	4.2 Delayed synchronization
	4.3 Cognitive decline
	4.4 Auditory processing
	4.5 GLM and ML model
	4.6 Strength and limitation of the study

	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


