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Purpose: Motor-cognitive exergames may be  beneficial for addressing both 
motor and cognitive residual impairments in chronic stroke, however, effective 
training schedules are yet to be determined. Therefore, this study investigates 
the effects of a concept-guided, personalized, motor-cognitive exergame 
training on cognitive functions and gait in chronic stroke survivors.

Methods: In this single-blind, randomized, controlled trial, stroke survivors (at 
least six-months post-stroke and able to perform step-based exergaming) were 
allocated either to the intervention (usual care + concept-guided, personalized, 
motor-cognitive exergame training) or the control group (usual care only). 
Global cognitive functioning was primarily targeted, while health-related 
quality of life (HRQoL), cognitive functions, mobility, and gait were evaluated 
secondarily. Analyses were performed with linear-mixed effect models.

Results: Effects on global cognitive functioning were non-significant, with no 
differences between responders (participants exhibiting a clinically relevant 
change) and non-responders (participants exhibiting no clinically relevant 
change). Among secondary outcomes, the mobility domain of the HRQoL 
questionnaire, intrinsic visual alertness, cognitive flexibility, working memory, 
and outdoor walking speed as well as swing width (unaffected side) showed 
significant interaction effects in favour of the exergame group.

Discussion: Additional exergaming helped maintaining global cognitive 
functioning and showed encouraging effects in mobility and cognitive 
outcomes. Responders and non-responders did not differ in adherence, baseline 
values or age. Enhancing the frequency and intensity of sessions could unlock 
more substantial benefits. Adopting a blended therapy approach may be key to 
maximizing positive effects.

Clinical trial registration: clinicaltrials.gov, identifier NCT05524727.
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1 Introduction

Stroke is a major cause of long-term disability in adults (Katan 
and Luft, 2018; Johnson et al., 2019), with common sequelae being 
cognitive and motor impairments (Sun et al., 2014; Ursin et al., 2019). 
In many stroke survivors, these impairments reside in the long-term, 
which hampers their daily-life functioning, independence, 
psychological and health-related quality of life (Nakling et al., 2017; 
Hotter et  al., 2018; Katan and Luft, 2018; Sennfalt et  al., 2019). 
Cognitive impairments are highly prevalent in chronic stroke [up to 
84% (Mahon et al., 2017)], with processing speed, executive functions, 
memory, and visuospatial functions being the domains most often 
affected (Cumming et al., 2013; Middleton et al., 2014). Nevertheless, 
rehabilitation of cognitive functions has been neglected for a long time 
(Jokinen et al., 2015; McDonald et al., 2019), and residual cognitive 
impairments are an important unmet need in chronic stroke survivors 
(Pollock et al., 2012; Hotter et al., 2018; Virani et al., 2020; Rudberg 
et al., 2021). Additionally, up to 80% of stroke survivors experience 
hemiparesis (Barker and Mullooly, 1997; Patten et  al., 2004). 
Hemiparesis alters spatiotemporal gait parameters including shorter 
stride length, lower cadence, and higher asymmetry, which can reduce 
gait speed, walking efficiency, and mobility (Olney and Richards, 
1996; Katan and Luft, 2018).

Post-stroke cognitive and motor impairments are linked, as they 
share structural and functional roots in the nervous system 
(Verstraeten et al., 2016; Ursin et al., 2019). Motoric-Cognitive Risk 
(MCR) syndrome, which has been associated with stroke (Verghese 
et al., 2013; Beauchet et al., 2018), describes the collective deterioration 
and mutual influence of cognitive functions and specifically gait. This 
raises the idea that cognitive and gait impairments could also 
be addressed together to improve collectively (Verstraeten et al., 2016; 
Li et al., 2018; Ursin et al., 2019; Montero-Odasso et al., 2020). The 
guided plasticity facilitation model (Kraft, 2012; Fissler et al., 2013) 
suggests that the combination of physical and cognitive training 
specifically triggers neuroplasticity, which is key in stroke 
rehabilitation (Maier et  al., 2019). Combined motor-cognitive 
interventions may thus be a promising approach to address cognitive 
deficits and gait impairments in stroke (Herold et al., 2018; Yang and 
Wang, 2021). Confirming the theory, motor-cognitive interventions 
have been found superior in improving motor and cognitive functions 
in healthy older adults (Bamidis et al., 2015; Lauenroth et al., 2016; 
Levin et al., 2017; Wollesen et al., 2020; Rieker et al., 2022; Teraz et al., 
2022) and neurological populations (Gavelin et al., 2020; Sun et al., 
2021; Zhou et al., 2021).

Exergames are a promising type of combined motor-cognitive 
training (Huber et  al., 2022a), as the gamified training fosters 
motivation and enjoyment, which was attributed with higher 
adherence (Sailer et al., 2017; Valenzuela et al., 2018; Yoong et al., 
2024). Exergames have been suggested as adjunct to standard stroke 
rehabilitation, especially for long-term and repetitious therapy (Chan 
et al., 2022; Zhang et al., 2022; Wicaksono et al., 2023). Potentially 
beneficial effects of exergames on cognitive and physical functioning 
have been reported in several systematic reviews in healthy older 
adults (Stojan and Voelcker-Rehage, 2019; Fang et al., 2020; Pacheco 

et al., 2020; Janhunen et al., 2021; Suleiman-Martos et al., 2021; Yen 
and Chiu, 2021), as well as in neurological and general populations 
(Stanmore et  al., 2017; Mura et  al., 2018; Calafiore et  al., 2021; 
Prosperini et  al., 2021). In chronic stroke, exergames have been 
reported to beneficially affect motor functions including balance, 
mobility, and gait (Chan et al., 2022; Huber et al., 2022a; Ghazavi 
Dozin et al., 2024). However, effective training schedules remain to 
be determined, as exergame interventions in previous stroke studies 
were mainly implemented in an unstructured manner, while 
description of and rationales for exercise variables and personalized 
schedules were insufficient (Cano Porras et  al., 2018; Stojan and 
Voelcker-Rehage, 2019; Huber et  al., 2022a; Rüth et  al., 2023). 
Regarding cognitive functions, a recent systematic review revealed 
that exergame trainings had a beneficial effect in the acute phase of 
stroke, while no effect was found for chronic stroke (Duta et al., 2023). 
Notably, the subgroup analysis in chronic stroke included only two 
studies with small sample sizes and short intervention durations 
(Duta et al., 2023). Both reported on the same exergame intervention, 
which was performed seated. However, step-based exergaming in a 
standing position may be most beneficial for improving cognitive 
functions and gait (Tahmosybayat et al., 2018; Manser and de Bruin, 
2021; Hou and Li, 2022; Manser and de Bruin, 2024). Hence, the 
effects of (step-based) exergames on cognitive functions in chronic 
stroke should be further investigated. Besides cognitive functions, 
detailed spatiotemporal gait parameters, real-world walking, and 
dual-task functions are underrepresented outcomes in studies 
investigating exergames (Gallou-Guyot et  al., 2020; Huber et  al., 
2022a; Stretton et  al., 2022). To address these research gaps, 
we developed an evidence-based concept for PErsonalized MOtor-
Cognitive exergame training in chronic Stroke [PEMOCS, (Huber 
et al., 2024b)]. The aim of this study was to evaluate the effects of 
exergame training guided by the PEMOCS concept on cognitive 
functions, health-related quality of life, single- and dual-task walking 
mobility, as well as indoor and outdoor gait in community-dwelling 
chronic stroke survivors.

2 Materials and methods

2.1 Trial design

The PEMOCS study was a single-blind, parallel, randomized, 
controlled trial in three hospitals / rehabilitation centres in Canton 
Zurich (Switzerland). Participants signed written informed consent 
before any study procedures started. After the baseline assessments 
(T0), participants were 1:1 randomly allocated to the intervention 
group (usual care + concept-guided, personalized, motor-cognitive 
exergame training) or the control group (usual care only). After the 
12-week intervention period, post-intervention assessments (T1) were 
performed, followed by a 12-week follow-up period (usual care only 
in both groups), and the follow-up assessments (T2). The initial 
protocol was adhered to during the trial. The study protocol was 
approved by the ethics committee of Canton Zurich (KEK Zürich, 
Switzerland), registered on clinicaltrials.gov (NCT05524727), and 
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published (Huber et  al., 2024a). CONSORT 2010 guidelines were 
followed for reporting (Schulz et al., 2010).

2.2 Randomization and blinding

Randomization was stratified by sex (Sohrabji et al., 2017; Dong 
et  al., 2020) and cognitive impairment absent or present [MoCA 
score ≥ 24 or < 24, respectively (Chiti and Pantoni, 2014; Shi et al., 
2018; Potocnik et al., 2020)]. It was performed using the randomization 
module within REDCap (Harris et al., 2009), which was used for the 
electronic case report forms (eCRF). A senior researcher, who was not 
involved in the study otherwise, created the randomization list 
following the instructions provided by REDCap (2018). Outcome 
assessors were blinded to group allocation, while care providers and 
participants were not. Care providers enrolled participants and 
assigned them to the groups.

2.3 Participants

Eligible were adult, chronic stroke survivors (≥ 18 years old, ≥ 
6 months post-stroke), who were able to stand for 3 min, walk 10 m 
without personal assistance [Functional Ambulation Category 
((Mehrholz et al., 2007), FAC ≥ 3)], follow a two-stage command, and 
give informed consent as documented by own signature. Excluded 
were people who were unable or unwilling to give informed consent, 
suffered from other neurological diseases except for cognitive deficits 
or dementia, presented clinical contra-indications against the study 
intervention, were unable to perform the study intervention or the 
primary outcome test [Montreal Cognitive Assessment (Nasreddine 
et  al., 2005), MoCA], or were overlappingly enrolled in another 
clinical trial. All study visits including assessments and training 
sessions took place in the study centres.

2.4 Interventions

The intervention group received concept-guided, personalized, 
motor-cognitive exergame training additionally to usual care. The 
exergame training was performed twice per week for 30–40 min over 
12 weeks, resulting in 840 min of total training time (Huber et al., 
2024b). The control group received no additional intervention to usual 
care, but weekly phone calls, to balance for contact to the study team. 
These phone calls consisted of 5- to 10-minute conversations covering 
the questions to gather further activity outcomes (see below). Among 
these further activity outcomes, amount, intensity and content of each 
participant’s usual care was inquired as this can vary considerably 
from patient to patient. Depending on type and severity of remaining 
impairments (among other determinants), usual care for chronic 
stroke survivors in Switzerland can range from no therapies to several 
physical, occupational and / or speed therapy sessions (usually lasting 
45 min) a week.

A concept for PErsonalized MOtor-Cognitive exergame training 
in chronic Stroke (PEMOCS) was specifically developed for this study 
and detailed elsewhere (Huber et al., 2024b). It has the aim to provide 
an optimal exergame training load for inducing neuroplasticity, 
cognitive and motor learning in each individual participant (Huber 

et al., 2024b). In short, the PEMOCS concept is based on Gentile’s 
Taxonomy for Motor Learning (Gentile, 1987), which was extended 
by a cognitive dimension for the use in exergame interventions. The 
taxonomy is a table of skill-categories and difficulty levels, to which 
the different games and game versions were assigned. By focusing on 
the most impaired cognitive domain of each individual, and applying 
individualized progression, the PEMOCS concept enables the 
personally tailored application of an exergame intervention (Huber 
et  al., 2024b). Participants received one-to-one training sessions, 
which were planned individually and supervised by trained movement 
scientists of the study team. The motor-cognitive exergame training 
was delivered using the exergame system “Dividat Senso” (Dividat 
AG, Schindellegi, Switzerland, Figure 1). It comprises of a pressure-
sensitive plate with handrails on three sides, which is placed in front 
of a screen on eye level. Cognitively challenging video games are 
presented on the screen, and stepping tasks are performed on the plate 
to interact with the games. Different games and game settings were 
available to train various cognitive and motor functions (Huber 
et al., 2024b).

2.5 Outcomes

All primary and secondary outcomes were collected at the three 
measurement time points (T0, T1, T2) by blinded assessors. Study 
data were collected and managed using REDCap electronic data 
capture tools hosted at ETH Zurich (Harris et al., 2009; Harris et al., 
2019). REDCap (Research Electronic Data Capture) is a secure, 
web-based software platform designed to support data capture for 
research studies, providing (1) an intuitive interface for validated data 
capture; (2) audit trials for tracking data manipulation and export 

FIGURE 1

Study device in action: the Dividat Senso including pressure-sensitive 
plate, handrails in use, and the screen showing targets, one of the 
motor-cognitive exergames.
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procedures; (3) automated export procedures for seamless data 
downloads to common statistical packages; and (4) procedures for 
data integration and interoperability with external sources. For a more 
detailed description of all outcomes and their conduct, see the 
protocol paper, which also presents definitions of all outcome variables 
(Tables 3, 4 in Huber et al., 2024a). The primary outcome was global 
cognitive functioning assessed by the total score of the Montreal 
Cognitive Assessment [MoCA (Nasreddine et al., 2005)]. The MoCA 
is a structured interview comprising of sub-tests assessing attention, 
executive functions, working memory, short-term memory recall, 
visuospatial skills, and orientation (Chiti and Pantoni, 2014). To 
prevent learning effects, three different versions of the test exist, which 
were used at the three measurement time points in this study.1 Blinded 
assessors were certified for conduction of the MoCA test (see text 
footnote 1).

Secondary outcomes were health-related quality of life, cognitive 
functions including alertness, processing speed, executive and 
visuospatial functions, single- and dual-task mobility, as well as indoor 
and outdoor walking. Participants filled the German Stroke Impact 
Scale (SIS) 3.0, which covers eight domains (strength, memory/
thinking, emotion, communication, ADL/IADL, mobility, hand 
function, and participation) and the perceived state of recovery [0 to 
100% (Duncan et al., 1999)]. Computer-based cognitive tests were 
performed in the Vienna Test System (VTS, Schuhfried GmbH, 
Mödling, Austria), including a simple reaction test [SRT 
(Zimmermann and Fimm, 1992; Sturm, 2006; Spikman and van 
Zomeren, 2010), “WAFA” within the VTS], the Trail-making test 
[TMT (Reitan, 1958; Tombaugh, 2004; Bowie and Harvey, 2006), 
“TMT – Langensteinbacher Version” within the VTS], the Stroop 
Interference test [(Faria et  al., 2015; Scarpina and Tagini, 2017), 
“STROOP” within the VTS], the 2-back test [NBT (Owen et al., 2005; 
Schellig and Schuri, 2009; León-Domínguez et al., 2015; Gajewski 
et al., 2018), “NBV” within the VTS], and a mental rotation test [MRT 
(Shepard and Metzler, 1971), “3D” within the VTS]. The Timed-up-
and-go test was performed in single-task (TUG) and dual-task (TUG-
Cogn) mode (Ng and Hui-Chan, 2005; Yang et al., 2016; Ng et al., 
2017). As cognitive task, participants subtracted three from a random 
number between 50 and 100 and not part of the row of three (Yang 
et  al., 2016; Pumpho et  al., 2020). To strive real dual-task 
(simultaneous) performance, participants were instructed to try and 
not prioritize one task over the other (“Please neither stop walking nor 
stop calculating throughout the whole trial.”). The cognitive single-
task was performed until they reached 0 or until 60 s were complete 
(Huber et al., 2024a). To assess gait, a 10-Meter Walk Test [10MWT 
(Cheng et al., 2020)] and an Outdoor Walking Assessment [OWA 
(Huber et al., 2022b)] were performed. The 10MWT was performed 
indoors at preferred and fast walking speed. The OWA was performed 
on a flat 400-meter outdoor route without stairs walking at a preferred 
walking speed. All gait assessments were timed using a stopwatch, 
while inertial gait sensors (Physilog® sensors, Gait Up SA, Lausanne, 
Switzerland) measured spatiotemporal gait parameters during the 
10MWT preferred and the OWA. From the measured parameters, the 
gait variability index (Gouelle et al., 2013) for both legs, the asymmetry 
index (Anker, 2019), and the walk ratio (Bogen et al., 2018) were 

1 mocacognition.com

calculated. The gait variability index was determined following 
published instructions (Gouelle et al., 2013) (Supplementary material S1 
and R scripts in https://doi.org/10.5281/zenodo.14849242). The walk 
ratio was calculated using the formulas in Bogen et al. (2018).

Intervention outcomes included compliance (completed sessions/
offered sessions) and adherence rates (completed training time/offered 
training time), reasons for not attending or aborting training sessions, 
as well as the ratings of perceived motor-cognitive task difficulty and 
perceived performance provided in the training sessions. Further 
activity outcomes were inquired weekly (intervention group: at one of 
the study appointments, control group: during the phone calls) to 
gather information on physical and cognitive therapies (usual care), 
as well as physical and cognitive leisure activities. Participants 
reported on how many days per week, for how long, and at what 
perceived intensity they had performed the therapies and activities 
(Huber et al., 2024a).

Baseline factors included demographics, further participant 
characteristics, stroke diagnosis details, and several clinical 
characteristics, namely the Functional Ambulation Category [FAC 
(Mehrholz et al., 2007)], the initial and current National Institute of 
Health Stroke Scale [NIHSS (Kwah and Diong, 2014)], the Lower 
Extremity component of the Fugl-Meyer Assessment [FMA-LE (Fugl-
Meyer et  al., 1975)], and the Berg Balance Scale [BBS (Blum and 
Korner-Bitensky, 2008)]. The Charlson Comorbidity Index [CCI 
(Charlson et al., 2022)] was determined from self-reported health 
data. The initial NIHSS was collected from patient files, or if 
unavailable, retrospectively determined using the algorithm presented 
in Williams et al. (2000).

2.6 Sample size

The target sample size was 38 participants, determined by an 
a-priori sample size estimation based on existing systematic reviews 
on the effects of exergame and motor-cognitive training interventions 
on global cognitive functions in stroke and comparable populations 
(Zhu et al., 2016; Stanmore et al., 2017; Gavelin et al., 2020; Soares 
et al., 2021; Yen and Chiu, 2021; Yu and Chan, 2021). A small to 
medium effect size (f = 0.21) for global cognitive functions was 
anticipated and the following parameters entered in G*Power; 
α-level = 0.05, power = 0.80, number of groups = 2, number of 
measurements = 3, correlation among rep measures = 0.5, 
non-sphericity correction = 1. Withdrawals were replaced with 
further recruitment.

2.7 Statistical methods

Statistical analyses were performed using RStudio open-source 
software [Boston, United States, (RStudio_Team, 2020), Version 4.3.1] 
and Microsoft Excel (Microsoft Corporation, 2016). Data were 
explored, checking on distributions with the Shapiro–Wilk test (Field 
et al., 2012). Appropriate descriptives were obtained for all variables. 
Differences between groups at baseline were tested using independent 
t-tests (for interval data allowing parametric testing), Wilcoxon 
rank-sum tests (for interval data requiring non-parametric testing), 
Chi-square tests, or Fisher exact tests [for ordinal / categorical data 
with frequencies >5 or ≤ 5, respectively (Kim, 2017)]. For intervention 
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outcomes, means overall and per week were calculated. For further 
activity outcomes, within participant means over the intervention and 
follow-up periods were calculated and compared between the two 
groups using independent t-tests or Wilcoxon rank-sum tests.

Interaction effects of interval data were analysed using linear 
mixed-effects models (LMEM, lmer-function of the lme4 package in 
R). Models were built by starting with a basic model including main 
fixed effects (group, time) and the interaction effect (group*time). 
Potential covariates (for choice, see below) were added first 
individually and then combined (Meteyard and Davies, 2020). The 
basic and covariate models were compared using the anova-function 
in R to choose the final model for each outcome [model with lowest 
AIC and BIC (Akaike and Bayesian Information Criteria, respectively) 
values (Meteyard and Davies, 2020)]. LMEMs have been 
recommended for data analysis of intervention studies despite 
frequent violation of assumptions in such data sets and have been 
reported to be sufficiently robust to smaller sample sizes (N < 50) and 
violated assumptions (Wiley and Rapp, 2019; Schielzeth et al., 2020). 
Nevertheless, the following assumptions were tested; (1) homogeneity 
of variance using Levene’s test, (2) linearity using ZRESID/ZPRED 
plots, (3) normality of residuals using the DHARMa package in R 
(Harting, 2022) and visually inspecting histograms of the residuals, 
(4) normality of random-effects by visually inspecting histograms of 
the random-effects, and (5) multicollinearity by calculating the 
variance inflation factor (VIF) (Field et  al., 2012). In case severe 
violation of one or several assumptions was detected, these violations 
were reported alongside with the model results. Log-transformation 
of the data in violated models was considered, however, it was 
remarked that back-transformed model coefficients (b, standard 
errors) and effect sizes were not comparable to the original data and 
other models, as described in Feng et al. (2014). Therefore, no further 
action was taken in case of assumption violations. Final models, 
information on the process of model choice, as well as results of the 
assumption tests were documented in supplements (Meteyard and 
Davies, 2020). Effect sizes for the models were calculated as r (Bravais-
Pearson correlation coefficient) = sqrt(t2 / (t2 + df)) (Field 
et al., 2012).

Ordinal outcomes were analysed with LMEMs of the family 
“poisson” (glmer-function of the lme4 package in R). Before analysis, 
clear outliers that could be associated to problems with handling the 
computer-based tests were replaced with the next higher / lower value 
± 1 (Field et al., 2012). R scripts for all LMEMs are available online at 
https://doi.org/10.5281/zenodo.14849242.

All primary and secondary outcomes were primarily analysed 
following the intention-to-treat (ITT) principle. In these ITT analyses, 
missing data due to withdrawals were imputed using the last-
observation-carried-forward method. Single missing data points (e.g., 
one assessment was not performed because of technical issues), were 
not imputed, as LMEMs can also be fitted with some missing data 
(Field et al., 2012; Gabrio et al., 2022). In case, a participant lacked 
data for an outcome at two or three time points, they were excluded 
from these analyses. Secondarily, per-protocol analyses were 
performed excluding individuals who withdrew from the study during 
the intervention period (T0–T1) or attended less than 85% of the total 
training sessions / time [for rationale, see Huber et al. (2024a)].

Potential covariates in the LMEMs were pre-defined as follows; 
(1) any baseline characteristic exhibiting a difference between groups, 
(2) parameters, which are established moderators of treatment effects 

and predictors of outcomes after stroke in literature. Therefore, age 
was considered as covariate in all analyses (Falck et al., 2019; Saa et al., 
2021). Years of education was chosen for the secondary cognitive 
outcomes (Ojala-Oksala et al., 2012; Basak et al., 2020; Umarova et al., 
2021; Hua et al., 2022). It was not a covariate in the analysis of the 
primary outcome, as the MoCA considers years of education for the 
total score (Nasreddine et al., 2005). Secondly, the FMA-LE score was 
chosen for the gait and mobility outcomes (Kollen et al., 2005; Burke 
et al., 2014; Rech et al., 2020; Selves et al., 2020). Sex and cognitive 
impairment were not considered as these variables were accounted for 
by the randomization stratification. Moreover, time post-stroke, which 
is often reported to be  a moderator / predictor of post-stroke 
outcomes, was not considered for two reasons. Firstly, most studies 
that report time since stroke to be a moderator / predictor discriminate 
between (sub-)acute and chronic stroke (Lam et al., 2010; Burke et al., 
2014; Prat-Luri et al., 2020), however, in our study, all participants 
were chronic. Secondly, there is an ongoing debate whether time post-
stroke in the chronic stage is really a moderator of treatment effects 
(Rogers et al., 2018), and two recent studies found no moderating 
effect on treatment effects, and no correlations between time since 
stroke and spatiotemporal gait parameters, respectively (Gama et al., 
2017; Zeng et al., 2023).

Within-group changes were tested using Wilcoxon signed rank 
tests (wilcox.test function in R, setting ‘paired = TRUE’) and effect 
sizes were calculated as r (Bravais-Pearson correlation coefficient) = z 
/ sqrt(N) (Field et al., 2012). Additionally, responder analyses were 
performed for the MoCA, and those outcomes that would exhibit a 
significant interaction effect (Snapinn and Jiang, 2007). For a 
responder analysis, participants are divided into responders 
(exhibiting changes greater than a minimal clinically important 
difference, MCID) and non-responders (showing no clinically 
important change), and ratios thereof are compared between groups. 
To potentially identify characteristics of responders, we additionally 
compared baseline and covariate (see above) values of responders and 
non-responders in the intervention group with a Wilcoxon rank 
sum test.

Significance for all analyses was set to p < 0.05. No p-value 
adjustments for multiple testing were performed as this study had one 
primary outcome, while secondary analyses were rather exploratory 
(Feise, 2002). Bravais-Pearson correlation coefficients (r) were 
interpreted as small (r < 0.3), medium (0.3 ≤ r < 0.5), and large 
(r ≥ 0.5) (Field et al., 2012).

2.8 Changes to protocol

No changes to the initial protocol were made in terms of study 
procedures (Huber et al., 2024a), however, the following changes were 
made in the analysis. (1) A responder analysis was also performed for 
the MoCA, even though no significant interaction effect was found. 
(2) Gait variability was reported as the Gait Variability Index [GVI, 
(Gouelle et al., 2013), Supplementary material S1] instead of individual 
stride time / length variability. The GVI is a composite score of gait 
variability, which considers the nine most relevant parameters for gait 
variability (Gouelle et  al., 2013). This has the advantage that one 
composite score replaced nine parameters, which may even add small 
changes in individual variability parameters, which would not 
be detected individually (Gouelle et al., 2013). (3) In the NBT, the 
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reaction time of the mistakes (RTmistakes) was no longer an outcome. 
The N in the analysis became very small, as several participants made 
no mistakes in this test. As RTmistakes is less relevant than other 
outcomes of the test (main outcomes: number of omissions and 
mistakes, reaction times of the correct answers (Schellig and Schuri, 
2009), it was removed. (4) For the TUG-Cogn, it was not possible to 
report the cognitive dual-task effect due to a protocol limitation 
we only noticed when analysing the data. Particularly, the time given 
for the cognitive single-task should have been matched to participants’ 
time to complete the dual-task (Yang et  al., 2016). However, 
participants were given 60 s to complete the single task. This time 
mismatch led to unrealistic values when calculating the cognitive 
dual-task effect. Therefore, it was decided to report single- and dual-
task response rates separately instead of the cognitive dual-task effect. 
The motor task and dual-task effect were not affected by this protocol 
limitation. (5) Participants who performed the OWA twice were not 
excluded from the OWA analyses, as fewer missing data was present 
than expected. This way, valuable collected outcome data was 
considered for the analysis instead of being excluded.

3 Results

3.1 Participant flow and recruitment

Recruitment ran between September 2022 and October 2023, and 
data collection was completed by April 2024. The study was completed 
as planned. Of 926 screened stroke survivors, 46 were included. The 
most frequent reason for non-inclusion was ineligibility (N = 766). 
Reasons for not participating among those who would have been 
eligible were “not being interested in study participation” (N = 58), 
“too high time consumption of the study” (N = 41), and “would 
be interested but cannot reach the study centre” (N = 4, all women). 
Women were underrepresented in all phases of recruitment and 
inclusion, namely screening on eligibility (ratio women / men: 0.73), 
contact for participation (ratio women / men: 0.43), and inclusion 
(ratio women / men: 0.24). Twenty-four and twenty-two participants 
were allocated to the intervention group and the control group, 
respectively. Forty-one participants completed the intervention period 
and thirty-seven the whole study duration, resulting in an attrition 
rate of 19.6%. In the intervention group, four participants withdrew 
during the intervention period (T0–T1), and none in the follow-up 
period (T1–T2). Reasons for withdrawal were (1) a temporally but not 
causally related adverse event (compare ‘Adverse events’, N = 1), (2) an 
unrelated serious adverse event (N = 1), (3) remarking that scheduling 
the training sessions in daily life was not possible (N = 1), and (4) not 
reported (withdrew without giving a reason, N = 1). In the control 
group, one participant withdrew during the intervention period (T0–
T1), and four in the follow-up period (T1–T2). Reasons for withdrawal 
were (1) not reported (withdrew without giving a reason, N = 1), (2) 
boredom and / or discomfort with the phone calls (N = 3), and (3) an 
unrelated serious adverse event (compare ‘Adverse events’, N = 1). 
Intention-to-treat analyses included 46, per-protocol analyses 36 
participants. Three participants were excluded from the SIS analyses, 
as they withdrew before initially answering the questionnaire. One 
participant was excluded from the TUG-Cogn, MRT, Stroop, and 
NBT analyses as he was not able to perform these assessments. Three 
participants were excluded from 10MWT-fast analyses, and three 

from the OWA analyses, because they did not want to perform the 
assessment. The participant flow is shown in Figure 2.

3.2 Baseline data

Participants were on average 66 years old. Men were over-
represented in the study (women: 9 / men: 37), however, both sexes 
were equally stratified over both groups. Approximately, a fifth of 
participants (19.6%) had suffered a haemorrhagic stroke, and there 
was a wide range of stroke chronicity in the sample (6–222 months 
post-stroke). Participants were highly educated (15 years of education, 
range: 8–24). Most participants showed neither cognitive nor physical 
impairments at baseline. However, 13 were cognitively impaired 
[MoCA <24, (Chiti and Pantoni, 2014)], 3 showed reduced motor 
function [FMA-LE < 21, (Kwong and Ng, 2019)] and 6 had restrictions 
in community ambulation [gait speed ≤0.78 m/s, (Bijleveld-Uitman 
et  al., 2013)]. Baseline characteristics are summarized in Table  1. 
Median values per group of all outcomes at the three time points are 
shown in Supplementary Tables S1–S3.

3.3 Outcomes and estimation

3.3.1 Primary outcome
The MoCA total score remained stable in both groups, and there 

were no interaction effects (Figure 3, Supplementary Tables S4, S5, S10). 
The responder analysis was performed with 1.22 points as MCID (Wu 
et  al., 2019). The rate of responders in the intervention group 
(responders / non-responders: 0.40 / 0.60) was higher compared to the 
control group (responders / non-responders: 0.20 / 0.80, Table 2). It 
did not considerably change when only adhering participants were 
considered (responders / non-responders: 0.44 / 0.56, Table 2). There 
was no significant difference between responders and non-responders 
in baseline MoCA score (p = 0.35) or age (p = 0.94, Table 2).

3.3.2 Secondary outcomes
The SIS domain Mobility showed a significant interaction effect 

(T2, ITT: p = 0.03, r = 0.24; PP: p = 0.06, r = 0.23; Figure  4A, 
Supplementary Tables S6, S7). The exergame group reported a 
significant improvement in perceived mobility with a large effect size, 
while the control group showed no changes in this domain (Table 3, 
Supplementary Table S10). The responder analysis was performed 
using 4.5 points as MCID (Lin et al., 2010). It showed that the rate of 
responders in the exergame group (responders / non-responders: 0.45 
/ 0.55) was higher compared to the control group (responders / 
non-responders: 0.25 / 0.75, Table 2). Responders showed significantly 
lower (p < 0.001) SIS Mobility values at baseline, while there was no 
difference in age (p = 0.32, Table 2).

Among the secondary cognitive assessments, a significant 
interaction effect in favour of the exergame group was found 
(Supplementary Tables S4, S5) in reaction time in the SRT—intrinsic 
visual alertness (T2, ITT: p = 0.02, r = 0.26; PP: p = 0.04, r = 0.25, 
Figure 4B). Additionally, the per-protocol analyses showed significant 
interaction effects in favour of the exergame group for mistakes in 
TMT-B (T1, p = 0.01; T2, p = 0.02, Figure 5A, Supplementary Table S5) 
and in mistakes in the NBT (T2, p = 0.02, Figure  5B, 
Supplementary Table S5). No responder analyses were performed for 
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these outcomes, as no clinically relevant changes could be identified. 
In the MRT, both groups significantly improved in accuracy with large 
(exergame group) and medium (control group) effect sizes, 
respectively (Table 3, Supplementary Table S10).

The TUG(-Cogn) revealed no significant interaction effects, 
however, several significant within-group changes with medium to 
large effect sizes, which demonstrate performance improvements in 
single- and dual-task mobility in both groups (Table  3, 
Supplementary Table S10). In the 10MWT, there were no significant 
interaction effects for any parameter (Supplementary Tables S8, S9). 
In the 10MWT-fast, both groups significantly improved with medium 
to large effect sizes (Table 3, Supplementary Table S10). In outdoor gait 
speed, there was a significant, small interaction effect in favour of the 
exergame group (T1, ITT: p = 0.02, r = 0.25; PP: p = 0.11, r = 0.20, 
Figure 4C, Supplementary Tables S8, S9). The responder analysis was 
performed with 0.175 m/s as MCID (Fulk et al., 2011). It showed that 
the rate of responders in the exergame group (responders / 

non-responders: 0.2 / 0.8) was higher compared to the control group 
(responders / non-responders: 0.15 / 0.85, Table 2). OWA gait speeds 
at baseline, age and baseline FMA-scores in responders and 
non-responders were not significantly different (Table 2). Additionally, 
a significant interaction effect with a medium size favouring the 
exergame group was found for swing width unaffected measured 
outdoors (T1, ITT: p = 0.004, r = 0.31; PP: p = 0.02, r = 0.29 / T2, ITT: 
p = 0.003, r = 0.33; PP: p = 0.007, r = 0.33, Figure  4D, 
Supplementary Tables S8, S9). Furthermore, the exergame group 
showed significant improvements in gait speed, stride length affected 
and stride time unaffected indoors as well as in cadence, stride time 
affected, and stride time unaffected outdoors, while the control group 
showed a significant improvement only in cadence indoors (Table 3, 
Supplementary Table S10).

Intervention and further activity outcomes: Mean compliance 
(89.8%) and adherence (89.1%) rates were high 
(Supplementary Table S11, considering participants who completed 

FIGURE 2

CONSORT flow diagram.
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the study). Reasons for not attending or aborting training sessions 
were all intervention-unrelated, including sickness, holidays, working 
appointments, or having forgotten the appointment. The mean 
perceived task difficulty of the participants started low, moved below 
the targeted range in weeks 3 to 6, and at the lower edge of the targeted 
range in weeks 7 to 12 (Figure 6A). The mean perceived performance 
started within the targeted range, moved at its upper edge throughout 
weeks 4 to 10, and raised higher in the last 2 weeks of the intervention 

(Figure 6B). Further activity outcomes showed that 18 participants 
received no usual care throughout the study, while the remaining 
participants received on average (median) 38 min of therapy per week 
(Supplementary Table S11). Ten participants received both physical 
and cognitive therapy, 12 received physical therapy only and 2 received 
cognitive therapy only. Overall, the average amount of physical 
therapy was higher compared to the average amount of cognitive 
therapy (Supplementary Table S11). In leisure time, participants were 

TABLE 1 Baseline characteristics of both groups and between group differences.

Intervention group (N = 24) Control group (N = 22) Group 
difference

Characteristic N Mean ± SD / 
median (IQR)

Range: min-max 
/ frequency

N Mean ± SD / 
median (IQR)

Range: min-max 
/ frequency

p-value

Sex 24 F: 5, M: 19 22 F: 4, M: 18 > 0.99c

Age [years] 24 68.75 ± 8.51 49–81 22 63.18 ± 9.69 46–77 0.05a

Weight [kg] 22 79.45 ± 10.36 61–100 21 76.38 ± 12.46 54–100 0.39a

Height [cm] 22 174.68 ± 7.55 154–185 21 175.33 ± 7.28 165–188 0.77a

Handedness 22 Left: 2, Right: 20 21 Left: 3, Right: 18 0.87c

Civil status 22 Single: 1

Married: 16

Divorced: 5

Widowed: 0

21 Single: 2

Married: 14

Divorced: 3

Widowed: 2

0.65c

Education [years] 24 14.17 ± 3.12 8–23 22 15.89 ± 3.89 11–24 0.11a

Education grade 24 Primary: 0

Secondary: 3

Professional: 9

Maturity: 3

University: 9

22 Primary: 0

Secondary: 0

Professional: 7

Maturity: 3

University: 9

0.29c

CCI [0–28] 22 2.5 (2,3) 1–5 21 2 (1,3) 1–5 0.42b

Stroke type 23 Ischemic: 19

Haemorrhagic: 4

22 Ischemic: 17

Haemorrhagic: 5

0.86c

Time since stroke 

[months]

23 27 (10,49.5) 6–222 22 21.5 (10,40.5) 6–179 0.60b

Previous stroke 24 No: 22, Yes: 2 21 No: 19, Yes: 2 0.80c

Affected brain hemisphere 24 Right: 14, Left: 9

Mid / both: 1

22 Right: 10, Left: 11

Mid / both: 1

0.77c

iNIHSS [0–42] 21 5 (2,7) 1–22 21 3 (1,8) 0–20 0.30b

Affected body side 24 Left: 15, Right: 9 22 Left: 10, Right: 12 0.37c

cNIHSS [0–42] 24 0 (0,1) 0–8 22 0 (0,1) 0–5 0.99b

mRS 22 0: 7, 1: 9

2: 3, 3: 2

21 0: 7, 1: 8

2: 4, 3: 2

> 0.99c

FAC 24 3: 1, 4: 2, 5: 21 22 3: 0, 4: 3, 5: 19 0.89c

FMA-LE [0–34] 24 31 (28,33) 13–34 22 31.5 (25,33) 14–34 0.69b

BBS [0–56] 24 55.5 (53,56) 19–56 22 56 (54,56) 40–56 0.47b

Faller 22 No: 18, Yes: 4 21 No: 16, Yes: 5 > 0.99c

Gait speed 24 1.38 (1.14,1.44) 22 1.25 (1.07,1.43) 0.56

MoCA, cogn. Impairment 24 25 (23, 27) MoCA <24: 7

MoCA ≥24: 17

22 26 (24,28) MoCA <24: 6

MoCA ≥24: 16

0.62

Between-group tests: aindependent t-test, bWilcoxon rank-sum test, cFisher’s exact test. BBS, Berg balance scale; CCI, Charlson comorbidity index; c/iNIHSS, current / initial National Institutes 
of Health Scale; FAC, Functional ambulation category; FMA-LE, Fugl-Meyer Assessment, lower extremity component; MoCA, Montreal Cognitive Assessment; mRS, modified Rankin scale; 
IQR, interquartile range; SD, standard deviation.
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highly physically and cognitively active (median: 180–300 min of 
activity on 3–5 day per week, Supplementary Table S11). None of the 
further activity outcomes showed differences between the groups 
(Supplementary Table S11).

3.4 Safety

A mild and possibly (temporally but not causally) related AE was 
recorded in a participant with pre-existing heart condition. This 

FIGURE 3

Median MoCA scores with IQRs from the ITT analyses of both groups over time. IQR, Interquartile ranges; MoCA, Montreal Cognitive Assessment; T1, 
Post-intervention measurements; T2, Follow-up measurements.

TABLE 2 Results of responder analyses.

MoCA SIS mobility OWA gait speed

# Total # Responders Rate # Responders Rate # Responders Rate

Control group 20

Responders 4 0.20 5 0.25 3 0.15

Non-responders 16 0.80 15 0.75 17 0.85

Intervention group 20 (Adh. 16)

Responders 8 0.40 9 0.45 4 0.20

  Adherer 7 0.44 6 0.38 3 0.19

Non-responders 12 0.60 11 0.55 16 0.80

  Adherer 9 0.56 10 0.63 13 0.81

Median (IQR) p-value Median (IQR) p-value Median (IQR) p-value

Identification of possible responder characteristics

Baseline Responders 24 (23,24.5) 0.35 86 (67,92) <0.001 1.3 (1.2,1.4) 0.74

Non-respon. 26 (23,28) 100 (97,100) 1.3 (1.3,1.4)

Age Responders 67 (65,75) 0.94 73 (66,76) 0.32 69 (59,76) 0.70

Non-respon. 71 (65,75) 68 (65,71) 69 (66,73)

FMA-LE Responders – – – – 30 (26,33) 0.77

Non-respon. – – 31 (28,33)

#, number of…; Adh, adherers; FMA-LE, Fugl-Meyer Assessment, lower extremity component; IQR, Interquartile range; MoCA, Montreal Cognitive Assessment; Non-respond, Non-
responders; OWA, Outdoor walking assessment; SIS, Stroke Impact Scale. Bold values signify significant difference.
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participant experienced an uncomfortable but tolerable feeling in the 
chest / heart region during the more exhaustive parts of the 
measurement and training sessions, which decomposed after stopping 
the activities. The participant reported experiencing the same feelings 
when performing moderately to highly intense activities in daily life, 
but nevertheless withdrew. Another mild and unlikely related AE 
occurred in a participant, who experienced mild to moderate 
(tolerable) back pain during a few training sessions. The participant 
reported that the pain had been present already before the study and 
fluctuated, which was not attributable to the training sessions (pain 
was not stronger after the sessions). The training was adapted to the 
participant’s condition from the day of reporting; jumps were no 
longer integrated, and the cognitive load was reduced to enable focus 
on core stability during exercises. Furthermore, four unrelated SAEs 
(hospitalisations, for which a causal relationship to the study could 
be ruled out) and several unrelated AEs (e.g., flu, study-unrelated 
pain) occurred.

4 Discussion

This single-blind, randomized, controlled trial investigated the 
effects of a concept-guided, personalized, motor-cognitive exergame 
training (PEMOCS) added to usual care compared to usual care alone 

on global cognitive function, health-related quality of life (HRQoL), 
cognitive functions, single- and dual-task walking mobility, as well as 
indoor and outdoor gait in community-dwelling chronic stroke 
survivors. Global cognitive functioning (MoCA, primary outcome) 
remained stable in both groups, albeit the rate of responders showing 
a MCID in this outcome was higher in the exergame compared to the 
control group. The Mobility domain of the HRQoL questionnaire, 
reaction time in intrinsic visual alertness, mistakes in the TMT-B and 
the 2-back test, and gait speed as well as swing width on the unaffected 
side in outdoor walking showed significant interaction effects 
favouring the exergame group. However, as the study was not powered 
to these secondary outcomes, these results should be  interpreted 
prudently. Neither the MoCA nor any of the outcomes showing 
significant interaction effects exhibited clinically meaningful changes 
on group level. Participants showed high compliance and adherence 
to the exergame training, and no definitely related adverse events 
occurred. The task load in the exergame training was below the 
targeted range.

4.1 Effects on cognitive outcomes

We found no interaction effects in the MoCA (Figure 3), however, 
a higher responder rate in the exergame compared to the control 

FIGURE 4

Median SIS-mobility scores (A), reaction times in intrinsic visual alertness (B), outdoor gait speed (C), and outdoor swing width values (D) with IQRs 
from the ITT analyses of both groups over time. IQR, Interquartile ranges; OWA, Outdoor Walking Assessment; SIS, Stroke Impact Scale; SRT, Simple 
Reaction Test; T1, Post-intervention measurements; T2, Follow-up measurements.
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group (Table 2). Visual simple reaction time showed an interaction 
effect favouring the exergame group (Figure 4B). Additionally, the 
exergame group exhibited more and larger within-group 

improvements in cognitive assessments compared to the control 
group (Table  3). It seems that cognitive improvements were 
measurable with specific and sensitive tests but did not appear in a 

TABLE 3 Overview of within-group improvements in both groups.

Improvements within intervention group Improvements within control group

T0 ➔ T1 T0 ➔ T2 T0 ➔ T1 T0 ➔ T2

MoCA PP: +1 pt. NS NS PP: -1 pt. NS NS

SRT
Phasic RT visual

ITT: M, PP: L

Phasic RT visual

ITT: NS, PP: L

Phasic RT auditory

ITT: NS, PP: L

Phasic RT auditory

ITT & PP: M

Phasic RT auditory

ITT & PP: M

TMT NS NS NS NS

Stroop
Reading interference RT

ITT: M, PP: L

NBT
Mistakes

ITT: M, PP: L

Mistakes

ITT: M, PP: L

MRT
Accuracy

ITT & PP: L

Accuracy

ITT & PP: L

Accuracy

ITT & PP: M

SIS
Mobility

ITT & PP: L

TUG
Time single-task

ITT & PP: L

Time single-task

ITT & PP: M

TUG-Cogn
Time dual-task

ITT: M, PP: NS

Time dual-task

ITT & PP: M

Time dual-task

ITT & PP: L

Dual-task effect motor

ITT & PP: L

CRR single-task

ITT & PP: L

CRR single-task

ITT & PP: L

CRR single-task

ITT & PP: M

CRR single-task

ITT & PP: L

CRR dual-task

ITT: M, PP: NS

CRR dual-task

ITT: L, PP: NS

10MWT
Gait speed

ITT: M, PP: NS

Cadence

ITT: NS, PP: M

Stride length affected

ITT: M, PP: NS

Stride length affected

ITT: M, PP: NS

Stride time unaffected

ITT & PP: L

Time fast

ITT & PP: L

Time fast

ITT: M, PP: NS

Time fast

ITT & PP: M

OWA
Cadence

ITT: L, PP: NS

Cadence

ITT: M, PP: NS

Stride time affected

ITT: M, PP: NS

Stride time affected

ITT: L, PP: NS

Stride time unaffected

ITT: M, PP: NS

Stride time unaffected

ITT: M, PP: NS

Swing width unaffected

ITT: L, PP: NS

Not mentioned variables showed maintenance, while none showed a deterioration in neither group. Median within-group changes in the majority of the variables were very small and may not 
be clinically relevant (compare Supplementary Tables S4–S9). CRR, Correct response rate; ITT, Intention-to-treat analysis; L, large / M, medium effect size; NS, non-significant; PP, Per-
protocol analysis; Colours: green, large effect size / yellow, medium effect size in at least one analysis.
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less sensitive summary score of global cognition as the MoCA. These 
findings are partly in line with three RCTs implementing exergame 
trainings in chronic stroke survivors with comparable baseline 
characteristics (Rozental-Iluz et al., 2016; Hung et al., 2017; Maier 
et al., 2020). Two of these studies compared exergame trainings in a 
standing position to conventional balance / physical training and 
found significant within-group improvements in the exergame 
groups but no significant interaction effects (Rozental-Iluz et  al., 
2016; Hung et al., 2017). The third study implemented seated video-
game training including gross arm movements compared to 

conventional cognitive training, and found neither within-group 
changes nor interaction effects (Maier et al., 2020). These results align 
with findings in older adults that exergames should be performed in 
a standing position to improve cognitive functions (Tahmosybayat 
et al., 2018; Manser and de Bruin, 2021; Hou and Li, 2022; Manser 
et al., 2024). Moreover, they also align with evidence that supports 
exergames as adjunct to usual care or substitute to physical trainings 
but does not suggest them to outperform conventional cognitive 
trainings for improving specific cognitive functions (Stanmore et al., 
2017; Mura et al., 2018).

FIGURE 5

Median mistakes in the TMT-B (A) and NBT (B) with IQRs from the PP analyses of both groups over time. IQR, interquartile ranges; NBT, N-back test; 
TMT, trail-making test; T1, post-intervention measurements; T2, follow-up measurements.
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Recent systematic reviews present mixed evidence regarding the 
effect of exergames on global and specific cognitive functions. Some 
found no beneficial effects on global cognitive functions of VR 
interventions including exergames in chronic stroke (Gao et al., 2021), 
and of exergames in neurological populations and healthy older adults 
(Mura et  al., 2018; Chen et  al., 2023; Li et  al., 2023). Others, 
investigating the effects of exergames compared to active or passive 
control groups in acute stroke and older adults with or without 
cognitive impairments, did find significant beneficial effects on MoCA 
scores (Soares et  al., 2021; Buyle et  al., 2022; Cai et  al., 2023). 
Attentional functions have been reported to significantly improve with 
exergames in stroke (Gao et al., 2021) or to not change in neurological 
populations and healthy older adults (Yen and Chiu, 2021; Li et al., 
2023). In stroke, neurological populations, and healthy older adults, 
executive functions often show beneficial effects after exergaming 
(Mura et al., 2018; Gao et al., 2021; Yen and Chiu, 2021; Jiang et al., 
2022; Cai et  al., 2023), however, systematic reviews showing no 
beneficial effects exist as well (Soares et al., 2021; Huber et al., 2022a; 
Li et al., 2023). Moreover, working memory and visuospatial functions 
have rarely been investigated in exergame studies, and effects were 

mostly non-significant (Unibaso-Markaida et al., 2019; Cai et al., 2023; 
Li et al., 2023). To conclude, evidence on the effects of exergames on 
cognitive functions in chronic stroke and related populations is 
inconsistent to date, therefore, more research is needed. A possible 
reason may be varying training protocols, on which we elaborate below.

Another explanatory factor may be  different populations, for 
instance in terms of baseline cognitive status. Beneficial effects of 
exergames in cognitively impaired populations (Swinnen et al., 2021; 
Manser and de Bruin, 2024) compared to no beneficial effects in 
healthy older adults (Sturnieks et al., 2024) may support the hypothesis 
that cognitively impaired people benefit more from exergame training 
compared to cognitively healthy people. However, in our sample, 
baseline cognitive impairment did not affect responding to the 
intervention (Table  2). This is in line with several meta-analyses, 
wherein the positive effects of exergames on cognitive functions were 
mediated by studies including cognitively healthy older adults, while 
the subgroups of participants with mild cognitive impairment showed 
no beneficial effects (Soares et al., 2021; Jiang et al., 2022). We also 
analysed whether number of responders differed based on adherence 
to the exergame training, or relevant covariates. However, neither of 

FIGURE 6

Median ratings of perceived task difficulty (A) and perceived performance (B) of all participants over time. Training number: week.session, e.g., 
2.2 → week 2, second training in this week.
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the evaluated parameters showed a significant difference between 
responders and non-responders (Table 2). Therefore, future research 
should determine which populations benefit from exergame training, 
and under which circumstances.

4.2 Effects on health-related quality of life

We found a significant interaction effect in the health-related 
quality of life domain Mobility at follow-up (Figure  4A). Mean 
changes did not exceed the MCID of 4.5 points for this SIS domain 
[Supplementary Tables S6, S7 (Lin et al., 2010)], nevertheless the rate 
of responders was higher in the exergame group compared to the 
control group (Table 2). This indicates that participants attending the 
exergame training felt more mobile afterwards, while control 
participants remarked no difference. Responders in the exergame 
group showed significantly lower perceived mobility at baseline than 
non-responders (Table  2), which could indicate that less mobile 
participants benefitted more from the exergame training. Besides the 
training, a possible explanation for this finding could be that not only 
the exergame training but also the study participation itself, including 
leaving the house and coming into the study centres, may have helped 
less mobile participants to improve their perceived mobility. However, 
one must keep in mind that a ceiling effect was probably present in 
this outcome. The non-responders showed a mean Mobility score of 
100 (the maximum) already at baseline. Therefore, the reason for 
becoming a non-responder could also be that there was no room for 
improvement over the intervention period. Consequently, it remains 
open to clarify whether participants with impaired perceived mobility 
profit more from the exergame training compared to participants with 
high perceived mobility.

4.3 Effects on single-task mobility and 
indoor gait

We found no interaction effects, but significant within-group 
improvements in single-task mobility in both groups (Table 3). 
These results are partly in line with existing literature. Significant 
within-group improvements in TUG performance after exergaming 
have been reported in stroke (Unibaso-Markaida and Iraurgi, 
2022), and non-significant interaction effects in older adults, MCI 
and PD patients (Taylor et al., 2018; Elena et al., 2021; Buyle et al., 
2022; Cai et  al., 2023). However, a larger body of evidence in 
related populations supports a superior effect of exergames 
compared to passive and active controls on TUG performance 
(Fang et al., 2020; Pacheco et al., 2020; Chen et al., 2021; Prosperini 
et  al., 2021; Suleiman-Martos et  al., 2021; Zhang et  al., 2022; 
Elhusein et al., 2024; Yoong et al., 2024). Indoor walking did not 
change in neither group, which is not in line with literature in 
(chronic) stroke (Corbetta et  al., 2015; De Rooij et  al., 2016; 
Gibbons et al., 2016; Ghai et al., 2020; Zhang et al., 2021, 2023; 
Huber et  al., 2022a). Both groups were highly physically active 
before and throughout the study duration, which may explain their 
high performance in the gait analyses. For example, our 
participants showed higher gait speeds (1.24–1.41 m/s) compared 
to samples of other stroke studies (Yang et al., 2008; Fritz, 2013; 
Choi et al., 2018; Cikajlo et al., 2020; Lee and Bae, 2022). The high 

baseline status of the participants may explain the lack of significant 
interaction effects on single-task motor functions. Another 
explanation may be a limitation of how the PEMOCS concept was 
implemented. Namely, many of the more complex and intense 
motor tasks of the intervention (including squats, double steps, 
jumps) were added to the games via verbal instruction only. The 
missing in-game feedback and / or reward on the execution of 
these complex and intense motor tasks may have induced 
participants to prioritize the cognitive task (presented and 
rewarded by the game) over the additional motor task (similarly as 
suggested in Gallou-Guyot et  al., 2023). This led to (partially) 
incomplete execution of these tasks, which may have diminished 
possible benefits on motor functions. We  present a possible 
solution for this problem in the Future Directions.

4.4 Effects on dual-task mobility and 
outdoor gait

In dual-task mobility, we  found no interaction effects, but 
significant within-group improvements in both groups. The exergame 
group showed larger improvements in the cognitive dual-task 
measures (correct response rates), while the control group exhibited 
larger improvements in the motor dual-task effect (Table  3). In 
outdoor gait, gait speed and swing width on the unaffected side 
showed significant interaction effects favouring the exergame group 
(Figures 4C,D). The responder analysis in gait speed showed an only 
slightly higher responder rate in the exergame group compared to the 
control group (Table  2), and changes did not exceed MCIDs for 
preferred gait speed [Supplementary Tables S8, S9, (Fulk et al., 2011; 
Bohannon and Glenney, 2014)]. It should be considered that this 
responder analysis was performed with a MCID for indoor gait speed, 
as no value for outdoor gait speed is, to our knowledge, available in 
literature. Moreover, only the exergame group showed significant 
improvements in several spatiotemporal gait parameters of the OWA 
(Table  3). Even though significant, the median changes in these 
parameters were below the smallest detectable changes (SDCs) 
determined in a study using the same Physilog sensors in stroke 
patients (Lefeber et  al., 2019), which is why these results warrant 
cautious interpretation. Nevertheless, the summarized findings imply 
an overall picture. Namely, these partially beneficial effects on dual-
task mobility and outdoor walking may be linked as both tasks can 
be  considered complex walking tasks (Grosboillot et  al., 2024). 
Outdoor walking needs, due to distractions of the environment, more 
cognitive resources compared to indoor walking (Hillel et al., 2019). 
The cognitive Timed-up-and-go is even more complex with the 
additional cognitive task (Grosboillot et al., 2024). Considering that 
we found significant interaction effects favouring the exergame over 
the control group in some cognitive measures but not in single motor-
tasks, one could hypothesize that the improvements in dual-task 
mobility and outdoor gait are linked to increased cognitive resources 
triggered by the exergame intervention. This makes sense when 
observing that the improvements in dual-task performance in the 
exergame group were seen in the cognitive dual-task measures, while 
in the control group they were found in the motor dual-task measures 
(Table  3). Therefore, exergames may be  beneficial for improving 
activities that require cognitive contribution in chronic 
stroke survivors.
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4.5 Influence of training principles

The general training volume of 14 h of this study’s intervention 
may have been too low to trigger more interaction effects (Saeedi 
et  al., 2021). At least 15 h of training has been recommended for 
improving cognitive and motor functions in stroke and older adults 
(Kwakkel et al., 2004; Lauenroth et al., 2016; Laver et al., 2017; Zhang 
et  al., 2021). As duration and session duration of the presented 
intervention were in line with current recommendations for 
exergames (Fang et al., 2020; Jiang et al., 2022; Duta et al., 2023; Peng 
et al., 2024), the frequency may be the most suitable parameter to 
adjust. This aligns with three systematic reviews showing that 
frequency was a moderator of exergame-interventions effects 
(Prosperini et al., 2021; Hai et al., 2022; Jiang et al., 2022). While 
motor functions profit from high-frequency interventions (Prosperini 
et al., 2021), a lower frequency (≤ 3x/week) was reported to be more 
beneficial for improving cognitive functions (Zhu et al., 2016; Gallou-
Guyot et al., 2020; Jiang et al., 2022). Three sessions per week may thus 
be most beneficial for improving both, cognitive and motor functions 
(Fang et al., 2020; Gallou-Guyot et al., 2020; Prosperini et al., 2021; 
Hai et al., 2022). Community-dwelling stroke survivors reported in 
our feasibility study that more than two centre-based sessions were 
not feasible for them (Huber et al., 2021) (which was the reason for 
not implementing a higher frequency in this study). Therefore, a 
blended-therapy approach may be a possible solution to increase the 
number of sessions per week (Mehra et al., 2018) (see Section 4.8).

A second influential training principle may have been insufficient 
exercise intensity. It has been postulated that cognitive and motor 
benefits of exergames (and other motor-cognitive and physical 
trainings) may be induced by neurotrophin-mediated neuroplasticity 
(Monteiro-Junior et al., 2016; Levin et al., 2017; Stojan and Voelcker-
Rehage, 2019). Special attention has been given to brain-derived 
neurotrophic factor (BDNF), insulin growth factor-1 (IGF1), and 
vascular endothelial growth factor (VEGF), which were suggested to 
collectively mediate exergame-induced neuroplasticity (Yang et al., 
2023). Supportive of this hypothesis are several studies, which found 
that exergaming increased BDNF levels in chronic stroke, older adults 
and Parkinson’s disease patients (Monteblanco Cavalcante et al., 2021; 
Huang et al., 2022; Schaeffer et al., 2022), as well as IGF-1 and other 
neuroplasticity-indicative biomarkers in people with mild cognitive 
impairment (Nath et al., 2023). Wide results from animal and human 
studies report that at least moderate exercise intensity is necessary for 
BDNF increase (Ploughman et al., 2015; Morais et al., 2018; Li et al., 
2024). In accordance, low intensity exercise did not induce 
neuroplasticity in chronic stroke survivors (Murdoch et al., 2016), 
while exercise at moderate intensity increased neuroplasticity-
associated factors and triggered neuroplasticity in stroke (Boyne et al., 
2020; Hill et al., 2023). Moreover, moderate-intensity exercise has also 
been recommended for improving cognitive and physical functioning 
in stroke and older adults (Dhir et al., 2021; Yang and Wang, 2021; Li 
et al., 2022; Maeneja et al., 2024). Exergames have been shown to equal 
physical activity of low to moderate intensity, depending on the 
content of the games (Peng et  al., 2011; Mat Rosly et  al., 2017). 
Considering this, we hypothesize that the intensity of the exergame 
intervention in this study was too low to trigger neuroplasticity, and 
consequently effects on cognitive and motor functions were little. 
We did not specifically measure intensity during our intervention; 
however, participants reported their motor-cognitive task load via 

perceived task difficulty and performance. These parameters may 
align with intensity and showed that participants were under-
challenged (Figures 6A,B). This was already the case in the feasibility 
study preceding this RCT (Huber et al., 2021), and we took actions in 
the further development of the PEMOCS concept to address this 
limitation (Huber et al., 2024b). It seems that the adaptions undertaken 
[namely, coupling motor and cognitive progression, and inclusion of 
more difficult motor tasks (Huber et al., 2024b)] did not increase 
intensity and task load sufficiently. One reason for this may be that 
these adaptions rather increased complexity of the tasks, instead of 
raising intensity (compare Section 4.3). Recent findings suggest that 
physical activity decreases with increased cognitive complexity in 
step-based exergames (Muller et  al., 2023). We present a possible 
solution in Section 4.8. Two further reasons for insufficient intensity 
may be related to limitations of the used exergaming device (compare 
Section 4.7, limitations 1 + 2).

4.6 Compliance, adherence, and safety

Compliance and adherence to the exergame intervention was 
high, which is in line with previous studies (Pacheco et al., 2020; Rüth 
et al., 2023; Tsurayya et al., 2023). The attrition rate was at the upper 
edge or higher compared to reported ranges (Cheok et  al., 2015; 
Taylor et al., 2018; Yoong et al., 2024), which may be attributed to 
different reasons in the two treatments groups. In the exergame group, 
several causally unrelated adverse events occurred, which hindered 
participants from further study participation. In the control group, 
some participants reported boredom or even discontent with the 
study, as they received no intervention and still had to be available for 
the phone calls and answer the same questions every week. Hence, 
withdrawals were unrelated to the exergame intervention, however, 
control groups should be planned differently in future studies. Finally, 
no causally related adverse events and few technical problems 
occurred, which is in line with previous exergame studies (Cheok 
et al., 2015; Pacheco et al., 2020; Prosperini et al., 2021; Rüth et al., 
2023; Yoong et al., 2024).

4.7 Strengths and limitations

Strengths of the presented study are the following. (1) 
We  implemented a concept-guided exergame intervention with a 
personalized progression and evidence-based rationales for all 
exercise variables (Huber et al., 2024b). (2) We used a customized and 
step-based exergame device with cognitively challenging games to 
be played in a standing position (Deutsch et al., 2019; Gallou-Guyot 
et al., 2020; Manser et al., 2024). (3) We assessed cognitive functions, 
dual-task ability, indoor and outdoor spatiotemporal gait parameters, 
which are outcomes that are yet under-investigated in exergame 
studies (Isha, 2019; Gallou-Guyot et al., 2020; Huber et al., 2022a). (4) 
The assessors in this study completed MoCA training certification 
before conducting assessments, which ensures high quality and 
validity of the assessment performance (mocacognition.com). 
However, there are also several limitations, which should 
be  considered. (1) Several motor-cognitive skill categories of the 
PEMOCS concept’s underlying taxonomy could not be  filled 
sufficiently due to limitations of the exergame device used. Especially 
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the skill-categories in the higher difficulty levels [see Section 2.4 and 
(Huber et al., 2024b)] contained only few or even no games, which led 
to limitations for participants moving in these higher levels. Most 
importantly, not all cognitive domains could be  targeted, and 
insufficient variability was provided in training sessions for these 
participants. This may be especially relevant for the presented study 
population as many participants presented mild residual impairments 
and may probably have profited from more difficult games and higher 
variability in the higher levels. (2) Due to a lack of resources for 
additional developmental work, many of the more complex and 
intense motor tasks of the intervention were only instructed verbally 
instead of being integrated into the game, so in-game feedback on 
their execution was missing. This is unfortunate in the light of 
literature describing that one advantage of exergames is multisensory 
feedback and higher enjoyment, which motivates the trainee for more 
exercise repetitions at a higher intensity (Sailer et al., 2017; Valenzuela 
et al., 2018). We had started the integration, e.g., a battery visually 
rewarded participants for dribbling in the according games [(Huber 
et  al., 2024b), Supplementary material S2], however, for future 
implementations of the PEMOCS concept, in-game feedback for all 
tasks should be provided. (3) Women were clearly underrepresented 
in our study, which limits the generalizability of our results to the 
general chronic stroke population. This is a known phenomenon in 
studies implementing exercise interventions in stroke (Li et al., 2022), 
also represented in comparable examples (Hung et al., 2017; Cikajlo 
et al., 2020; Lee and Bae, 2022; Sultan et al., 2023). A possible reason 
may be that women are on average older than men are, when they 
experience a stroke (Eriksson et al., 2021). Consequently, they are 
more severely impaired and less able to participate in exercise 
(Eriksson et al., 2021). (4) To calculate the gait variability index (GVI), 
values for step length and step time had to be estimated from other 
parameters, as they were not provided by the Gait Up system. For 
exact procedures, see Supplementary material S1.

4.8 Future directions

Appropriate schedules and settings for exergame training to improve 
cognitive functions, health-related quality of life, indoor and outdoor gait 
in chronic stroke should be further investigated in future high-quality 
trials. For such trials as well as an implementation in clinical practice, 
cost and time efforts of the intervention should be considered. A possible 
solution to increase the number of sessions per week would be  to 
implement a blended therapy approach, meaning that participants attend 
one or two supervised sessions per week in a study centre and perform 
further sessions at home with a telerehabilitation system (Baschung-
Pfister et al., 2021; Seinsche et al., 2022). This would combine close 
contact and supervision by the study / health professionals with reduced 
time expense and travel-time to the study centres while enabling a higher 
training frequency (Mehra et al., 2018). Such an intervention design may 
be more attractive for potential participants with limited time resources 
or ability to reach the study centres. It may thus help increase the 
recruitment rate of more severely impaired study participants. To 
increase the intensity of the exergame training and reduce the 
prioritization problem (compare Section 4.3), we suggest increasing 
game speed before progressing game complexity (Muller et al., 2023). 
Participants would then execute simpler tasks at a higher speed, which 
may increase the cardiovascular load and cognitive difficulty of the 

training. Additionally, in-game feedback / reward on all tasks should 
be  included to increase the motivation for proper task execution 
(compare Section 4.7, limitation 2). This would warrant adjusting the 
progression rules in the application of the PEMOCS concept (Huber 
et al., 2024b). Additionally, an objective performance parameter should 
be  included (Huber et  al., 2024b), which would enable automated 
progression and variability independent of a training supervisor. This 
would contribute to the self-reliant home-based sessions as well as help 
reducing the time efforts of the personal providing the intervention and 
therefore enable more patients to receive the intervention. Finally, to 
contribute to the on-going debate on the role of disease duration in 
chronic stroke survivors, a future study could investigate the effects of 
exergame training on cognitive functions in patients 6–24 months post-
stroke (Saa et al., 2021). In such a sample earlier post-stroke, the cognitive 
benefits of exergame training may be greater (Saa et al., 2021).

5 Conclusion

Concept-guided, personalized, motor-cognitive exergame 
training preserved global cognitive functioning in chronic stroke, 
while it showed no additional benefits compared to usual care only. 
The rate of responders was higher in the exergame group compared to 
the control group. Secondarily, significant beneficial effects were 
found on alertness, working memory, perceived mobility, as well as 
outdoor gait speed and swing width on the unaffected side. No 
potential characteristic of responders could be identified as responders 
and non-responders did not differ in terms of adherence to 
intervention, baseline value of the according outcome, or age. 
Therefore, the identification of responsive sub-populations remains 
subject to future research. Participants showed high adherence to the 
training and no related adverse events occurred. Reasons for the lack 
of significant findings may be a high-functioning study population in 
combination with an insufficient training load in terms of session 
frequency and intensity. Future studies may increase number of 
sessions per week by implementing a blended therapy approach, and 
intensity by adjusting training progression in the PEMOCS concept.
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