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Background: Abnormal interhemispheric functional connectivity is frequently 
reported in Parkinson’s disease (PD), but its structural basis remains unclear. This 
study aimed to investigate changes in interhemispheric functional, structural, 
and callosal connectivity, as well as their interrelationships, in PD patients.

Methods: The study included 57 PD patients and 50 healthy controls (HCs). 
Interhemispheric functional connectivity was evaluated using voxel mirrored 
homotopic connectivity (VMHC) derived from resting-state functional MRI, 
while structural connectivity was measured through homotopic cortical 
thickness covariance from T1-weighted MRI. The corpus callosum (CC), 
connecting bilateral regions with VMHC differences, was assessed using 
fractional anisotropy (FA) from diffusion MRI. Pearson’s correlation was used to 
evaluate the interrelationships among imaging data and their clinical relevance.

Results: Compared to HCs, PD patients showed reduced VMHC and 
interhemispheric structural connectivity in similar brain regions, displaying 
a positive correlation trend between these measures. The affected regions 
encompassed the bilateral sensorimotor cortices (precentral gyrus, postcentral 
gyrus, and paracentral lobule) and posterior cortical areas, including the superior 
parietal lobule, supramarginal gyrus, precuneus, middle occipital gyrus, fusiform 
gyrus, as well as the superior and middle temporal gyri. FA in the CC, connecting 
regions with reduced VMHC, was also lower in PD patients. Additionally, 
interhemispheric structural, functional, and callosal connectivity reductions 
were, respectively, related to cognitive impairment, motor dysfunctions, and 
disease duration in PD.

Conclusion: The study identified convergent reductions in interhemispheric 
functional, structural and callosal connectivity in PD patients, emphasizing the 
strong link between structural and functional brain abnormalities. Our findings 
may provide new insights into the pathophysiology of PD.
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Introduction

Parkinson’s disease (PD) is a prevalent neurodegenerative 
disorder, initially presenting with motor impairments on one side of 
the body, including tremor, rigidity, and bradykinesia (Cubo et al., 
2020; Jeong et al., 2022). PD patients may also experience lateralized 
non-motor symptoms, such as pain, visuospatial deficits, and language 
impairments (Steinbach et al., 2023). Asymmetry in these symptoms 
is associated with uneven pathological changes between the 
hemispheres, including nigrostriatal dopaminergic degeneration and 
α-synuclein accumulation (Riederer and Sian-Hulsmann, 2012; 
Riederer et al., 2018). Increasing evidence indicates that abnormal 
interhemispheric interactions resulting from asymmetric pathology 
significantly impact PD symptoms (Spagnolo et  al., 2013; Miller-
Patterson et al., 2018; Wu et al., 2020).

Multimodal MRI techniques enable the in vivo assessment of 
interhemispheric connectivity. For instance, Voxel mirrored 
homotopic connectivity (VMHC) from resting-state functional MRI 
quantifies functional connectivity between each voxel in one 
hemisphere and its mirrored counterpart (Zuo et al., 2010). Diffusion 
MRI assesses the microstructural integrity of the corpus callosum 
(CC), the main white matter commissure linking the hemispheres 
(Yuan et al., 2020). Structural connectivity can also be inferred from 
the covariance of cortical morphology in homotopic regions, 
reflecting synchronized plasticity, shared pathological changes and 
genetic influences (He et  al., 2007; Wang et  al., 2021a). In PD 
patients, previous VMHC studies have identified specific patterns of 
VMHC reductions linked to various motor and non-motor 
symptoms, including different motor subtypes, impulse control 
disorders, depression, and apathy, underscoring its clinical relevance 
in PD (Hu et al., 2015; Luo et al., 2015; Wu et al., 2020; Gan et al., 
2021; Zhang et  al., 2022). Additionally, reductions in the 
microstructural integrity, thickness, or volume of the CC have been 
reported in PD patients with postural instability and gait disorder, 
cognitive impairment, and hallucinations (Wei et  al., 2020; 
Amandola et al., 2022). Some studies have explored the relationship 
between VMHC changes and cortical thickness or gray matter 
asymmetry but found no evidence (Gan et al., 2021; Zhang et al., 
2022). In contrast, structural connectivity inferred from 
morphological covariance offers a more direct perspective. No 
previous studies have specifically examined changes in structural 
interhemispheric connectivity in PD, and it remains unclear whether 
changes in structural, functional, and callosal connectivity are 
related or independent. Simultaneous investigation of these 
multimodal changes may offer new insights into the structural and 
functional interplay in PD.

This study aimed to investigate changes in interhemispheric 
functional, structural and callosal connectivity in PD patients 
compared to healthy controls (HCs). First, VMHC was assessed 
between the two groups to identify alterations in interhemispheric 
functional connectivity in PD patients. Second, differences in 
interhemispheric structural connectivity were assessed by analyzing 
deviations in the cortical thickness covariance of homotopic vertices 
in PD patients relative to normative values from the HC group. Third, 
callosal connectivity differences were examined by comparing the 
fractional anisotropy (FA) of the CC connecting regions with reduced 
VMHC. We  hypothesized that PD patients would show similar 
reductions in both structural and functional interhemispheric 

connectivity and that the CC segments linking these regions would 
exhibit decreased FA in this population.

Methods

Participants

The study included 107 participants, comprising 57 individuals 
with PD and 50 HCs, who were demographically matched. PD 
patients were diagnosed by an experienced specialist at the Second 
Affiliated Hospital of Soochow University, following the criteria of the 
United Kingdom Parkinson’s Disease Society Brain Bank (Hughes 
et  al., 1992). Exclusion criteria included serious psychiatric or 
neurological disorders other than PD, cardiovascular or metabolic 
diseases, and cognitive impairment. PD symptoms, disease 
progression, and cognitive abilities were systematically assessed using 
the Unified Parkinson’s Disease Rating Scale motor section 
(UPDRS-III) (Fahn and Elton, 1987), Hoehn and Yahr staging (Hoehn 
and Yahr, 1967), and the MMSE (Folstein et al., 1975). Meanwhile, 
HCs without a family history of PD, or a history of neurological or 
psychiatric disorders were recruited through advertisements. The 
study received approval from the Medical Ethics Committee of the 
Second Affiliated Hospital of Soochow University. All participants 
provided written informed consent prior to participation.

MRI acquisition

Imaging was performed using a 3 T Philips Achieva scanner at 
Philips, Best, The Netherlands, equipped with a 32-channel head coil. 
To minimize head motion and dampen scanner noise, foam pads and 
earplugs were utilized. The MRI acquisition protocols included the 
following specifics: For T1-weighted MRI imaging, a fast field echo 
sequence was employed, capturing 155 sagittal slices with a repetition 
time (TR) of 7.1 ms, echo time (TE) of 3.5 ms, an 8° flip angle, and a 
field of view (FOV) of 220 × 220 mm2. The acquisition matrix was set 
to 220 × 199, with a reconstructed matrix of 352 × 352, and voxel 
dimensions of 0.63 × 0.63 × 1 mm3. Diffusion MRI incorporated one 
non-diffusion-weighted image (b = 0 s/mm2) and 16 diffusion-
weighted images (b = 1,000 s/mm2) using a single-shot echo-planar 
imaging sequence, specified with a TR of 6,000 ms, TE of 120 ms, a 
90° flip angle, FOV of 220 × 220 mm2, matrix size of 128 × 128, and 
voxel dimensions of 1.72 × 1.72 × 3 mm3. Additionally, resting-state 
functional MRI data were captured over 36 axial slices with TR/TE 
parameters of 2000/30 ms, a 90° flip angle, matrix size of 64 × 64, FOV 
of 220 × 220 mm2, and voxel dimensions of 3.4 × 3.4 × 4 mm3, totaling 
200 volumes.

To assess callosal connectivity associated with VMHC differences 
using probabilistic tractography, an additional cohort of 15 HCs aged 
60–71 years underwent scanning with T1-weighted and diffusion MRI 
images. This secondary dataset was acquired using a 3 T Siemens 
Prisma scanner in Erlangen, Germany, equipped with a 64-channel 
head and neck coil. The T1-weighted imaging followed a 
magnetization-prepared rapid-acquisition gradient echo sequence, set 
with a TR of 2,300 ms, TE of 2.34 ms, an inversion time of 900 ms, an 
8° flip angle, FOV of 256 × 256 mm2, matrix size of 256 × 256, and 
voxel dimensions of 1 × 1 × 1 mm3. DTI parameters included a 
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half-coverage Cartesian q-space grid sampling method with a radial 
grid size of 4, collecting 128 diffusion-weighted images and 18 
different b-values ranging from 0 to 3,000 s/mm2. Detailed DTI 
acquisition settings were TR of 3,900 ms, TE of 72 ms, a 90° flip angle, 
FOV of 220 × 220 mm2, and a matrix size of 110 × 110 with voxel 
dimensions of 2 × 2 × 2 mm3.

VMHC analysis

Resting-state functional MRI data were preprocessed using the 
Data Processing & Analysis for Brain Imaging (DPABI) software1 (Yan 
and Zang, 2010), run in MATLAB R2018b (MathWorks). The 
preprocessing protocol included: (1) discarding the first 10 volumes 
to allow for signal equilibration; (2) correcting for differences in slice 
acquisition timing; (3) realigning volumes to compensate for 
participant head movements; (4) co-registering each participant’s 
anatomical T1 images with their functional images; (5) segmenting 
the co-registered T1 images into gray and white matter and 
normalizing to the Montreal Neurological Institute (MNI) reference 
space; (6) applying the same spatial normalization parameters to the 
functional images; (7) smoothing the images using a Gaussian filter 
with a 6 mm full width at half maximum to increase signal-to-noise 
ratio; (8) applying a band-pass filter (0.01–0.1 Hz) to reduce the effect 
of low-frequency drifts and high-frequency physiological noise; and 
(9) removing confounding factors such as fluctuations related to white 
matter and cerebrospinal fluid, along with six parameters of head 
motion. Data from participants exhibiting more than 2 mm of 
translational or 2° of rotational head movement were excluded from 
further analysis. Additionally, the mean framewise displacement (FD) 
was calculated for each subject and used as a covariate in subsequent 
statistical analysis.

For VMHC analysis, a specialized symmetric T1 template was 
constructed. This involved averaging the spatially normalized T1 
images across all participants to form a mean T1 template. This mean 
template was then mirrored along the left–right axis and averaged 
again with its original to produce a symmetric T1 template tailored for 
this group. Each participant’s preprocessed functional MRI data was 
then aligned to this symmetrical template (Zuo et al., 2010). For each 
symmetrical voxel pair across hemispheres, Pearson’s correlation 
coefficients were calculated to quantify homotopic connectivity. These 
coefficients were subsequently transformed into z-scores using the 
Fisher Z transformation to facilitate more robust statistical comparison 
across subjects.

Homotopic structural connectivity analysis

T1-weighted MRI data preprocessing was executed using the 
Computational Anatomy Toolbox 122 (Li et al., 2020; Wang et al., 
2021a; Wang et al., 2021b). Initially, all DICOM images were converted 
to NIfTI format and carefully inspected for motion artifacts or other 
discrepancies. The preprocessing steps incorporated bias-field 

1 http://rfmri.org/dpabi

2 CAT12, http://dbm.neuro.uni-jena.de/cat12/.

correction to address inhomogeneities; segmentation of brain tissues 
into gray matter, white matter, and cerebrospinal fluid; followed by 
normalization using the Diffeomorphic Anatomical Registration 
Through Exponentiated Lie algebra algorithm to ensure accurate 
overlay with standard templates. Cortical thickness was quantified 
using a projection-based thickness analysis, after which cortical 
thickness maps were adapted to the 32 k Human Connectome Project 
standard mesh, ensuring accurate bilateral alignment for direct 
hemispheric comparison (Dahnke et al., 2013). These maps were then 
smoothed with a 15 mm full-width-at-half-maximum (FWHM) 
Gaussian kernel to prepare for further analyses.

The analysis of interhemispheric structural connectivity 
differences began by establishing a baseline structural connectivity 
map (PCCn) for the HC group. This was achieved by calculating 
Pearson’s correlation coefficients for cortical thickness across 
corresponding hemispheric regions (homotopic vertices). To assess 
the impact of disease on connectivity, the analysis was extended by 
incorporating a patient’s data into the HC group and recalculating the 
correlation coefficients, thus generating a modified connectivity map 
(PCCn + 1). The difference in connectivity, denoted as ΔPCCn 
(PCCn + 1  - PCCn), was then calculated. This difference typically 
exhibits a ‘volcano distribution’, characterized by tails that resemble 
those of a normal distribution. The statistical significance of changes 
in connectivity was determined using a Z-score formula: 

( ) ( )21 / 1
∆

=
− ∆ −

n

n

PCCz
PCC n

, where ΔPCCn is the deviation from the 

normative pattern, and n is the number of controls. Z-score maps were 
then tested against a null hypothesis of zero difference, with significant 
negative values indicating reduced structural connectivity between 
hemispheres in PD patients. Before these steps, potential confounding 
variables such as age and gender were statistically removed from the 
cortical thickness data to avoid biased results (Liu et al., 2016).

Callosal connectivity analysis

Diffusion MRI data were processed using the Functional MRI of 
the Brain’s Software Library.3 Initially, corrections were applied for 
head movements and distortions caused by eddy currents using FSL’s 
eddy correction tool. Non-cerebral elements were then removed from 
these corrected images employing FSL’s brain extraction tool. 
Following this, a fractional anisotropy (FA) map of each voxel was 
constructed by applying a tensor model with the DTIFIT function 
within FSL. The final step involved aligning the FA maps to the MNI 
standard space through a nonlinear registration process to ensure 
accurate anatomical alignment.

For the additional dataset, Diffusion MRI preprocessing mirrored 
the procedures outlined previously. Once preprocessing was complete, 
voxel-level fiber orientation distributions were calculated utilizing FSL’s 
Bedpostx utility. This data facilitated probabilistic tractography aimed 
at delineating the CC segments linking areas with notable VMHC 
disparities. Each hemisphere’s regions exhibiting significant VMHC 
differences were isolated to create distinct seed masks, initiating fiber 

3 FSL, accessible at https://fsl.fmrib.ox.ac.uk/fsl/.

https://doi.org/10.3389/fnagi.2025.1512130
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
http://rfmri.org/dpabi
http://dbm.neuro.uni-jena.de/cat12/
https://fsl.fmrib.ox.ac.uk/fsl/


Wang et al. 10.3389/fnagi.2025.1512130

Frontiers in Aging Neuroscience 04 frontiersin.org

tracking across the whole brain from these locations to generate 5,000 
streamline samples per voxel (Wang et al., 2017). Voxels containing at 
least one streamline were preserved. The tracts were transformed into 
MNI space and averaged across participants to generate a population-
based probability map of WM tracts. A threshold of p > 20% was 
applied to binarize the population-based probability map for each 
hemisphere separately. A union operation was applied to the tracts of 
the seed mask in each hemisphere, creating a binary image representing 
all possible tracts connected to the seed masks. An intersection 
operation with the CC mask from the JHU white matter atlas was then 
performed to identify the CC region connecting bilateral areas with 
VMHC differences. The mean FA of that CC region was extracted and 
compared between PD patients and matched HCs.

Statistical analysis

Statistical evaluations were performed using SPSS version 22.0 (SPSS 
Inc., Chicago, IL, United States). Demographic and clinical characteristics 
between PD patients and HCs were compared using independent t-tests 
for continuous data and chi-square tests for categorical data. A 
significance level was maintained at p < 0.05 for all tests.

VMHC disparities between groups were analyzed using a 
two-sample t-test on a voxel-by-voxel basis within the DPABI 
platform, adjusting for age, gender, and mean FD as nuisance 
variables. These analyses adhered to stringent criteria, reporting 
significance at a voxel height of p < 0.001 and a cluster significance of 
p < 0.05, applying Gaussian random field theory for correction.

Changes in homotopic structural connectivity in PD patients were 
examined using a one-sample t-test within the SPM12. The derived 
statistical maps underwent correction for multiple comparisons using 
a threshold-free cluster enhancement technique with 5,000 
permutations, setting family-wise error correction at p < 0.05.

Differences in mean FA within the CC segments linked with 
VMHC variations were quantitatively assessed using a two-sample 
t-test to contrast PD patients with HCs, with thresholds for 
significance also set at p < 0.05.

Additionally, Pearson’s correlation was used to evaluate the 
interrelationships among imaging data and their clinical relevance, 
such as disease duration, UPDRS-III scores, and MMSE scores. These 
correlations were considered statistically significant at p < 0.05.

Results

Demographic and clinical data

Details regarding demographic and clinical characteristics are 
shown in Table 1. There were no significant differences in age, gender, 
or education level between the two groups (p = 0.142, p = 0.373, and 
p = 0.328, respectively). However, the average MMSE scores were 
significantly lower in the PD group compared to the HCs (p < 0.001).

Decreased VMHC in PD

PD patients exhibited reduced VMHC in the bilateral 
sensorimotor regions, including the precentral and postcentral gyri, as 

well as the paracentral lobule. Additionally, reductions were observed 
in the posterior cortical areas, such as the superior parietal lobule, 
precuneus, supramarginal gyrus, middle occipital gyrus, and the 
superior and middle temporal gyri, as shown in Figure 1 and Table 2.

Decreased homotopic structural 
connectivity in PD

When compared to HCs, PD patients showed reduced homotopic 
structural connections within both the sensorimotor regions (precentral 
and postcentral gyri) and posterior brain regions, such as the superior 
and inferior parietal lobules, precuneus, supramarginal gyrus, middle 
occipital gyrus, and superior temporal gyrus (Figure 2; Table 3).

Decreased callosal connectivity in PD

When compared to HCs, PD patients showed FA reductions in the 
mid-posterior and posterior segments of the CC, which connect 
regions with VMHC reductions (Zheng et al., 2022), as shown in 
Figure 3 and Figure 4A.

Correlation analysis

In the PD group, a trend toward a positive correlation was 
observed between reductions in VMHC and homotopic structural 
connectivity (r = 0.251, p = 0.062). Significant negative correlations 
were found between VMHC values and UPDRS-III scores (r = −0.365, 
p = 0.006), between deviations in structural connectivity and MMSE 
scores (r = −0.310, p = 0.020), and FA in the mid-posterior and 
posterior CC and disease duration (r = −0.290, p = 0.028), as shown 
in Figure 4.

Discussion

This study used multimodal MRI to compare interhemispheric 
functional, structural, and callosal connectivity between PD 
patients and HCs. The key findings are as follows. First, PD patients 
exhibited similar reductions in VMHC and homotopic structural 

TABLE 1 Demographic and clinical data of the participants.

PD (n = 57) HCs (n = 50) P

Age (years) 61.68 ± 7.04 63.56 ± 5.92 0.142

Gender (male/female) (30/27) (22/28) 0.373

Education (years) 7.72 ± 3.78 8.46 ± 4.03 0.328

Disease duration (years) 3.25 ± 2.12

UPDRS III score 22.42 ± 12.79

H&Y 1.88 ± 0.62

MMSE score 27.67 ± 1.37 28.92 ± 1.14 0.001

LEED (mg) 392.97 ± 140.65

All continuous variables are given as mean (standard deviation). PD, Parkinson’s disease; 
HCs, healthy controls; UPDRS-III, Unified Parkinson’s Disease Rating Scale (motor section); 
H&Y, Hoehn and Yahr staging; MMSE, Mini-Mental State Examination; LEED, levodopa 
equivalent daily dose.
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connectivity compared to HCs, with a trend toward a positive 
correlation between these reductions. Second, PD patients had 
lower FA in the mid-posterior and posterior CC connecting the 
bilateral regions with VMHC reductions. Third, reduced 
interhemispheric functional, structural, and callosal connectivity 
were linked to motor dysfunction, cognitive decline, and disease 
duration in PD patients. These findings provide new insights into 
the strong relationship between structural and functional brain 
abnormalities in PD.

PD patients showed significantly reduced VMHC and homotopic 
structural connectivity in the precentral and postcentral gyri 
compared to HCs. This aligns with previous findings of decreased 
VMHC in similar cortical regions in PD (Hu et al., 2015; Luo et al., 
2015; Wu et al., 2020; Gan et al., 2021), and is supported by reports 
of gray matter atrophy and functional hypoactivity in these regions 
(Burciu et al., 2015; Li et al., 2020). The precentral gyrus, the primary 
motor cortex, controls voluntary motor movement on the 
contralateral side. Coordinated movements require balanced 
inhibitory and excitatory interactions between the bilateral primary 
motor cortices (Carson, 2005; Beaule et al., 2012). However, this 
balance may be disrupted in unilateral neurological conditions like 

amyotrophic lateral sclerosis, stroke, and PD (Karandreas et  al., 
2007; Gerges et  al., 2022; Steinbach et  al., 2023), manifesting as 
reduced interhemispheric connectivity. Furthermore, the unaffected 
hemisphere may exert heightened inhibitory influence over the 
affected hemisphere, further exacerbating this imbalance and 
potentially increasing the lateralization of motor impairments in PD 
(e.g., tremors, bradykinesia, and rigidity). Additionally, motor 
deficits, including mirror movements and impaired bilateral motor 
coordination, may also result from the reduced interhemispheric 
connectivity in PD (Spagnolo et  al., 2013). Furthermore, the 
postcentral gyrus, as the primary somatosensory cortex, processes 
sensory input from the contralateral side and integrates inputs for 
fine motor control. Interhemispheric interactions between the 
bilateral primary somatosensory cortices are essential for integrating 
somatosensory inputs from both sides of the body, facilitating 
precise movement (Borich et al., 2015; Tame et al., 2016). Sensory 
disturbances, such as haptic and proprioceptive deficits, are common 
in PD, and impaired sensorimotor integration may exacerbate motor 
symptoms (Konczak et al., 2009; Conte et al., 2013). Our findings 
suggest that reduced homotopic connectivity in sensory and motor 
cortices reflects impaired interhemispheric interactions, likely 
driven by unbalanced inhibitory and excitatory signals, contributing 
to PD sensorimotor deficits. This is further supported by the 
significant positive correlation between VMHC and UPDRS-III 
motor scores.

PD patients exhibited lower VMHC and homotopic structural 
connectivity in posterior cortical regions, including the superior and 
inferior parietal lobules, precuneus, supramarginal gyrus, lateral 
occipital gyrus, and superior temporal gyrus, compared to HCs. This 
finding aligns with previous studies showing significant posterior 
cortical atrophy, hypometabolism, and hypoperfusion in PD 
patients, particularly those with cognitive impairment and visual 
dysfunction (Wallin et al., 2007; Hosokai et al., 2009; Garcia-Diaz 
et al., 2018). The posterior cortical regions are primarily involved in 
visuospatial and visuo-perceptual functions. Previous studies have 
found decreased interhemispheric functional connectivity between 
bilateral posterior cortical regions in conditions involving cognitive 

FIGURE 1

Brain regions with reduced VMHC in PD patients compared to HCs. Results were reported with a height threshold of p < 0.001 and a cluster threshold 
of p < 0.05, using GRF correction. The color bar shows the T values for between-group contrasts.

TABLE 2 Brain regions showing decreased VMHC in patients with PD 
relative to HCs.

Regions MNI 
Coordinates

Peak 
t-score

No. 
Voxels

x y z

PostCG/PreCG/SPG/

PreCUN/SupraMG/ParaCG

±60 −12 30 −5.3079 768

STG/MTG ±57 −24 6 −4.5767 103

MOG/MTG ±39 −84 21 −5.1902 191

MOG ±30 −75 −24 −4.2651 75

PostCG, postcentral gyrus; PreCG, precentral gyrus; SPG, superior parietal gyrus; PreCUN, 
precuneus; SupraMG, supramarginal gyrus; ParaCG, paracentral_lobule; STG, superior 
temporal gyrus; MTG, middle temporal gyrus; MOG, middle occipital gyrus.
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impairment and visual deficits, such as Alzheimer’s disease, early 
blindness, and unilateral acute open globe injury (Hou et al., 2017; 
Li et  al., 2018; Luo et  al., 2018; Ye et  al., 2018). In PD patients, 
cognitive impairment and visual dysfunction are among the most 
frequently reported non-motor symptoms, with visual dysfunction 
being a significant predictor of dementia (Hamedani et al., 2020). 
Therefore, our findings of reduced VMHC and homotopic structural 

connectivity in posterior cortical regions may contribute to cognitive 
and visual impairments in PD patients by disrupting 
interhemispheric interactions, which may facilitate the lateralization 
and integration of these functions. The negative correlation between 
deviations in structural connectivity and MMSE scores further 
corroborates these findings.

Additionally, PD patients exhibited lower FA in the mid-posterior 
and posterior subregions of the CC that connect bilateral regions with 
VMHC reductions compared to HCs. This finding aligns with 
previous reports of reduced microstructural integrity, volume, and 
thickness of the CC in PD patients, with alterations in specific 
subsections associated with motor and non-motor symptoms such as 
postural instability, gait disorders, cognitive impairment, and 
hallucinations (Chan et al., 2014; Goldman et al., 2017; Bledsoe et al., 
2018; Zarkali et al., 2020). Notably, our findings primarily involved the 
splenium of the CC, which connects the bilateral parietal, temporal, 
and occipital cortices and plays a crucial role in the interhemispheric 
integration of cognitive and visual information (Raybaud, 2010; 
Blaauw and Meiners, 2020). For instance, Goldman et al. found that 
reduced splenium volume in the corpus callosum was associated with 
memory and visuospatial impairments in PD patients (Goldman et al., 
2017). Furthermore, macrostructural changes in the splenium have 
been observed in PD patients experiencing hallucinations compared 
to those without. Thus, reduced FA in this region may indicate 
cognitive and visual impairments in our PD cohort (Zarkali et al., 
2020). Thus, reduced FA in this region may indicate cognitive and 
visual impairments in our PD cohort. Our study identified a significant 
negative correlation between FA in the mid-posterior and posterior 
regions of CC and disease duration in PD patients, aligning with two 
previous longitudinal studies in early PD (Taylor et  al., 2018; 
Amandola et al., 2022). These findings suggest that degeneration of 
the callosal microstructure could serve as a potential biomarker for 
monitoring disease progression in PD.

Overall, this study identified convergent reductions in 
interhemispheric connectivity in PD patients compared to HCs 
using functional, structural, and diffusion MRI data. Our results 
build on previous studies demonstrating a close association between 

FIGURE 2

Brain regions with reduced homotopic structural connectivity in PD patients compared to HCs. The results were adjusted for multiple comparisons 
using TFCE. Statistical significance was set at p < 0.05 with family-wise error correction. The color bar displays the TFCE-corrected p-values.

TABLE 3 Brain regions showing decreased homotopic structural 
connectivity in patients with PD compared with HCs.

p- value Size (vertices) Overlap 
with regions 

of the DK 
atlas

Regions

0.00361 5,040 18% SPG

15% PostCG

15% PreCG

10% MOG

10% IPG

8% PreCUN

7% STG

6% SupraMG

5% bSTS

2% MTG

1% IC

0.01004 608 47% FG

35% LG

15% MOG

3% ParaHIPP

SPG, superior parietal gyrus; PreCG, precentral gyrus; PostCG, postcentral gyrus; MOG, 
middle occipital gyrus; IPG, inferior parietal gyrus; PreCUN, precuneus; STG, superior 
temporal gyrus; SupraMG, supramarginal gyrus; bSTS, banks of the superior temporal 
sulcus; MTG, middle temporal gyrus; IC, isthmus cingulate; FG, fusiform gyrus; LG, lingual 
gyrus; ParaHIPP, parahippocampal gyrus.
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structural and functional brain abnormalities in PD patients. For 
instance, previous research has shown that structural covariance, 
functional networks, and white matter networks share similar 

topological properties and organizational principles in PD, 
accompanied by reduced global information integration (Baggio 
et al., 2014; Koirala et al., 2019; Wang et al., 2021a). Previous studies 

FIGURE 3

The mid-posterior and posterior subregions of the corpus callosum connecting the bilateral regions showing significant VMHC reductions.

FIGURE 4

(A) Error bar plots showing FA in the mid-posterior and posterior subregions of the corpus callosum for PD patients and HCs. (B) Negative correlation 
between VMHC and UPDRS-III scores in PD patients. (C) Negative correlation between structural connectivity deviation and MMSE scores in PD 
patients. (D) Negative correlation between FA in the mid-posterior and posterior subregions of the corpus callosum and disease duration in PD 
patients. PD, Parkinson’s disease; HCs, healthy controls; FA, fractional anisotropy; UPDRS-III, The Unified Parkinson’s Disease Rating Scale motor 
section; VMHC, voxel mirrored homotopic connectivity; MMSE, Mini-Mental State Examination scores.
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have also found that the distribution of cortical atrophy depends on 
functional and white matter connectivity to the subcortical disease 
reservoir in PD (Yau et al., 2018). However, the relationship between 
changes in brain structure and function may not be one-to-one. The 
absence of significant correlations between callosal FA and changes 
in homotopic structural and functional connectivity suggests that 
alternative commissural connections, such as the anterior 
commissures and subcortical structures, may compensate for 
communication between the two hemispheres (Beaule et al., 2015; 
Yuan et al., 2020). The neural mechanisms underlying decreased 
interhemispheric connectivity in PD are unclear and may involve 
three types of pathological changes. First, PD is characterized by 
asymmetric degeneration of dopaminergic neurons in the substantia 
nigra pars compacta and dopaminergic denervation in the cortex, 
leading to different reorganizations of cortical function and structure 
in the two hemispheres (Riederer and Sian-Hulsmann, 2012; 
Riederer et  al., 2018). Second, the propagation of α-synuclein 
pathology differs between homotopic regions in the two 
hemispheres, resulting in uneven cortical atrophy and dysfunction 
(Borghammer, 2021). Third, direct callosal degeneration caused by 
α-synuclein aggregates or Wallerian degeneration may disrupt 
interhemispheric structural and functional connectivity in PD 
(O’Keeffe and Sullivan, 2018; Zhang et al., 2023). It is likely that a 
combination of subcortical, cortical, and transcallosal degeneration 
contributes to the reductions in interhemispheric connectivity in 
PD patients.

This study has several limitations. First, as a cross-sectional study, 
it does not reveal the dynamic profiles of interhemispheric connectivity 
changes in PD patients. Second, most PD patients in our study were on 
dopaminergic medications, and we cannot rule out the possibility that 
these medications influenced our results. Third, subgroup analysis was 
not possible due to the relatively small sample size. Fourth, due to the 
limited number of gradient directions in our DTI data, an additional 
dataset with a higher number of gradient directions was used for fiber 
tractography. Additionally, different multiple comparison methods 
were applied to the statistical analysis of functional and structural data, 
which could influence the results to some extent. Fifth, all 
interhemispheric connectivity analyses were based on unidirectional 
connectivity, preventing us from determining the excitatory or 
inhibitory nature of interhemispheric influences. Future analyses of 
interhemispheric effective connectivity using dynamic causal modeling 
are needed to address this issue further. Finally, we cannot determine 
whether changes in interhemispheric callosal connections are 
homotopic or heterotopic (Szczupak et al., 2023), despite conducting 
VMHC and structural connectivity analyses to infer homotopic 
connectivity between the hemispheres. Future studies are necessary to 
explore this issue further.

In conclusion, the study identified consistent reductions in 
interhemispheric functional, structural and callosal connectivity in 
PD patients, emphasizing the strong link between structural and 
functional brain abnormalities. Our findings may provide new 
insights into the pathophysiology of PD.
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