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Objective: This study aim to leverage advanced machine learning techniques

to develop and validate novel MRI imaging features and single nucleotide

polymorphism (SNP) gene data fusion methodologies to enhance the early

identification and diagnosis of Parkinson’s disease (PD).

Methods: We leveraged a comprehensive dataset from the Parkinson’s

Progression Markers Initiative (PPMI), which includes high-resolution

neuroimaging data, genetic single-nucleotide polymorphism (SNP) profiles,

and detailed clinical information from individuals with early-stage PD and

healthy controls. Two multi-modal fusion strategies were used: feature-level

fusion, where we employed a hybrid feature selection algorithm combining

Fisher discriminant analysis, an ensemble Lasso (EnLasso) method, and partial

least squares (PLS) regression to identify and integrate the most informative

features from neuroimaging and genetic data; and decision-level fusion,

where we developed an adaptive ensemble stacking (AE_Stacking) model to

synergistically integrate the predictions from multiple base classifiers trained on

individual modalities.

Results: The AE_Stacking model achieving the highest average balanced

accuracy of 95.36% and an area under the receiver operating characteristic

curve (AUC) of 0.974, significantly outperforming feature-level fusion and single-

modal models (p < 0.05). Furthermore, by analyzing the features selected across

multiple iterations of our models, we identified stable brain region features [lh 6r

(FD) and rh 46 (GI)] and key genetic markers (rs356181 and rs2736990 SNPs

within the SNCA gene region; rs213202 SNP within the VPS52 gene region),

highlighting their potential as reliable early diagnostic indicators for the disease.
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Conclusion: The AE_Stacking model, trained on MRI and genetic data,

demonstrates potential in distinguishing individuals with PD. Our findings

enhance understanding of the disease and advance us toward the goal of

precision medicine for neurodegenerative disorder.

KEYWORDS

Parkinson’s disease, imaging genomics, stable feature selection, multi-modal fusion,
machine learning

1 Introduction

Parkinson’s disease (PD) is marked by the degeneration of
dopamine-producing neurons in the substantia nigra, and the
accumulation of alpha-synuclein protein in the midbrain. While
PD is predominantly sporadic, genetic factors are increasingly
recognized in its development. Numerous studies highlight the
importance of genetics, identifying genes such as SNCA, LRRK2,
PINK1, and GBA, which are linked to both dominant and recessive
forms of inherited PD (Blauwendraat et al., 2020; Fernandez-
Santiago and Sharma, 2022; Tranchant, 2019). These genes play
crucial roles in maintaining cellular health, and disruptions can
lead to neurodegeneration, affecting symptoms, onset age, and
disease progression (Alfradique-Dunham et al., 2021; Chu et al.,
2009; Davis et al., 2016; Iwaki et al., 2019). Thus, monitoring gene
expression changes is vital for early diagnosis and prediction of PD.

The fusion of genetic and imaging data has emerged as
a promising approach to understanding the interplay between
genetic predispositions and brain structure in PD. Recent studies
have highlighted that combining genetic and neuroimaging
markers can significantly enhance predictive and diagnostic
accuracy for PD (Kim et al., 2017; van Nuenen et al., 2009;
Won et al., 2019; Won et al., 2020). For example, Kim et al.
utilized a linear regression model incorporating single nucleotide
polymorphism (SNP) genetic features and structural connectivity
data to predict clinical scores on the Movement Disorder Society-
Unified Parkinson’s Disease Rating Scale (MDS-UPDRS). Their
model demonstrated superior predictive performance, with a
correlation coefficient (between model prediction outcomes and
actual MDS-UPDRS score) of 0.788 (Kim et al., 2017). Won
et al. employed the Lasso algorithm to select key features from
structural connectivity and SNP genetic data, constructing a linear
regression model to predict Geriatric Depression Scale (GDS)
scores. This model exhibited a meaningful correlation (r = 0.749)
between predicted and actual GDS scores (Won et al., 2019).
Building on these findings, the same team applied sparse typical
correlation analysis to integrate imaging genetic features, achieving
a correlation of r = 0.5486 between predicted and actual ages at PD
onset (Won et al., 2020). These studied underscores the feasibility
of predicting disease onset by fusing multi-modal data.

For individual PD diagnosis, Xia et al. developed a clustered
evolutionary random neural network model to analyze fused
functional magnetic resonance imaging (fMRI) and SNP data. This
model achieved an impressive accuracy of 88.57% in identifying

PD patients and uncovered additional PD-related genes and brain
regions (Bi et al., 2021a). Lei et al. proposed a joint learning
framework based on MRI features using a multi-branch octave
convolutional neural network (FMOCNN) to diagnose PD in
gene-related cohorts. The accuracy of this method in identifying
individuals with genetic cohort PD (GenPD) and genetic mutation
but not PD cohort (GenUn) was 84.91% (Lei et al., 2022).
The fusion of multimodal information from images and genes
leverages complementary data, providing a more comprehensive
characterization of the pathological mechanisms of PD. This
integrated approach offers a new perspective for the diagnosis and
prediction of PD.

Machine learning (ML) techniques offer a robust method
for processing large and complex genome-wide SNP datasets
(Makarious et al., 2022; Szymczak et al., 2009). However,
analyzing genomic data poses significant challenges due to its
high-dimensional nature, where the number of features usually
far exceeds the number of samples. This high-dimensionality
engenders a plethora of redundant information, which would
lead to multicollinearity among the high-dimensional genetic
variables, complicating model training. This complexity can lead
to multicollinearity among key variables, complicating model
training. Limited sample sizes further increase the risk of
overfitting, even with regularization methods (Pudjihartono et al.,
2022). Overcoming the challenges of “curse of dimensionality” is
essential for developing accurate predictive models from genomic
data.

Our aim is to improve early PD identification by leveraging
features from high-dimensional imaging and genetic data. This
involves addressing differences between genetic and imaging data
to enable advanced multimodal integration. Firstly, we preprocess
MRI and SNP gene data separately and extract relevant features. We
then developed two multimodal data fusion methods, feature-level
and decision-level fusion, to fuse them. For feature-level fusion,
we employ a combined feature selection method called Fisher-
EnLasso-PLS, which enables collaborative analysis of multimodal
data, effectively reducing data complexity while more accurately
capturing key features associated with the disease. For decision-
level fusion, we develop an AE_Stacking model to enhance
the integration of image and genetic features. This approach
maintains the multidimensional and complex nature of diseases.
By integrating multiple data sources and models, it could enhance
prediction accuracy and robustness, minimizing potential error
from relying on a single data source or single model.
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2 Materials and methods

2.1 Participants

The data in this study accessed from the Parkinson’s
Progression Markers Initiative (PPMI) database,1 a multicenter
database that includes neuroimaging, gene data such as single-
nucleotide polymorphisms (SNP) and relevant clinical information
of various PD individuals and matched healthy controls. Inclusion
criteria for individuals of the early PD cohort were baseline
participants diagnosed with PD for two years or less, whose
DAT scans indicated a dopaminergic deficit, and who had not
commenced any medication. For the health controls (HC), they had
never been diagnosed with any major neurological disorder and
had no first-degree relatives with idiopathic PD.

2.1.1 Clinical neuropsychological assessments
Patients with PD were assessed using the Unified Parkinson’s

Disease Rating Scale (UPDRS) part III examination scale (range 0–
108), and Hoehn & Yahr scale (H&Y) stage I & II. For each subject,
several available clinical neuropsychological evaluation scales were
also used: the University of Pennsylvania Smell Identification Test
(UPSIT), Geriatric Depression Scale (GDS), Montreal Cognitive
Assessment (MOCA), and Scales for Outcomes in Parkinson’s
Disease—Autonomic Dysfunction (SCOPA-AUT).

2.1.2 SNP data acquisition
Subjects’ genotyping SNP information was collected on the

NeuroX genotyping chip (Ghani et al., 2015; Nalls et al., 2015).
The NeuroX array is an Illumina Infinium iSelect HD Custom
Genotyping array containing 267,607 Illumina standard contains
exonic variants and an additional 24,706 custom variants designed
for neurological disease studies. The content of the NeuroX is
available on the PPMI site.2

2.1.3 MRI acquisition
For data consistency, only 3T MRI scanner (SIEMENS

MAGNETOM Trio scanner) with high-resolution MPRAGE T1
sequence was chosen with the following parameters: repetition
time (TR) = 2300.0 ms, echo time (TE) = 3.0 ms, Inversion
time (TI) = 900.0 ms, flip angle = 9.0 degree, and slicing
thickness = 1.0 mm. Participants with missing images or incomplete
scans were excluded from the study. A total of 209 subjects (135 PD
patients and 74 HC) were final downloaded.

2.2 Data preprocessing

2.2.1 SNP data selection, cleaning, and quality
control

In this paper, genotyping data were collected from the PPMI
dataset for a total of 619 subjects, each containing 267,607
SNP loci. Quality control of SNP data was performed using
Plink v1.09 software and referring to the ENIGMA protocol

1 www.ppmi-info.org/dat

2 https://ida.loni.usc.edu/pages/access/geneticData.jsp

(Purcell et al., 2007; Thompson et al., 2022). The quality control of
SNP data included sample quality control and SNP locus quality
control, as follows:

Sample quality control: (1) sample detection rate detection;
(2) sex check; (3) sibling pair identification; (4) population
stratification;

Quality control: (1) minor allele frequency (MAF) < 1%; (2)
genotype call rate < 95%; (3) Hardy-Weinberg equilibrium (HWE)
test p < 10-6.

SNP loci that did not meet the criteria were excluded. After
rigorous quality control, a total of 532 subjects (367 PD patients
and 165 HC) were retained, each of which contained 48,414 high-
quality SNP locus information for use in subsequent experiments.

2.2.2 MRI data processing and feature extraction
A computational anatomy toolbox (CAT 12.7-r1727)3 based

on statistical parametric mapping software (SPM 12)4 was used to
preprocess the data, including voxel-based morphometry (VBM)
and surface-based morphometry (SBM) analysis (Supplementary
Figure S1). As a supplement to the VBM, the SBM allows the
calculation of multiple GM tissue features at varying scales
(Farokhian et al., 2017; Seiger et al., 2018). The standardized
structural processing pipeline includes head motion correction,
MR field inhomogeneity correction, brain extraction, automated
segmentation of GM, WM, and cerebrospinal fluid (CSF)
(WMH corrected), topological defect correction, cortical surface
reconstruction, and tessellation of the boundary between the
WM and cortical GM. Cortical morphological parameters
including cortical thickness (CT), surface area (SA), fractal
dimension (FD) and gyrification index (GI) were calculated
to quantify the local microstructural changes of brain GM
structure (Luders et al., 2006; Sandu et al., 2014; Wang et al.,
2021). Next, the template-based matching method was applied
to define regions of interest (ROIs) and to extract multiple
structural morphological parameters from ROIs. For this
study, spatially matching the GMV map with Brainnetome
atlas could determine the volume of the 246 subregions
(Fan et al., 2016). Cortical areas were defined by the high-
resolution Human Connectome Project multimodal parcellation
(HCP-MMP1.0) (Glasser et al., 2016). Mean cortical thickness,
surface area, thickness, fractal dimension and gyrification index
were extracted from 360 cortical parcels in the HCP-MPP1.0.
Finally, MRI data from 128 PD patients and 71 HC participants
were retained after image quality control. There were total
1686 (246+ 360× 4) extracted feature dimensions for each
participant.

2.2.3 SNP and MRI data merging
Samples with SNP genotype data were combined with samples

with MRI imaging data. The final sample with data from both
modalities consisted of 167 cases, including 113 early PD patients
and 54 HC healthy controls (Figure 1). All data collection was
approved by the relevant institutions, and participants signed a
written informed consent.

3 http://dbm.neuro.uni-jena.de/cat/

4 https://www.fil.ion.ucl.ac.uk/spm/
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FIGURE 1

Schematic overview of data screening. For T1 WI-MRI, a total of 209 subjects were downloaded from the PPMI database, including 135 individuals
with Parkinson’s disease (PD) and 74 health controls (HC). The images underwent preprocessing steps including segmentation and normalization,
and were final registered to the MNI standard brain space. Following image quality control procedures, 7 PD subjects and 3 HC were excluded due
to poor registration results. Ultimately, 128 PD and 71 HC subjects were retained for region of interest (ROI) definition and multidimensional MRI
feature extraction. For genetic data, 619 subjects were downloaded from the PPMI database, including 383 PD and 178 HC, with 58 subjects’
phenotypes were missing. Firstly, based on the multi-dimensional scaling (MDS) protocol, 16 PD and 13 HC were excluded due to anomalies in the
phenotype data. Subsequently, quality control was performed on the SNP sites, resulting in the exclusion of 219,193 SNPs that did not meet the
quality criteria. Finally, a total of 167 subjects had both modalities of data, consisting of 113 PD patients and 54 HC, with each subject contributing
1,686 MRI features and 48,414 high-quality SNP data.

2.3 Feature selection

A novel hybrid feature selection method (Fisher-EnLasso-
PLS), which integrates Fisher discriminant analysis, lasso-based
integrated stable feature selection algorithm and partial least
squares (PLS) algorithm, was designed to optimize the feature
selection process in high-dimensional imaging genetics data
through phased refined feature screening strategy. Fisher
discriminant analysis initially selects features that enhance
class distinction, the Lasso-based algorithm selects robust features
via sparsity, and the PLS algorithm captures the relationships
between features and the response variable. By combining these
techniques, this hybrid feature selection method could not only
reduces dimensionality but also extracts essential information

while minimizing the risk of model overfitting. The method is
detailed below:

Firstly, Fisher discriminant analysis is employed to initially
filter out irrelevant features. This method is efficient and
computationally simple, demonstrating strong performance in
high-dimensional gene feature selection (Sun et al., 2019; Zhang
et al., 2021). A higher Fisher score indicates a feature’s capacity to
differentiate between PD and HC samples.

Following this initial filtration, the number of candidate
features is reduced to a more manageable level. However, it
is important to note that Fisher’s method primarily emphasizes
feature correlation and does not account for redundancy or
interaction among features. To address this limitation, the
ensemble Lasso (EnLasso) algorithm is applied next. EnLasso
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leverages data perturbation and ensemble learning to synthesize
results from multiple training subsets, thus enhancing the accuracy
and robustness of feature selection (Wang et al., 2022). Specifically,
using stratified tenfold cross-validation, 90% of the training
samples are selected and subsequently balanced through the
SVM-SMOTE resampling method, which alleviates inaccuracies
in feature selection stemming from class imbalances. The SVM-
SMOTE method integrates the principles of SVM with synthetic
data generation techniques; it leverages SVM to identify the
boundary samples of the training set—support vectors—and
performs adaptive interpolation within the kernel space on
these support vectors to generate new samples, which has good
performance in non-linear and high-dimensional data scenarios.
The Lasso algorithm is then applied to these subsets, with
training sample perturbations enhancing the stability of feature
selection results. This process is repeated 10 times to produce
M candidate feature subsetsSi (1 ≤ i ≤ M). An ensemble strategy
then amalgamates these subsets by comprehensively assessing both
feature occurrence frequency (FSq) and assigned weights (FSw),
resulting in an importance score (IS) for each feature, calculated
using the following formula:

FSq(f ) =
1
M

M∑
m=1

1
{
f ∈ S(Di)

}
(1)

where S(Di) =
{
f : ω(i)

f 6= 0
}

was defined as all the selected
features performed by the feature selection algorithm on the th i
sampled training subset Di. When the feature was selected, it was
assigned 1, otherwise it was 0. FSq metric quantifies the consistency
with which a feature is selected across multiple iterations of
the feature selection algorithm when applied to various training
subsets. The higher the FSq, the stronger the stability of the feature
itself.

FSw(f ) =
1
M

M∑
m=1

ω
Di
f (2)

Where ω
Di
f represented the weight assigned to the feature f when

performing the feature selection algorithm on the th i sampled
training subset Di. FSw reflectes the feature’s contribution to
accurately identifying the target variable. Features with higher
weights are more influential in distinguishing between classes,
thereby enhancing the model’s classification performance.

IS(f ) =
1
2
(
FSq + FSw

)
(3)

By integrating FSq and FSw, we calculated the IS, which is a
composite measure that encapsulates both the frequency of feature
occurrence and the weights assigned to them. The IS ensures
that the selected features are not only consistently chosen across
different iterations but also have a substantialcontribuation on
the model’s predictive capabilities. By sorting the features in
descending order based on their IS values, a new ranked list of
features is generated, from which the top-k features are selected
using a forward search strategy.

In the final stage, to account for feature interaction, the PLS
algorithm was employed for further dimensionality reduction,
extracting principal components most pertinent to PD. Unlike
PCA, which is an unsupervised method that considers only the
characteristic variable data, PLS maximizes covariance between

independent and dependent variables. It combines principal
component analysis, correlation analysis, and regression not only
addresses feature interactions to eliminate correlations among the
data but also incorporates label vectors, effectively preserving key
information related to the target task (Li et al., 2008).

2.4 Feature fusion

There are two kinds of feature fusion methods: feature level
and decision level.

2.4.1 Feature level fusion
Feature-level multimodal fusion combines features from

different modalities into a new matrix for joint feature selection
and model training. This study merged genetic and MRI image
features into a 50,100-dimensional matrix. To facilitate feature
selection from this high-dimensional sparse data, we devised two
optimization strategies, shown in Figure 2.

1. Fusion1

The first strategy employs the Fisher-EnLasso-PLS algorithm,
as detailed in the Feature Selection section, for joint feature
selection on the fusion matrix. Subsequently, model training is
conducted to develop a multimodal fusion classification model,
referred to as Fusion1.

1. Fusion2

Given the inherent differences between genetic and MRI
modalities in characterizing Parkinson’s disease (PD), feature
variable groups exist within the multimodal feature matrix.
Traditional Lasso, which relies on l1 regularization, focuses solely
on penalizing individual feature variables and overlooks group
effects, thus limiting its efficacy in multimodal joint feature
selection. To address this limitation, we replaced the Lasso method
in Fusion1 with the Sparse Group Lasso (sgLasso) algorithm. This
method incorporates both l1 and l2 constraints, addressing inter-
group and intra-group sparsity, thus refining the joint feature
matrix and isolating a higher quality feature subset (Simon et al.,
2013).

(β)sgLasso = arg min
β

1
2

∣∣∣∣∣y−
L∑
l=1

X(l)β(l)

∣∣∣∣∣
2

2

+ λ1

L∑
l=1

∣∣∣β(l)
∣∣∣
2
+ λ2 |β|1

(4)
Among them, parameter λ1 is used to adjust the inter-group
sparsity, and parameter λ2 is used to adjust the intra-group sparsity.

The sgLasso method was incorporated into the hybrid feature
selection process named Fisher-EnsgLasso-PLS, and forming a new
feature fusion strategy referred to as Fusion2.

2.4.2 Decision level fusion
The decision-level multimodal fusion method trains each

modality separately to create N base classification models, then
use ensemble learning to combine their predictions for a final
result. The Stacking ensemble approach, ground in the principle of
“collective intelligence” (Naimi and Balzer, 2018), merges outputs
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FIGURE 2

Framework of the fusion method of SNPs and MRI features based on feature level.

from diverse models using a meta-learner, enhancing classification
accuracy and robustness beyond individual models. However,
the choice of primary base classifiers is often subjective and
not automated. We introduced an Adaptive-Selection-Enhanced
Stacking ensemble learning framework (AE_Stacking), depicted
in Figure 3. This framework adaptively selectsM (M ≤ N)top-
performing models from Nbase models and assigns weights based
on their initial performance (see the GitHub repository).5 This
enhances model diversity and representation, boosting overall
integration performance. The implementation process is as follows:

2.4.2.1 Step 1: data division

The training data is denoted as Tr , and the test data
as Te. Training set samples are divided into K subsets
Tr {Tr1,Tr2, ...,Trk} via K-fold cross-validation. The first-layer
base classifiers are represented as Clayer1 {C1, C2,..., CN}, and the
second-layer meta-learner model as Clayer 2;

2.4.2.2 Step 2: training first-layer base classifiers

Each base classifier Ci is trained using K-1 folds, making
predictions on the remaining fold to obtain predicted probability
values for each model.

2.4.2.3 Step 3: adaptive selection and boosting

The balanced accuracy Baccik for each base classifier is
calculated on K-fold training samples. Base models with Bacc
exceeding a predefined threshold τ are selected as the first-layer

5 https://github.com/yyflib/Multimodal-ensemble-learning

base learners.

Bacc =
1
2

(
TP

TP + FN
+

TN
TN + FP

)
(5)

_
Ci=

{
Ci, Bacci > 1

N
∑N

i=1

(
1
K
∑K

k=1 Bacc
i
k

)
reject, otherwise

(6)

where TP, TN, FP, and FN correspond to true positives, true
negatives, false positives, and false negatives, respectively.

The prediction probability scores of the selectedM base models
on the training samples Trkare concatenated to obtain initial
prediction results P

{
p1, p2, ..., pM

}
. Additionally, weights λifor the

selected base learner are computed according to their Baccik:

µi
=

1
M

M∑
i=1

Baccik (7)

λi
= −

1
M
•

1(
1− 1

(µi)2

) (8)

The weight parameter λi fine-tunes each base learner, enhancing
integration performance.

2.4.2.4 Step 4: meta-learner training and prediction

The weighted initial predictions from Step 3(
P
{
p1, p2, ..., pM

})
serve as inputs for training the second-

layer learner. Each base learner makes K predictions on the test set
Te during the first-layer.

The initial prediction result for each base learner
(Q
{
q1, q2, ..., qM

}
) is obtained by weighted averaging the K
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FIGURE 3

Framework of adaptive-selection-enhanced stacking ensemble learning (AE_Stacking).

test results, which is then multiplied by λi to form the new test set
for the meta-learner model. The meta-learner’s performance on
this new test set determines the final results.

2.5 Modeling and evaluation

In this study, we employed eight well-established ML
classification algorithms: Logistic regression (LR), Support Vector
Machine (SVM), multilayer perceptron (MLP), Adaptive Boosting

(AdaBoost), Random forest (RF), Gradient boosting decision tree
(GBDT), Extreme gradient boosting (XGBoost) and Light gradient
boosting machine (LightGBM). These algorithms were utilized to
develop binary classification models for differentiating between PD
and HC, followed by a comparative analysis of their performance.

2.5.1 Modeling
To evaluate the efficacy of multimodal fusion of SNPs and MRI

data in enhancing PD classification performance, we implemented
two distinct strategies:
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2.5.1.1 Strategy 1: feature-level multimodal fusion
classification

We compared the classification performance of three different
input models—MRI, SNP, and their combination—using eight
classifiers. For the fusion of MRI and SNP features, we evaluated
Fusion1 and Fusion2 method. Hyperparameter optimization
ranges for each classifier are in Supplementary Table S1, with tuning
done via nested five-fold cross-validation and grid search.

2.5.1.2 Strategy 2: decision-level multimodal
fusion classification

In this strategy, the aforementioned eight classifiers served
as candidate base classifiers within our proposed AE_Stacking
framework. This framework automatically selects the optimal base
classifier for ensemble combination and feature enhancement.
A simple logistic regression model was employed as the meta-
learner to mitigate the risk of overfitting. To demonstrate the
superiority of decision-level multimodal fusion of imaging
and genetic features, we conducted several comparative
experiments: (1) comparison against single-modality single-
classifier performance; (2) comparison with single-modality
multi-classifier performance, where the ensemble model’s input
consisted solely of single-modality features, assessing performance
solely based on multi-classifier fusion; and (3) comparison with the
feature-level fusion model.

2.5.2 Evaluation
The dataset was hierarchically divided into training, validation,

and testing sets at a ratio of 8:1:1. To ensure fairness and address
the limitations of sample size, the data was randomly shuffled,
and the above steps were repeated ten times, resulting in ten
distinct sets of training, validation, and test sets. The training
set was used for model training, the validation set for optimal
feature subset determination and hyperparameter tuning, and the
test set for recording the balanced accuracy (Bacc), sensitivity
(Sen), specificity (Spe), G-mean, F1-score, and AUC values
as classification performance metrics. The mean and standard
deviation (mean ± SD) of the results from ten runs were reported
for performance comparison between models.

2.6 Statistical analysis

SPSS (IBM SPSS 26.0, SPSS Inc.) software was used for
statistical analyses. For the comparison of demographic variables,
the chi-square test (χ2-test) was used to assess the differences in
sex and t test was performed for comparisons of age. The Mann–
Whitney U test was used to compare non-normally distributed
data. All statistical tests were two-tailed, and p < 0.05 was
considered significant.

3 Results

3.1 Clinical information

The demographic, clinical, and neuropsychological
characteristics of 113 patients with PD and 54 HC are summarized

TABLE 1 Demographics, clinical and neuropsychological characteristics
of study participants.

PD
(n = 113)

HC
(n = 54)

p-value

Sex (male/female) 66/47 33/21 0.626

Age (years) 61.02± 8.74 62.23± 8.05 0.345

Education level (years) 15.41± 3.02 15.37± 2.97 0.859

Hoehn & Yahr 1.61± 0.49 N/A –

MDS-UPDRS-III 21.04± 9.00 0.50± 1.27 <0.001**

UPSIT 22.13± 8.61 33.30± 4.71 <0.001**

GDS 4.60± 1.78 4.77± 1.82 0.479

MoCA 27.71± 2.02 28.24± 1.09 0.304

SCOPA-AUT 9.62± 6.67 6.24± 4.58 <0.001**

Data are presented as means (standard deviation). PD, Parkinson’s disease; HC, health
control; MDS-UPDRS-III, Part three of the Unified Parkinson Disease Rating Scale;
UPSIT, University of Pennsylvania Smell Identification Test; MoCA, Montreal Cognitive
Assessment; GDS, the Geriatric Depression Scaled; SCOPA-AUT, the Scales for Outcomes
in PD Autonomic; χ2-test was performed for comparisons of sex; t test was performed for
comparisons of age; Mann-Whitney U test was applied to compare non-normal distribution
data; **p < 0.001; *p < 0.05.

in Table 1. The groups exhibited no significant differences in age,
sex, or education level (p > 0.05). Significant differences in clinical
non-motor symptoms were observed in the MDS-UPDRS-III,
UPSIT, and SCOPA-AUT scales (p < 0.0001) across all PD and HC
participants.

3.2 Classification performance of SNP

This study first evaluated the classification performance for
PD using single-modality SNP genotype data, and validated
the efficacy of the Fisher-EnLasso-PLS feature selection method
through ablation studies. The integration of genetic and imaging
data risks reducing sample size and introducing bias. To address
this, experiments were conducted on a dataset comprising 532
subjects (367 PD patients and 165 healthy controls). A linear kernel
SVM with L1 regularization was trained, validated, and tested on
the selected features. Table 2 presents the average classification
performance and the optimal number of features derived from ten
experimental runs per method.

The Fisher-EnLasso-PLS hybrid feature selection method
demonstrated superior performance, achieving the highest
accuracy with fewer features. It attained an average balanced
accuracy (Bacc) of 94.54%. The EnLasso stage, following Fisher
selection, effectively eliminated redundancies and reduced
dimensionality, while EnLasso alone only marginally improved
performance, increasing average Bacc by 0.98% compared to the
Fisher-only method.

In comparisons between Fisher-PCA and Fisher-PLS, the
classification performance was inferior to the Fisher-EnLasso-PCA
and Fisher-EnLasso-PLS techniques, underscoring the EnLasso
algorithm’s efficacy in removing unnecessary complex features.
Moreover, PLS proved more effective than PCA in dimensionality
reduction. The Fisher-EnLasso-PLS algorithm, utilizing cascaded
PLS, achieved a 2.93% higher average accuracy than Fisher-
EnLasso-PCA with cascaded PCA, along with a narrower standard
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TABLE 2 Ablation comparison experiments.

Feature selection method Average number of features Bacc G-mean F1

Fisher 313 86.55± 6.62 85.95± 6.99 82.79± 8.11

Fisher-EnLasso 259 87.53± 6.11 87.07± 6.22 83.84± 7.02

Fisher-PCA 46 89.63± 5.44 89.45± 4.85 85.83± 7.49

Fisher-PLS 16 90.05± 4.76 90.00± 5.45 85.18± 6.78

Fisher-EnLasso-PCA 27 91.61± 3.40 91.41± 3.60 89.04± 3.98

Fisher-EnLasso-PLS 9 94.54± 2.17 94.50± 2.20 92.36± 2.40

deviation. To illustrate performance differences, PCA and PLS were
used to reduce the feature space to two dimensions after Fisher-
EnLasso selection, visualizing data distribution and SVM (linear
kernel, l1 = 0.01) decision boundaries in the initial experiment.
Figure 4 shows that PLS-extracted principal components more
effectively distinguished between positive and negative samples
than PCA.

3.3 Classification performance of SNP
and MRI fusion

3.3.1 Feature-level fusion classification outcomes
The effectiveness of classification using feature-level integration

of SNP and MRI data is detailed in Table 3. Key findings
include: (i) Single SNP features consistently exhibited superior
classification capability compared to MRI imaging features;
(ii) The Fusion2 method generally achieved higher accuracy
than Fusion1, surpassing the best performance of individual
modalities. For instance, Fusion2’s accuracy, combining image
and genetic data, exceeded the top-performing MLP model by
8.49% for MRI features and by 1.8% for SNP features; (iii)
Multimodal fusion did not universally outperform unimodal
approaches. Specifically, the SNP-based model outperformed
multimodal fusion when using RF, AdaBoost, and GBDT
classifiers, potentially due to suboptimal “learning” of MRI
features, which could introduce noise and diminish classifier
performance.

3.3.2 Decision-level fusion classification results
To demonstrate the effectiveness of decision-level fusion

with the AE_Stacking technique for integrating image and
genetic features, ablation studies were conducted. This method
was benchmarked against the best single-modal model with
one classifier, single-modal models with multiple classifiers, and
feature-level fusion models. As shown in Table 3, MLP emerged
as the top performer for both unimodal and feature-level fusion,
serving as the primary benchmark. We also tested the single-modal
multi-classifier approach by inputting each modality’s features
into AE_Stacking and adjusting the multi-classifier configuration.
Additionally, we evaluated a model trained on a multimodal
feature matrix with feature-level fusion as input to AE_Stacking.
The data in Table 4 revealed that the AE_Stacking decision-
level fusion achieved the highest average balanced accuracy,
sensitivity, G-mean, and F1 scores-95.36, 94.36, 95.30, and 93.41%,
respectively, surpassing feature-level fusion (p < 0.05). Moreover,

AE_Stacking models with integrated multi-classifiers consistently
delivered improved classification outcomes, characterized by a
high mean and a reduced standard deviation (p < 0.05), when
compared to single classifier models, irrespective of whether
unimodal or feature-level multimodal fusion was utilized. This
underscores both the efficacy and stability of the proposed
strategy.

Figure 5 presents the ROC curves and AUC metrics for each
model, with 95% confidence intervals indicated in parentheses. The
AE_Stacking-based multimodal fusion model notably achieved the
highest AUC of 0.974, with a 95% confidence interval spanning
from 0.93 to 1.00.

3.4 Cerebral regions and genetic markers
associated with PD

The weights of each feature in ten experiments were averaged
and then ranked in descending order to determine their relative
contributions for PD. For MRI image features, we identified
the top 10 ranked brain regions in each method. Due to the
high dimensionality of the genetic data, we reported the top 30
ranked SNP loci. Figure 6 illustrates the Venn diagrams of brain
regions and genes identified as the best features by unimodal and
multimodal methods.

Among MRI features, the FD feature corresponding to the
6r brain region in the left cerebral cortex [lh 6r (FD)], the GI
feature corresponding to the 46 brain region on the right [rh 46
(GI)], and the right posterior inferotemporal region [rh PIT (GI)]
consistently appeared in the top 10 features across all three sets of
experiments. This indicates that they are the most stable imaging
features with strong discriminative power for PD in MRI modality.
The location of the these three regions in the brain were shown in
Supplementary Figure S2. Compared to the HC group, the lh 6r
(FD) feature showed a significant increase in the PD group, while
the rh 46 (GI) and rh PIT (GI) features exhibited significant atrophy
(Figures 7A–C).

For SNP loci, we referenced the international 1,000 genomes
project (1,000 genomes) for gene annotation of the stable SNP
loci ranked in the top 30 and reviewed relevant literature. As
shown in Table 5, the SNPs with high discriminatory power
were mainly located in the SNCA gene, the coding region of
the VPS52 gene, and the SLC14A1 gene, all of which have been
confirmed to be associated with PD. These SNPs demonstrated
statistically significant differences between the PD and HC
groups (Figures 7D–P).
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FIGURE 4

Visualization of the data (training set) distribution after Fisher-EnLasso feature selection. (A) The visualization result using the PCA algorithm. (B) The
visualization result using the PLS algorithm; decision dividers are plotted based on the SVM model. "0" indicates PD patient samples; "1 " denotes HC
control samples.

TABLE 3 Classification performance based on multi-modal fusion features and single-modal features.

Classifier MRI SNP Fusion1 Fusion2

LR 78.72± 8.71 87.15± 5.51 85.84± 5.11 87.72± 4.39

SVM 80.68± 11.36 85.51± 9.33 84.93± 8.89 89.13± 7.56

RF 70.64± 11.63 87.00± 8.86 78.77± 10.68 72.92± 9.77

MLP 83.60± 7.04 90.29± 6.48 89.64± 5.57 92.09± 3.91

AdaBoost 74.19± 9.59 85.67± 9.67 73.43± 8.37 76.40± 7.09

GBDT 72.08± 7.01 84.29± 8.41 73.93± 8.50 76.57± 8.21

XGBoost 81.31± 10.79 87.27± 6.82 85.18± 6.76 88.73± 5.79

LightGBM 78.04± 10.77 84.48± 5.41 83.54± 8.48 85.57± 4.54

The values in bold represent the best mean accuracy achieved in each feature fusion model.

TABLE 4 Classification performance based on decision-level fusion.

MRI SNP Fusion2 MRI+SNP

MLP AE_Stacking MLP AE_Stacking MLP AE_Stacking MLP AE_Stacking

Bacc 83.88± 9.30 85.27± 5.66 90.29± 6.48 91.09± 6.15 92.09± 5.80 93.27± 5.57 – 95.36± 4.77

Sen 78.67± 20.50 76.00± 14.97 84.36± 13.73 84.00± 13.63 86.00± 12.72 92.00± 9.80 – 94.36± 7.37

Spe 89.09± 10.60 94.55± 9.92 97.35± 3.50 96.36± 6.80 98.18± 3.64 94.55± 7.27 – 96.36± 3.40

G-mean 82.19± 12.91 84.48± 7.15 90.29± 7.95 89.71± 7.41 91.55± 6.14 93.03± 5.95 – 95.30± 4.45

F1 77.05± 6.18 80.45± 4.45 88.23± 9.36 87.43± 8.64 90.14± 8.30 90.44± 6.37 – 93.41± 4.81

4 Discussion

The purpose of this study is to establish a multi-modal

fusion learning model that enhances the diagnostic capabilities

for PD by integrating MRI image data and genetic information.

Our findings indicate that the decision-level fusion model

(AE_Stacking) achieved the highest accuracy (95.36%) and AUC

(0.974) in identifying PD, significantly outperforming models based

solely on imaging or genetic data. Furthermore, the decision-
level fusion model demonstrated superior performance compared
to feature-level fusion models. By analyzing the latent features
extracted by the model, we identified risk factors highly correlated
with the disease, providing new insights into PD diagnosis.

Numerous studies have utilized ML or deep learning algorithms
to investigate the value of various data modalities in PD
diagnosis, such as clinical assessment scales (Araújo et al.,
2023; Vitorio et al., 2023), electroencephalographic monitoring
(Nour et al., 2023; Suuronen et al., 2023), cerebrospinal fluid
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FIGURE 5

ROC curves for each model.

FIGURE 6

Venn diagram of optimal features. (A) the optimal MRI image feature. “lh” represented regions located in the left cerebral cortex, while “rh”
represented regions located in the right cerebral cortex. The characters in parentheses indicated the feature parameter index for each brain region.
For detailed information on brain anatomy and definitions of brain regions, it could refer to websites http://www.brainnetome.org/ and
http://www.humanconnectome.org/; (B) the optimal SNPs gene features.

biomarker detection (Höglinger et al., 2024; Tsukita et al.,
2023), neuroimaging, and genetic testing. However, clinical
assessment scales are often subjective, lacking adequate sensitivity
and specificity; cerebrospinal fluid collection is invasive; and

electroencephalographic monitoring is heavily influenced by
individual variability, struggling to reflect changes in deeper brain
regions. Consequently, these methods face considerable challenges
in early PD screening. Imaging genomics represents an emerging
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FIGURE 7

Distribution plot of inter-group differences in the optimal stable features. (A–C) The optimal MRI image feature.Compared to the HC group, the lh
6r(FD) feature showed a significant increase in the PD group, while the rh 46(GI) and rh PIT(GI) features both exhibited significant atrophy; (D–P) the
optimal SNPs features. All of these SNPs showed statistically significant differences between the PD group and the HC group.

field in data science. Neuroimaging genomics enable the integrated
analysis of brain imaging and genomic data, providing new insights
into brain phenotypes, genetic, and molecular characteristics and
their influence on both normal and disordered brain functions
and behaviors. For example, the G/A polymorphism may cause
more extensive brain white matter damage in PD (Yu et al.,
2022). Early-onset Parkinson’s disease with atypical molecular
imaging abnormalities in a patient carrying the de novo PRKCG
mutation (Chen et al., 2022). Key genetic signatures of large-scale
PD pathology have contributed to focal neuronal vulnerability to
disease progression (Basaia et al., 2022). Therefore, exploring the
underlying causes of PD from the source can provide more reliable
and accurate foundations for PD diagnosis.

Effectively mining the associative information between imaging
and genetic data poses a considerable challenge. Unlike the work
of Bi et al. (2021a,b), they used correlations of gene and brain
functional information from fMRI as model inputs. Although high

accuracy rates (88.57%) were achieved, solely relying on fused
features risked obscuring unique modality-specific information,
potentially diminishing the model’s overall performance by not
fully leveraging the distinct contributions of each data type.
To overcome these limitations, we developed and compared
two fusion methods: feature-level and decision-level fusion. As
shown in Table 4 and Figure 5, compared with the feature-
level fusion method, the model using the designed AE_Stacking
ensemble learning method for decision-level fusion achieved the
highest classification accuracy (95.36%) and AUC value [0.974
(95%CI: 0.93–1.00]. In the feature-level fusion approach, the
direct concatenation of SNP features with MRI features fails to
facilitate meaningful interaction between disparate modal features.
This limitation hinders the model’s ability to learn disease-
related features from the fusion data. Conversely, the decision-
level fusion strategy is similar to multi-task learning. By treating
the two modal features as independent inputs, the model can

Frontiers in Aging Neuroscience 12 frontiersin.org

https://doi.org/10.3389/fnagi.2025.1510192
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-17-1510192 January 30, 2025 Time: 17:26 # 13

Yang et al. 10.3389/fnagi.2025.1510192

TABLE 5 TOP30 SNPs and corresponding gene annotations.

SNPs Rs code Chromosome location Genes Literature coverage

NeuroX_rs356181 rs356181 chr4: 90626111 SNCA Blauwendraat et al. (2020), Jia et al.
(2022), and Sampedro et al. (2018)

exm2271486 rs7939948 chr11:36311014 COMMD9 –

exm2252875 rs1131636 chr17:1801189 RPA1 Yuan et al. (2020)

exm19101 rs486557 chr1:15616139 FHAD1 –

exm2266280 rs1588787 chr6:163354979 PACRG Liu et al. (2021)

exm2264280 rs7015855 chr8:13660787 – –

exm2266447 rs12704649 chr7:92674917 – –

exm-rs213202 rs213202 chr6:33232055 VPS52 Wei et al. (2023)

exm-rs213204 rs213204 chr6:33241076 VPS52 Wei et al. (2023)

exm-rs2736990 rs2736990 chr4:90678541 SNCA Blauwendraat et al. (2020); Jia et al.
(2022), and Sampedro et al. (2018)

NeuroX_rs7238033 rs7238033 chr18:43316966 SLC14A1 Recabarren and Alarcon (2017)

exm1124271 rs57740714 chr14:94912896 SERPINA11 –

NeuroX_dbSNP_rs35534739 rs113343065 chr6:32583490 HLA-DQA1 Wissemann et al. (2013) and Yu et al.
(2021)

“–" indicates that no related genes and related literature reports were found.

perceive the learning process of each modality as a distinct
task. Consequently, this fusion strategy effectively leverages both
the commonalities and differences among various modalities to
integrate the features of each modality comprehensively. The main
advantage of using the AE_Stacking decision-level fusion strategy
is the integration of the results of multiple strong classification
base models. This method not only considers the independent
contribution of each single modality feature to PD diagnosis,
but also achieves complementary advantages of multiple base
models through a “strong combination” approach, so the overall
model has higher PD recognition performance. In addition,
compared with the general Stacking integration technology,
the designed AE_Stacking integration learning method can
automatically select models with better classification performance
from the candidate classifiers as strong base classifiers, thereby
enhancing the diversity of base classifiers. Then increase the
weight of the base learner with high classification performance,
and reduce the weight of the base learner with relatively low
classification performance, so that the meta-learner can pay
more attention to the base learners with stronger performance.
Compared with direct input, the AE_Stacking method improves
performance by automatically selecting the best performing base
learners, thereby increasing diversity and allowing the meta-learner
to focus on more powerful models, and therefore enhancing
integration performance. Future research could be integrated
with more multimodal data to develop comprehensive predictive
models.

Finally, by statistically analyzing the features selected for high
frequency in each single-modal as well as two multimodal feature
fusions process, we identified a subset of stable brain region features
that consistently belonged to the distinguished circle of the top
10 features across the entirety of our experimental datasets. The
FD attribute pertaining to the left cerebral cortex’s 6r region [lh
6r (FD)] and the GI attribute linked to the right hemisphere’s 46
region [rh 46 (GI)] demonstrated remarkable stability, suggesting

their potential as robust imaging biomarkers for PD. Interestingly,
the most discriminative features in our model were based on
advanced measurements of cortical geometry—specifically FD and
GI—rather than traditional metrics like GMV, CT, and SA. This
suggests that cortical surface geometry measurements may provide
more sensitive biomarkers for PD diagnosis. This observation
suggests that measurements of cortical surface geometry may
offer more sensitive biomarkers for the diagnosis of PD. The
heightened discriminative power of FD and GI could be attributed
to their intrinsic sensitivity to the nuanced changes in cortical
structure that are often subtle or overlooked by traditional
volumetric methods. Specifically, fractal dimension captures the
complexity and intricacy of the cortical folding patterns, while
the gyrification index quantifies the degree of cortical folding,
providing insights into the brain’s structural integrity and potential
deviations caused by pathological processes. In addition, the
changes observed in these cortical features are also reflect the
combined effects of GM, WM, and the overall dynamics of cortical
connectivity. Together, these elements provide a microscopic
view of the structural alterations in the brains of individuals
with PD.

Our genetic probe into SNP data unveiled that the most
discriminative loci were predominantly situated within three genes:
SNCA, with SNPs rs356181 and rs2736990; VPS52, with SNPs
rs213202 and rs213204; and SLC14A1, with SNP rs7238033. The
SNCA gene, in particular, has been recognized as an autosomal
dominant culprit in PD (Jia et al., 2022). The rs356181 variant
within the SNCA locus has been found to regulate the influence
of cerebrospinal fluid-related biomarkers on cortical atrophy and
is associated with diminished cognitive function in PD patients
(Sampedro et al., 2018). The PACRG gene has been reported to be
a bidirectional promoter shared with the Parkin/Park2 gene (Liu
et al., 2021). The SLC14A1 gene exhibits altered expression in PD-
affected individuals and is conjectured to be instrumental in the
regulation of Aβ production and apoptosis, potentially contributing
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to the pathological hallmarks of Alzheimer’s disease, PD, and
muscular dystrophy (Recabarren and Alarcon, 2017). Genetic
variation can affect the corresponding cell function, thereby
changing the normal brain phenotype. Therefore, combining genes
with brain imaging will help understand the abnormalities of brain
structure and function and the role of gene expression risk factors
in the progression of PD (García-Marín et al., 2023; Zang et al.,
2023). In the future, clinical symptoms should be further combined
to explore the association between genotype, brain phenotype
and clinical phenotype through joint analysis of fusion imaging
genes. In addition, the combination of machine learning or deep
learning technology is expected to predict PD risk and possible
clinical manifestations at the individual level. The identification of
these stable imaging biomarkers and genetic loci holds significant
promise for personalized treatment strategies.

While our methodology enhances PD diagnostic efficacy, it is
essential to acknowledge its limitations. The PLS method, used for
dimensionality reduction, may restrict analysis and interpretation
of important fusion features. Moreover, our study’s focus was
specifically on the integration of genetic and MRI data for PD
identification. While this approach has provided valuable insights,
it also presents a limitation in terms of the breadth of data
types considered. Future research should aim to expand the
scope by incorporating additional imaging modalities, such as
positron emission tomography (PET) or functional MRI (fMRI),
which could offer different perspectives on the neurobiological
changes associated with PD. In addition, genetic factors exhibit
variation across different ethnic cultures. Ethnic heterogeneity is a
further key determinant, influencing disparities in epidemiology,
clinical manifestations and mortality. Therefore, it becomes
necessary to take into account ethnic-cultural factors and more
clinical manifestations to develop models that are both specific
and sensitive to the unique genetic profiles present in diverse
population. Finally, a growing number of genetic studies have
demonstrated that there are disparities in the genetic mechanisms
across different PD syndromes as well as in the severity of the
disease (Koziorowski et al., 2021; Martínez Carrasco et al., 2023).
This suggests that in the future, the multimodal fusion strategy
of imaging and genetic data can also be applied to the differential
diagnosis of PD and the evaluation and prediction of disease
severity, thereby enhancing the accuracy and reliability of diagnosis
and enabling the development of more refined and effective
healthcare solutions.

5 Conclusion

In conclusion, the AE_Stacking model, trained with MRI and
genetic data, demonstrates promising diagnostic values in detection
of PD. By integrating multimodal data, the model has the potential
to reveal complex patterns of disease progression. As the clinical
sample size expands and data quality improves, this method
is expected to be applied to more complex clinical tasks, such
as staging disease progression, identifying high-risk populations,
and supporting the differential diagnosis of related neurological
disorders. Additionally, these consistent neuroimaging features
and specific genetic variants identified highlight their potential as
early diagnostic indicators for PD, while would also proffer new

insights for personalized clinical interventions. Future research
should focus on biological evaluations to demonstrate relevant
neurobiological signals or markers and clarify the psychological or
behavioral structures linked to specific brain pathways or regions,
thereby strengthening the model’s reliability.
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