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Objective: To explore MRI-based radiomics models, integrating clinical

characteristics, for differential diagnosis of Parkinson’s disease (PD) to evaluate

their diagnostic performance.

Methods: A total of 256 participants [153 PD, 103 healthy controls (HCs)] from

the First Affiliated Hospital of Wenzhou Medical Hospital, were enrolled as

the training set, and 120 subjects (74 PD, 46 HCs) from the PPMI dataset

served as the test set. Radiomics features were extracted from structural MRI

(T1WI and T2-FLair). Support Vector Machine (SVM) classifiers were developed

using MRI radiomics data from both monomodal and multimodal radiomics

models. The clinical-radiomics model was constructed by integrating clinical

variables, including UPDRS, Hoehn-Yahr stage, age, sex, and MMSE scores.

Receiver operating characteristic (ROC) curves were generated to evaluate the

performance of the models. Decision curve analysis (DCA) was performed to

access the clinical usefulness of the models.

Results: In the training set, the T2-FLair and T1WI radiomics model achieved

an AUC of 0.896 (95% CI, 0.812–0.900) and 0.899 (95% CI, 0.818–0.908),

respectively. The double-sequence radiomics model demonstrated superior

diagnostic performance, with an AUC of 0.965 (95% CI, 0.885–0.978) in the

training set and an AUC of 0.852 (95% CI, 0.748–0.910) in the test set. The

integrated clinical-radiomics model showed enhanced diagnostic accuracy,

with AUC = 0.983 (95% CI, 0.897–0.996) in the training set and AUC = 0.837

(95% CI, 0.786–0.902) in the test set. Rad-scores derived from the radiomics

model were significantly correlated with diagnostic outcomes (P < 0.001).

DCA confirmed the substantial clinical usefulness of the clinical-radiomics

integrated model.

Conclusion: The integrated clinical-radiomics model offered superior

diagnostic performance compared to models based relying solely on imaging
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or clinical data, underscoring its potential as a non-invasive and effective tool in

routine clinical practice for the early diagnosis of PD.

KEYWORDS

Parkinson’s disease, MRI radiomics, T1-weighted imaging, T2-FLair, machine learning,
clinical-radiomics model

Introduction

Parkinson’s disease (PD), a debilitating, insidious, and
multifaceted neurodegenerative disorder, afflicts over six million
individuals worldwide and may experience a twofold increase in
prevalence by 2040. Manifestations encompass motor symptoms
such as bradykinesia, rigidity, and tremor, alongside nonmotor
symptoms, including constipation, hyposmia, sleep disturbances,
depression, and cognitive impairment (Kalia and Lang, 2015;
Dorsey et al., 2018). Notably, PD ranks second among age-related
progressive degenerative conditions, subsequent to Alzheimer’s
disease (AD), and is pathologically defined by the presence of
α-synuclein-rich Lewy bodies and Lewy neurites (Aarsland et al.,
2017; Reich et al., 2022). These pathological changes often precede
clinical manifestation by several decades (Bloem et al., 2016).

Currently, the diagnosis is primarily based on the clinical
history and motor symptoms (Ben-Shlomo et al., 2024). However,
an early-stage disease may be challenging to diagnose due to
different clinical manifestations and overlapping symptoms with
other neurodegenerative diseases (Heim et al., 2017). Over the past
decade, the utilization of imaging as a strategy to diagnosis PD
has been significantly highlighted. Imaging phenotypes, beyond
pure usage of clinical measures, have the potential to add further
value to the assessment of PD (Rahmim et al., 2017; Arnaldi
et al., 2017). The pursuit of early and precise PD identification
strategies is paramount, as they facilitate prompt therapeutic
intervention and ultimately enhance patient survival (Adler et al.,
2014). Consequently, identifying imaging markers of PD has been
increasingly popular over the years (Acosta-Cabronero et al., 2017;
An et al., 2018).

Imaging stands as a cornerstone technology in medicine,
facilitating decision-making across screening, diagnosis, therapy,
and follow-up endeavors (Aerts et al., 2014; Hood and Friend,
2011). The advent of radiomics in 2012 heralded a novel paradigm
shift in image analysis (Avanzo et al., 2020; Lambin et al.,
2012). Their quantitative analysis can be used to characterize
the biological properties of the imaged volume, such as shape
and heterogeneity. This innovative approach harnesses intricate
image analysis tools in conjunction with sophisticated statistical
methods to uncover the trove of information latent within
medical imaging modalities, including computed tomography
(CT), magnetic resonance imaging (MRI), and positron emission
tomography (PET), which are routinely utilized in clinical practice
(Guiot et al., 2022). Brain imaging particularly MRI, has been of key
interest in the differential diagnosis of PD (Ohtsuka et al., 2014).
As a non-invasive diagnostic tool, MRI is invaluable for diagnosing
neurodegenerative diseases and tracking their progression (Adeli
et al., 2016). Multimodal MRI for PD diagnosis relies heavily on
the detection of subtle structural and functional aberrations within
the brain. Researchers have devised and implemented advanced

statistical models and machine learning algorithms to analyze
quantitative imaging data, thereby facilitating the classification
and diagnosis of PD (Adeli et al., 2016; Guiot et al., 2022). The
recent years have witnessed unprecedented advancements in data
mining, neural networks, deep learning, and other mathematical
methodologies, which have been extensively employed in image
analysis, exhibiting immense potential in the realm of medical
image analysis (Guan et al., 2017). The application of these
novel methodologies can enhance the analysis capabilities of
intricate multimodal MRI image data, thereby improving the
efficacy of PD diagnosis. Emerging evidence underscores the
capacity of radiomics to enhance PD diagnosis and clinical
assessment, distinguish PD, and forecast prognosis across distinct
brain imaging modalities (Sun et al., 2021; Wu et al., 2019;
Salmanpour et al., 2021).

However, the integration of radiomic features with clinical
data, such as motor and non-motor symptom scores, has been less
explored. Combining imaging biomarkers with clinical variables
could enhance the sensitivity and specificity of diagnostic models,
providing a more comprehensive and robust approach to PD
diagnosis. In this study, we aim to develop and evaluate MRI-based
radiomics models for differentiating PD from healthy controls
(HCs), incorporating both T1-weighted imaging (T1WI) and
T2-weighted fluid-attenuated inversion recovery (T2-FLair) MRI
sequences. We also integrate clinical features, such as the Unified
Parkinson’s Disease Rating Scale (UPDRS), Hoehn-Yahr scale, and
cognitive assessment tools, to construct a clinical-radiomics model
for improved diagnostic performance. By leveraging multimodal
MRI radiomics data and clinical variables, our goal is to provide
a non-invasive, reliable diagnostic tool for PD that can be widely
implemented in clinical practice.

Materials and methods

Design and participants

The training set of this study comprised individuals recruited
from outpatients and inpatients of the First Hospital of Wenzhou
Medical University between November 2021 and September 2023,
including 153 participants with PD and 103 participants with HCs.
The test set consisted of 120 subjects located at baseline time
from participants diagnosed in the Parkinson’s Disease Progression
Marker Initiative (PPMI) database1 (Adeli et al., 2016), comprising
74 PD and 46 HCs. The study’s workflow is presented in Figure 1.

Ethical approval was granted by the Ethics Committee of the
First Hospital of Wenzhou Medical University. Adherence to the

1 http://www.ppmi-info.org
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FIGURE 1

(A) Study flowchart. (B) Radiomics workflow.

principles of the Declaration of Helsinki was paramount, and
written informed consent was obtained from all patients prior to
the enrollment. The PPMI research program, a global multicenter
endeavor, aimed to elucidate the risks and progression of PD
through biomarker research. PPMI is an open access data set;
data used in the preparation of this manuscript was downloaded
from the PPMI database.2 The research program and manual are
available on this website. Ethical approval for the PPMI study was
granted by the review boards of all participating institutions.

Inclusion and exclusion criteria

Patients with PD included from the First Affiliated Hospital
of Wenzhou Medical University and the PPMI database were
diagnosed with reference to the most recent diagnostic criteria
developed by the Movement Disorder Society (MDS) International.
The exclusion criteria for patients with PD were as follows: (1) other
Parkinsonian syndromes or secondary etiologies (e.g., multiple
system atrophy, progressive supranuclear palsy); (2) a history of
stroke, cranial space-occupying lesions, or major neuropsychiatric
disorders; (3) previous craniotomy; (4) severe dysfunction of vital
organs; (5) poor imaging quality. For comparison, 46 and 103 age-
and sex-matched HCs were included in the training and test sets,
respectively. The inclusion criteria for the healthy control group
were: (1) no significant abnormalities on routine examination; (2)
no neuropsychiatric disorders; (3) no family history of PD.

2 https://www.ppmi-info.org/study-design

Clinical neuropsychological evaluation

Motor symptoms in patients with Parkinson’s disease were
determined using UPDRS. The Hoehn-Yahr scale determined the
stage of PD: grades 1–2.5 for early stage and grades 3–5 for
moderately advanced stage. Non-motor symptoms of subjects in
the training set were determined by the following scales, such as
the Brief Mental Status Examination (MMSE) (Arnaldi et al., 2017),
Hamilton Depression Scale (HAMD), Hamilton Anxiety Scale
(HAMA), RBD Screening Scale (RBD-SQ), and Ability to Perform
Activities of Daily Living (ADL). The non-motor symptoms of
the external test set of the PPMI were judged by the following
scales: the Montreal Cognitive Assessment Scale (MoCA), Scale
of Autonomic Symptoms in Parkinson’s Disease (SCOPA-AUT),
Penn State University Smell Identification Test (UPSIT), Epworth
Sleepiness Scale (ESS).

MRI radiomic analysis

MRI protocol
MRI data for the training set were acquired at the First

Hospital of Wenzhou Medical University using either a 1.5T or
3.0T superconducting MRI scanners. The scans encompassed T2-
Flair and T1WI sequences, with the scanning baseline aligned
parallel to the anterior-posterior commissure and encompassing
a continuous range from the parietal lobe apex to the inferior
cerebellar hemisphere. In test set, the imaging features, derived
from PPMI dataset, were acquired as T2-Flair and T1WI sequences
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on a Siemens MRI scanner (MAGNETOM Trio Tim, Siemens
Healthcare, Germany) operating at either 1.5T or 3.0T. The PPMI
neuroimage database was populated until October 2023, adhering
to strict acquisition protocols, including a layer thickness of 1.5 mm
or less and zero interscan gaps. Repetition times and echo times
were tailored to the recommended settings for each scan type.
Comprehensive details regarding the MRI scanning sequences,
specific imaging parameters, and methodologies were outlined
in the PPMI Magnetic Resonance Imaging Operator’s Manual,
providing a definitive guide to the equipment, parameters, and
imaging practices employed within the PPMI project.

Image acquisition and reconstruction of MRI
sequences

In this study, MRI images acquired from the First Hospital of
Wenzhou Medical University and PPMI database were converted
from DICOM format to NIfTI format using the dcm2niix tool in
the MRIcroGL software, preserving the DICOM metadata in the
images during the conversion process. Preprocessing steps were
performed using Matlab 2021b and SPM 12 software packages,
including head motion correction, alignment, segmentation,
normalization and smoothing. Head-motion correction was
performed using SPM’s Realign function, using rigid alignment
and optimized to least squares. Structural images are aligned to
the MNI standard space by the Coregister function, using affine
alignment and cubic spline interpolation. The segmentation step
used the Segment function to segment the structural image into
gray matter, white matter, and cerebrospinal fluid, choosing a
Gaussian mixture model for the segmentation. Normalization uses
a nonlinear approach to normalize the data to MNI space with an
elastic deformation model to accommodate individual differences.
Finally, the data were smoothed by the Smooth function of SPM
using a 6–12 mm isotropic smoothing kernel to improve the signal-
to-noise ratio. All preprocessing steps were performed according
to SPM default settings or adjusted according to data quality,
ultimately generating high-quality brain imaging data that can be
used for subsequent statistical analysis.

Region-of-interest segmentation, image
preprocessing and feature extraction

We utilized the Automated Anatomical Labelling Atlas
(AAL3v1) as the baseline brain template for the ROI extraction
work using Python 3.9 and the nibabel toolkit under the Anaconda
3 platform. The AAL3v1 template is a version of the AAL3 template
designed to provide more fine-grained and efficient labeling of
anatomical regions. Similar to the AAL3 template, the AAL3v1
template was used for automated segmentation and region labeling
of brain images by dividing the brain into multiple standardized
anatomical regions (Huppertz et al., 2016). It accurately identified
each anatomical region of the brain by aligning individual brain
images with the AAL3v1 standardized space. Specifically, we loaded
the AAL 3v1 standard brain partition atlas and extracted specific
brain ROIs from it, including the caudate nucleus (AAL: 75, 76), the
nucleus accumbens (AAL: 77, 78), the pallidum (AAL: 79, 80), the
red nucleus (AAL: 45, 46), the substantia nigra (AAL: 161, 162, 163,
164, 165, 166), frontal (AAL: 3-20), parietal (AAL: 63–66), occipital
(AAL: 53–58), and temporal (AAL: 85–94) lobes. The extraction
results of these brain regions were saved as NIFFTI files as ROIs for
this study.

We adopted an AI-based machine learning approach using
Python version 3.9 under the Anaconda 3 platform and applied
the feature extractor component of the pyradiomics package to
extract features from image histology data in the region of interest.
The calculation method for each histological feature can be found
in the open source pyradiomics v3.0.1 package description. The
pyradiomics toolkit was used to extract image histological features
from all ROIs labeled in T2-Flair, T1WI images in training and
test sets, respectively. These extracted features included different
types of features: first-order features, second-order features and
higher-order features. Finally, 1074 imaging histological features
were extracted from each ROI in the T2-Flair and T1WI images
of each subject.

Statistical analyses and feature screening were performed using
R language packages (e.g., dplyr, ggplot2, caret). An independent
samples t-test was utilized to identify differing histological features.
Features with P > 0.05 were excluded, while those with P < 0.05
were retained. Following initial screening, the Least Absolute
Shrinkage and Selection Operator (LASSO) was applied to further
refine the significant imaging histological features. LASSO is a
regularized machine learning algorithm, suitable for performing
dimensionality reduction of high-dimensional data. This approach
minimized the coefficients of non-significant features unrelated to
classification and diagnosis to zero, thereby reducing the influence
of irrelevant features on the model and enhancing interpretability.
The optimal feature subset was constructed from the training
set of imaging genomics features using ten-fold cross-validation.
The optimal λ-value was determined by calculating the Mean
Squared Error (MSE) for different values of λ. For each λ, the
model’s performance was evaluated using cross-validation, and
the λ that yielded the lowest average MSE across all folds was
selected as the optimal regularization parameter. The feature weight
coefficients were derived from the corresponding coefficients list.
Using the optimal λ-value, we constructed the optimal feature
subset containing the selected histological feature variables and
applied it to the entire training set.

Development and evaluation of radiomics models
A Support Vector Machine (SVM) classifier model was trained

using the filtered optimal feature subsets derived from T2-
Flair and T1WI in training datasets, respectively. The model
was subsequently applied to the test set for classification
purposes. Receiver operating characteristic (ROC) curves were
generated, and performance metrics, including the area under
the curve (AUC), accuracy, sensitivity, specificity, and predictive
values, were computed.

The T2-Flair and T1WI radiomics features in training sets
were filtered using a feature selection approach to obtain smaller,
more manageable feature subsets. These subsets were then merged
to create a newly comprehensive training set. Using this merged
training set and the corresponding target variables, a LASSO
regression model was applied, and ten-fold cross-validation was
employed to identify the best feature subset. Ten-fold cross-
validation can effectively assess the robustness and generalization
ability of the model by training and validating the model multiple
times, avoiding the assessment bias caused by data division chance.
The feature indices corresponding to non-zero coefficients in the
LASSO regression model were selected as the optimal feature
subset. Subsequently, the SVM classifier model was utilized to
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classify the corresponding test set data based on this double
sequential optimal feature subset. ROC curves were plotted for the
SVM classifier’s classification in both training and test sets, and
AUC values were calculated yet.

Furthermore, in addition to generating ROC curves and AUC
values to evaluate the model’s diagnostic performance, features
with non-zero coefficients were selected for use in the modeling
and training process using the LASSO regression model and
SVM classification algorithms. This selection process included
considerations of accuracy, 95% confidence intervals, sensitivity,
specificity, positive predictive value and negative predictive value.
Finally, imaging histology scores (rad-score and nomo-score) were
calculated for each subject by multiplying the selected features by
their respective correlation coefficients.

Clinical-radiomics-laboratory diagnostic model
construction

Initially, the assessment of clinical variables pertaining to non-
motor symptoms revealed differing scales between the training
set and test set. To address this, we referenced a study detailing
an MMSE and MOCA conversion table (Bergeron et al., 2017).
Based on the findings of this reference, we converted MOCA to
MMSE values using the provided conversion table. Consequently,
all subsequent references to MOCA values from the external
test set within this study were adjusted to MMSE values to
ensure consistency in further analyses. The same clinical variables
for PD and HCs, such as age, years of education, UPDRS,
UPDRS I-IV, and Hoehn-Yahr were collected and compared in
the training and test sets. And the clinical feature models were
constructed by logistic regression models and SVM classifier
models. The clinical-radiomics model was built by multivariate
logistic regression analysis with a ten-fold cross-validation and
SVM classification. ROC curves were performed to evaluate the
diagnostic performance of the constructed model to distinguish
PD from HCs. A nomogram was established based on clinical-
radiomics model. The calibration of nomogram was analyzed by
the Hosmer–Lemeshow test and calibration curves. To assess the
clinical utility of these models, decision curve analysis (DCA) was
calculated.

Statistical analysis

Most statistical analyses were performed on R software (v4.0.2)3

and Python 3.9. Also, Shapiro-Wilk test, Pearson chi-square test,
independent samples t-test, and Wilcoxon rank sum test in SPSS
software were used to analyze the within-group differences in
the clinical characteristics. Continuous variables were expressed
as mean ( ± standard deviation) or median (interquartile
spacing), and categorical variables were expressed as frequency
(percentage). The independent sample t-test was performed to
analyze normally distributed continuous variables. The Wilcoxon
rank sum test was employed to analyze the continuous variable with
abnormal distribution. Correlations between screened imaging
histologic features and clinical characteristics were then assessed
using Spearman’s rank correlation analysis. The mRMR algorithm,

3 http://www.Rprojiect.org

LASSO logistic regression, and ROC curves were executed by the
“mRMRe,” “Glmnet,” and “pROC” packages, respectively. AUCs
of these models were compared using the DeLong test (Demler
et al., 2012). The power analysis was performed by using the
pwr.t2n.test, and empirical effect size was also calculated. A two-
tailed P-value < 0.05 was considered statistically significant.

Results

Demographic characteristics and clinical
assessment

This analysis encompassed 256 participants recruited from
November 2021 to September 2023 at The First Affiliated Hospital
of Wenzhou Medical University as the training set. This comprised
153 patients with PD and 103 HCs. Additionally, 120 subjects (74
PD and 46 HCs) from the PPMI dataset constituted the test set.
In the training set, the mean age at evaluation was 66.83 ± 7.68
years for PD patients and 65.10 ± 7.61 years for HCs (P > 0.05).
Similarly, in the test set, the mean age was 65.25 ± 7.28 years for
PD patients and 62.44 ± 7.43 years for HCs (P > 0.05). Table 1
outlines the demographic characteristics and clinical assessments
of all participants. Baseline comparisons revealed no significant
differences in age, sex distribution, or educational level between PD
and HC groups in both the training and test sets. In the training
set, PD patients exhibited significantly higher scores on motor
(UPDRS, Hoehn-Yahr, ADL) and non-motor (MMSE, HAMD,
HAMA) symptom scales (P < 0.01) compared to HCs. In the test
set, significant differences were observed for Hoehn-Yahr, UPDRS,
MoCA, UPSIT, ESS, and SCOPA-AUT (P < 0.01). However, there
was no significant difference in the MMSE scores after MOCA
conversion between the PD and HCs in test set.

Feature selection in MRI radiomics

A flowchart of image processing and analysis is presented in
Figure 1. The MRI-based feature selection was used to decrease
the redundancy of the feature set and build an optimal subset of
complementary features. A total of 1,074 radiomic features were
initially extracted from each ROI within the T2-Flair and T1WI
MRI images across the 10 predefined ROIs in the training set.
Feature selection was performed using the t-test or Wilcoxon rank-
sum test, which led to the retention of 716 features from T2-Flair
and 1644 features from T1WI images. All the radiomics signatures
showed significant differences between PD and HCs (P < 0.05).
Details on these features and dimensionality reduction are provided
in Figure 2A. Subsequently, the feature set yielding the highest
mean accuracy in the test set was selected as the optimal feature
subset. After feature dimension reduction, the top 20 features were
identified as the optimal subset for further analysis, as shown
in Figure 2B. These 20 features were then used to construct an
optimized radiomics model based on both T2-FLair and T1WI
sequences. The final selection of the top 20 radiomics features was
refined using LASSO regression, as shown in Table 2 and Figure 2C.

In addition, the filtered features were ranked by their
importance, and correlation analyses were performed between each
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TABLE 1 Subject demographic information tables for the training and test sets.

Training set Test set

PD HCs P-value PD HCs P-value

Age a 66.83 ± 7.68 65.10 ± 7.61 0.081 Age a 65.25 ± 7.28 62.44 ± 7.43 0.051

Sex(F%) c 64(41.8%) 56(54.4%) 0.112 Sex(F%) c 31(43.8%) 18(39%) 0.299

Years 4[1,6] / / Years 4[2,7] / /

Education(year)b 3[0,6] 5[0,8] 0.115 Education(year)b 16[14,18] 16[14,18] 0.473

UPDRS b 49[31,62.5] 1[0,2] <0.001 UPDRS b 32[26,48] 5[3,10] < 0.001

I 1[1,3] 0[0,1] <0.001 I 5[3,6] 2[1.25,5.75] 0.108

II 13[8,18] 0[0,0] <0.001 II 7[4,10] 0[0,0] <0.001

III 29[18,41.75] 0[0,0.5] <0.001 III 22[16,35] 1[0,3] <0.001

IV 2[0,4] 0[0,1] <0.001 IV 2[0,4] 0[0,1] <0.001

Hoehn-Yahr b 3[2,4] 0[0,0] <0.001 Hoehn-Yahr b 2[1,2] 0[0,0] <0.001

MMSE b 20[14,24] 24[20,27] <0.001 MOCA b 27[26,29] 28[27,29] 0.073

HAMD b 5[2,9] 3[1.5] <0.001 SCOPAAUT b 27[20,29] 23[14.29] <0.001

HAMA b 8[4,12.5] 4[2,7] <0.001 UPSIT b 23[16,28] 32[29,36] <0.001

RBD b 13[2,26.5] 3[1,9] <0.001 ESS b 5[2,7] 4[4,7] <0.001

ADL b 31[22,41] 20[20,20] <0.001 MOCA-MMSE b 28[27,30] 29[28,30] 0.769

aRepresents the measurement data conforming to the normal distribution, the results are expressed as the mean (standard deviation), the one-way ANOVA. bRepresents the measurement data,
the median value [25th percentage, 75th percentage], the Wilcoxon rank sum test. cRepresents the count data as the number of individuals (percentage), the χ2-test. All pairwise comparisons
were performed using Bonferroni-corrected post-hoc tests.

feature in both training and test sets (Figure 3A). This study had
also conducted an association analysis of the extracted final features
of the ROIs and the clinical features in the dataset (Figures 3B,C).
Specifically, all brain region features were derived from higher-
order imaging omics features after wavelet transform treatment,
while 7 features are from SN (6 features from SNpc, 1 feature
from SNpr), 4 features from Pallidum, 4 features from Red nucleus,
3 features from Frontal lobe, 1 feature from Putamen and 1
feature from Occipital lobe. Notably, features reflecting SN are
most important for the diagnosis of PD, which also validates the
pathogenesis of PD. In addition, wavelet HHL glszm Large Area
High Gray Level Emphasis in the SN _ pc_ L brain region in Flair
MRI was correlated with UPDRS I, UPDRS II, UPDRS III, UPDRS
III and Hoehn-Yahr (Figure 3C). This suggests that wavelet-based
texture features derived from the substantia nigra are closely linked
to both the clinical severity and the progression of PD.

Performance of radiomics features

Using the optimal feature subset derived from T2-FLair and
T1WI MRI images, a SVM classifier was developed and evaluated.
The classifier’s performance was assessed on the training dataset
by comparing two monomodal radiomics models, one based on
T1WI images and the other on T2-Flair images. ROC analysis was
employed to evaluate the diagnostic efficiency of these MRI models
(Figures 2D,E). The T2-Flair MRI radiomics model achieved an
AUC of 0.896 in the training set, with a sensitivity of 75.0%
and a specificity of 91.3% (Table 3). The T1WI MRI radiomics
model also demonstrated high diagnostic accuracy, with an AUC
of 0.899, a sensitivity of 74.2%, and a specificity of 92.9% in the
training set (Table 3). The DeLong test indicated no statistically

significant difference between the two monomodal MRI radiomics
models (P = 0.738 for T1WI vs. T2-Flair), suggesting comparable
performance.

To assess the discriminative ability of the radiomics signatures,
rad-score and nomo-score were calculated in both the training and
test sets (Table 4). The rad-score showed a significant correlation
with diagnostic performance in distinguishing PD from HCs
in both the training and test sets (P < 0.001). However, for
the differential diagnosis between PD and HCs, there were no
statistically significant differences in the nomo-score of single-
sequence models in either training or test set (P > 0.05). Thus,
categorizing PD patients from HCs can be effectively achieved
based on the rad-score derived from MRI radiomics signatures.
After harmonizing the radiomics features, a double-sequence
imaging omics was obtained using LASSO regression (Figures 4A–
C). Based on the optimal double-sequence radiomics model, the
SVM classifier was applied to provide classification information
using MRI radiomics signatures in the test set. The diagnostic
performance of the radiomics models was assessed through ROC
curve analysis in both the training and test sets (Figure 4D).
The reconstructed radiomics model exhibited excellent diagnostic
accuracy, with an AUC of 0.965 (95% CI, 0.885–0.978) in the
training set and an AUC of 0.852 (95% CI, 0.748–0.910) in the test
set (Table 5; Figure 4D).

Construction and evaluation of
clinical-radiomics integrated model

In combination with clinical variables, we further constructed
an integrated diagnosis model by logistic regression. Multivariable
logistic regression analysis was performed to select independent
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FIGURE 2

Diagnostic performance of radiomics signatures in single-sequence models. (A) The radiomics signatures of two sequences showed significant
differences between PD and HCs (P < 0.05) in the training and test sets. (B) Texture reduction and selection used LASSO based on the minimum 1
with 10-fold cross-validation. The Y-axis indicates binomial deviances, and the X-axis means the number of features. (C) The value of l with the
number of features. The ROC curves of single-sequence models in (D) Flair MRI and (E) T1WI. LASSO, least absolute shrinkage and selection
operator; ROC, receiver operating characteristic; AUC, the area under the curve.

predictors for PD, including demographic and clinical indicators.
The UPDRS, UPDRS I, UPDRS II, UPDRS III, UPDRS IV and
Hoehn-Yahr were identified as independent factors in the clinical-
radiomics integrated model. We also evaluated the diagnostic
efficiency of the clinical model using ROC analyses. The clinical
model yielded an AUC of 0.906 (95% CI, 0.758-0.917) in training
set (Table 5; Figure 4E), and 0.781 (95% CI, 0.726-0.869) in test
set. Finally, A more optimized clinical-radiomics integrated model
was developed with ten-fold cross-validation and SVM classifier to
distinguish PD from HCs. We also conducted the discriminatory
efficiency of the clinical-radiomics integrated model using ROC
analyses. The clinical-radiomics model yielded AUC of 0.983 (95%
CI, 0.897–0.996) in training set (Table 5; Figure 4F), and 0.837 (95%
CI, 0.786–0.902) in test set, which was statistically different from the
radiomics model by the DeLong test (P < 0.05).

Additionally, we investigated and compared rad score and
nomo score of the double-sequence imaging omics and clinical-
radiomics integrated model (Table 6). In both training and test
sets, rad score showed statistical differences (P < 0.001) in the
multimodal radiomics model and clinical-radiomics integrated
model. There was significantly different in nomo-score in clinical-
radiomics model in both train and test sets (P < 0.001). Nomo-
score of the double-sequence imaging omics was only different
in test set (P = 0.05). But no significant difference in training
set was observed in nomo-score of the multimodal radiomics
model (P > 0.05). The multimodal radiomics model and clinical-
radiomics integrated model compared to single-sequence imaging
appeared to have higher diagnostic efficacy. The nomogram based

on clinical factors and Rad-score was shown in Figure 5A. The
performance and reliability of the model was evaluated by the
calibration curve and the Hosmer–Lemeshow test (Figures 5B,C).
The Hosmer–Lemeshow test in the radiomics-clinical integrated
model showed no significant differences in the goodness-of-fit for
the training set (P = 0.999). Subsequently, DCA was conducted
to evaluate clinical utility of the clinical model, radiomics models,
and clinical-radiomics integrated model in the training and test
sets. The result of DCA demonstrated that the benefit of clinical-
radiomics integrated model was relatively higher compared other
models to differentiate PD from HCs in a range from 0 to 1,
as shown in Figure 6. Considering the relatively small sample
size, effect size and confidence interval were calculated to measure
the practical significance. The result showed a 0.8 effect size was
detected with 98% confidence, a maximum of 4.78% probability
of misreporting differences. Moreover, the value of empirical effect
size was calculated (d = 2.071). The result showed that the effect
size between the two groups was large and the difference in the
mean between the two groups was significant, which indicated that
the empirical sample size included in this study could support the
conclusion.

Discussion

Given accurate diagnosis of PD remains challenging,
particularly in early stage (Peralta et al., 2019). The disease-
modifying therapies might be ineffective to hinder the
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TABLE 2 Sking of feature weight coefficients after LASSO screening (top 10 displayed).

MRI ROI Features Coefficient

Flair

Red_NL waveletLLHgldmLargeDependenceLowGrayLevelEmphasis −0.07564

Pallidum_R waveletHHLgldmZoneVariance 0.05895

Red_NL waveletHLHgldmLargeDependenceHighGrayLevelEmphasis −0.05505

Frontal_Inf_Orb_2R waveletLHHglszmLargeAreaLowGrayLevelEmphasis 0.05342

SN_pr_L waveletHHLglszmLargeAreaHighGrayLevelEmphasis 0.04792

Putamen_R waveletLHHglszmZoneVariance −0.04635

Frontal_Inf_Orb_2R waveletHLLglszmLargeAreaHighGrayLevelEmphasis −0.04154

Pallidum_L waveletHLLgldmLargeDependenceHighGrayLevelEmphasis 0.03803

Red_NR waveletLHLgldmLargeDependenceHighGrayLevelEmphasis −0.03747

Pallidum_L waveletHLHgldmLargeDependenceLowGrayLevelEmphasis −0.03535

T1WI

SN_pr_R waveletHLHglszmZoneVariance −0.09301

Pallidum_R waveletLLHfirstorder90Percentile 0.06475

Frontal_Inf_Oper_R waveletHHHgldmLargeDependenceEmphasis −0.06310

Occipital_Sup_L waveletLHHfirstorder90Percentile −0.05769

Red_NL waveletHLHglszmZoneVariance 0.05030

Temporal_Mid_L waveletLLLfirstorderMinimum −0.05017

SN_pc_L waveletHLLfirstorder90Percentile −0.04523

SN_pc_R waveletLLHfirstorderMaximum −0.04481

Temporal_Inf_R waveletHLHfirstorderKurtosis −0.04051

SN_pc_R waveletLLHfirstorderMean −0.04005

neuro-degeneration progression. There is a calling need of
automated approaches and techniques as prior tools to detect brain
alterations in PD. Using a multivariate approach, we evaluated
the diagnostic performance of radiomics features extracted from
T2-Flair and T1WI MRI sequences, and constructed an integrated
clinical-radiomics model to improve PD detection accuracy. We
successfully developed an optimal radiomics signature and clinical
feature constructed model for detection of PD by most frequently
used imaging methods in clinics, with an excellent performance.
These findings highlight that the approach to identify PD by
integrating MRI radiomics and clinical characteristics could be
potentially feasible in clinics.

The demographic characteristics of the participants, including
age and sex distribution, did not differ significantly between PD
and HCs in either the training or test set, suggesting that our
groups were well-matched for these baseline factors. This is crucial
to ensure that the observed diagnostic performance reflects the
model’s capacity to identify disease-specific characteristics, rather
than being influenced by variations in demographic factors.

Segmentation in image analysis remains challenging due
to the complicated morphology of the brain. The methods of
brain structural segmentation contain manual and automatic
segmentation (Ewert et al., 2019). Currently, manual segmentation
is frequently used in clinics because of its more accurate results
than automatic segmentation (Hu et al., 2021; Ewert et al.,
2019). However, manual segmentation is not only time-consuming
but also necessitates extensive anatomical knowledge from the

operator (Zwirner et al., 2017; Chakravarty et al., 2013). Thus,
this study focused on automatic segmentation, which relied
on algorithmic methods. Initially, we performed precise co-
registration of frequently used MRI images, including T1WI and
T2-Flair. The images were subsequently segmented and normalized
into standard AAL3v1 space using the unified segmentation
approach and tissue probability maps. As a result, the use of
automatic segmentation methods often ensures reproducibility and
objectivity in the outcomes.

The aim of this study was to evaluate the potential of MRI
radiomics in distinguishing PD from HCs. MRI radiomics, which
involves the extraction of high-dimensional quantitative features
from medical images, has gained considerable attention due to
its ability to capture subtle changes in clinics (Xu and Zhang,
2019). The MRI radiomics analysis involved selecting features from
both T2-Flair and T1WI MRI images. Using statistical tests such
as t-tests and Wilcoxon rank-sum tests, we identified a total of
716 features from T2-Flair and 1644 features from T1WI, all of
which showed significant differences between PD and HC groups.
The dimensionality reduction process, through the application of
LASSO regression, allowed for the identification of the top 20
radiomic features that provided optimal diagnostic performance.
The significant differences in these radiomics signatures between
PD and HCs (P < 0.05) suggested a distinctive imaging pattern in
PD that could be effectively captured through advanced machine-
learning algorithms, in consistent with previous studies (Sun
et al., 2024). In the constructed radiomics model, the optimal
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FIGURE 3

Multi-sequence feature selection. (A) Top 20 features after multi-sequence screening. (B,C) Correlation between imaging omics and clinical features
in the training and test sets. *Represents a P-value of < 0.05.

TABLE 3 Diagnostic performance of imaging omics features in T2-Flair
and T1WI models.

T2-Flair MRI T1WI MRI

Training
set

Test set Training
set

Test set

AUC 0.896 0.830 0.899 0.727

Accuracy 0.853 0.755 0.859 0.738

95% CI

Lower 0.812 0.742 0.818 0.645

Upper 0.900 0.854 0.908 0.797

Sensitivity 0.750 0.649 0.742 0.621

Specificity 0.913 0.896 0.929 0.868

PPV 0.823 0.817 0.830 0.754

NPV 0.784 0.746 0.735 0.648

AUC, Area under the ROC curve; Accuracy, Accuracy; 95% CI, 95% confidence interval;
Lower Power (Lower limit), lower limit of confidence interval; Upper (Upper limit), upper
limit of confidence interval; PPV, positive predictive value; NPV: negative predictive value.

features were primarily distributed in the substantia nigra, frontal
lobe, temporal lobe, occipital lobe, hippocampus, and globus
pallidus. Notably, the most prominent features were derived from

the SN, including both the SNpc and SNpr, which are key
regions implicated in PD pathology due to the degeneration of
dopaminergic neurons (Guiot et al., 2022). For patients with PD,
widespread functional abnormalities are indeed observed in the
temporal lobe, frontal lobe, and hippocampus (Choi et al., 2016).
Additionally, features extracted from other brain regions such as
the pallidum, red nucleus, frontal lobe, putamen and occipital lobe
further supported the role of basal ganglia and motor related brain
structures in PD pathophysiology.

The radiomics model developed in this study predominantly
relies on features derived from wavelet transform, capturing
image details across multiple scales. By decomposing images into
high-frequency components (representing fine details and edges)
and low-frequency components (reflecting large-scale structures),
wavelet transform provided a more detailed description of texture
features. This approach is particularly effective for detecting subtle
pathological changes, such as microstructural alterations in the
substantia nigra (SN), which are hallmark features of PD (Betrouni
et al., 2021). Our findings highlight the diagnostic advantages
of wavelet-derived features, which enhance the model’s accuracy,
sensitivity, and specificity for PD. Interestingly, the wavelet-based
feature “Large Area High Gray Level Emphasis” from the SN
pars reticulata (SNpr) showed a strong correlation with motor
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TABLE 4 Results of rad-score and nomo-score in the T2-Flair and T1WI imaging omics models

T2-Flair MRI T1WI MRI

Training set Test set Training set Test set

PD HC P-
value

PD HC P-
value

PD HC P-
value

PD HC P-
value

Rad-score 0.897 0.704 <0.001 0.899 0.775 <0.001 0.904 0.797 <0.001 0.723 0.64 <0.001

Nomo-score 0.141 0.289 0.069 0.128 0.589 0.051 0.095 0.187 0.245 0.357 0.449 0.157

Rad-score and nomo-score are both two imaging-omics assessment tools.

function as measured by UPDRS scores. This underscores the
importance of SN-related features in reflecting the motor deficits
characteristic of PD, consistent with the pathophysiological model
of PD as a disorder primarily involving the basal ganglia circuitry
(Mitchell et al., 2021). These features, which reflect the complexity
and heterogeneity of brain tissue, may capture subtle variations
in neuronal degeneration and neuroinflammation, which are
characteristic of early-stage PD. The association between radiomics
features and clinical measures reinforces the potential of using
radiomics as a non-invasive biomarker for PD identification
(Mitchell et al., 2021).

In the radiomics analysis, we first demonstrated the diagnostic
performance of the monomodal radiomics models of T1WI and
T2-Flair separately. The top-performing radiomics models based
on T2-FLair and T1WI sequences showed comparable diagnostic
accuracy, with AUC values of 0.896 and 0.899, respectively, in
the training set. The integration of both imaging sequences into
a monomodal radiomics model yielded a superior AUC of 0.965,
highlighting the utility of combining multimodal imaging data
to enhance diagnostic performance. This aligns with findings
from other studies that have used multimodal MRI approaches
to distinguish PD from other neurodegenerative conditions (Sun
et al., 2024). However, structural changes often precede these
clinical manifestations, and may be detectable through advanced
imaging techniques. Subtle changes that cannot be observed
regularly by the naked eye can be reflected by radiomics that
provides a highly sensitive opportunity to estimate the distribution
of structural information at the microscopic level (Ruan et al.,
2020). Studies have shown that these histological changes can
be quantified using T2-Flair and T1WI MRI sequences, with
radiomic features capturing the alterations in texture, intensity,
and heterogeneity of these brain regions (Sun et al., 2024; Kang
et al., 2022). The synergistic combination of T1WI and T2-Flair
may enhance the model’s ability to provide a more comprehensive
representation of the underlying pathology. While T1WI primarily
offers detailed anatomical insights, T2-Flair is highly sensitive to
tissue property changes, which are often critical for distinguishing
between tissue types or detecting subtle lesions (Tuite, 2016).
By integrating these modalities, the multimodal radiomics model
harnesses the complementary strengths of both sequences, thereby
enhancing diagnostic accuracy, despite the lack of statistically
significant differences observed between the two monomodal
radiomics models. The ability of multimodal radiomics model
to detect these early, subtle changes offers an advantage over
traditional imaging methods, which often lack the sensitivity to
detect abnormalities at the earliest stages of the disease.

To further improve diagnostic accuracy, we constructed
an integrated clinical-radiomics model, which improved model

performance and reflects the multifaceted nature of PD. PD is
a complex disorder with both motor and non-motor symptoms,
and its diagnosis cannot rely solely on the presence of motor
dysfunction (Kalia and Lang, 2015). Cognitive impairments, sleep
disturbances, and autonomic dysfunction are common non-motor
symptoms that significantly contribute to disease progression and
patient morbidity (Leroi et al., 2012). The use of established clinical
scales, such as the UPDRS, Hoehn-Yahr stage, and MMSE provided
valuable insights into the severity and stage of the disease, especially
when combined with imaging features, enhanced the model’s
sensitivity and specificity. Our clinical-radiomics integrated model
achieved an AUC of 0.983 in the training set and 0.837 in the test set,
demonstrating a significant improvement in diagnostic accuracy
compared to radiomics models alone. This aligns with previous
research highlighting the benefits of combining clinical data with
radiomics features for a more comprehensive diagnostic approach
(Chougar et al., 2021). The integration of clinical variables not
only enhances the model’s performance but also makes it clinically
applicable, as it leverages existing clinical assessments commonly
used in routine practice. This approach could be particularly
valuable for clinicians who are looking for objective, quantitative
measures to support their diagnostic decisions.

In addition, the integrated clinical-radiomics model
demonstrated strong performance in the training set, with an
AUC of 0.983. However, a noticeable performance drop to an
AUC of 0.837 was observed in the test set, highlighting a potential
discrepancy in the model’s generalizability. Several factors may
likely attribute to this, including overfitting, differences in the
data distributions between the training and test sets, and the
inherent limitations of the test set itself (Woldaregay et al., 2019).
In machine learning, the purpose of training any machine is to
be able to get better predictions of the testing values by enabling
the machine to generalize from the training set of all possible
inputs (Dwyer et al., 2018). However, the challenge of overfitting
is inherent due to the high variability present in most machine
learning algorithms (Woldaregay et al., 2019). Overfitting can
often be mitigated by using techniques such as regularization,
using a separate validation set to evaluate the model’s ability to
generalize (Akhter et al., 2024). Feature selection plays a crucial
role in improving both accuracy and generalizability by selecting
the most relevant variables (Dwyer et al., 2018). In this study,
embedded feature selection was achieved using LASSO regression,
which employed mathematical regularization to reduce the relative
contribution of specific features to zero, thus effectively removing
their influence and leaving the most predictive and nonredundant
features. Furthermore, SVM was assessed for each feature, and the
best features were chosen according to a predefined rule (Dwyer
et al., 2018). The optimal feature subset was constructed using
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FIGURE 4

Multiple-sequence feature selection and radiomics-based classifier construction. (A,B) LASSO. (C) Coefficients of features in Radiomics model. The
ROC curves of the Radiomics model (D, AUC = 0.965), clinical feature model (E, AUC = 0.906), and Radiomics-clinical model (F, AUC = 0.983). ROC,
receiver operating characteristic; AUC, the area under the curve; LASSO, least absolute shrinkage, and selection operator.

TABLE 5 Diagnostic performance of imaging omics features in the combined model.

Radiomics model Clinical feature model Clinical-radiomics model

Training set Test set Training set Test set Training set Test set

AUC 0.965 0.852 0.906 0.781 0.983 0.837

Accuracy 0.942 0.800 0.835 0.739 0.923 0.783

95% CI

Lower 0.885 0.748 0.758 0.726 0.897 0.786

Upper 0.978 0.910 0.917 0.869 0.996 0.902

Sensitivity 0.911 0.636 0.875 0.882 0.912 0.790

Specificity 0.960 0.737 0.811 0.655 0.930 0.894

PPV 0.939 0.743 0.841 0.817 0.968 0.782

NPV 0.926 0.775 0.763 0.669 0.955 0.813

AUC, Area under the ROC curve; Accuracy, Accuracy; 95% CI, 95% confidence interval; Lower Power (Lower limit), lower limit of confidence interval; Upper (Upper limit), upper limit of
confidence interval; PPV, positive predictive value; NPV, negative predictive value.
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TABLE 6 Results of rad-score and nomo-score in the combined model.

Radiomics model Clinical-radiomics model

training set test set training set test set

PD HC P-
value

PD HC P-
value

PD HC P-
value

PD HC P-
value

Rad-score 0.958 0.793 <0.001 0.897 0.732 <0.001 0.983 0.897 <0.001 0.825 0.784 <0.001

Nomo-score 0.047 0.193 0.092 0.138 0.173 0.050 0.046 0.006 <0.001 0.268 0.122 <0.001

Rad-score and Nomo-score are both two imaging-omics assessment tools

FIGURE 5

Diagnostic evaluation and test of clinical-radiomics integrated models for differentiation of PD and HCs. (A) A nomogram based on clinical
characteristics and Rad-score. (B,C) Calibration curves for clinical-radiomics integrated model in train set and test set.

ten-fold cross-validation in our study, with the main purpose
of evaluating the generalization power of the algorithm and
comparing a set of multiple algorithms to find the best algorithm.
The use of cross-validation helps to avoid overfitting by ensuring
that the model is tested on data it has not seen during training,
thereby providing a more realistic estimate of its performance on
unseen data (Akhter et al., 2024). The strength of preprocessing
within a cross-validated pipeline is that it allows for automatic
optimization of statistical parameters for each step, balancing the
importance of achieving maximum accuracy during training with
the model’s ability to generalize to the test data. Despite these
procedures were conducted to reduce overfitting and increase
generalizability, the observed performance discrepancy between
the training and test sets may still arise from differences in data

distributions—such as variations in imaging protocols, sample
characteristics, or even inherent differences between the data of
training and test sets. These shifts in data distribution could reduce
the model’s ability to generalize to new samples, leading to the
observed drop in test set performance. The datasets should have
a sufficiently large sample size to minimize the risk of overfitting.
Future research should validate our findings in larger, multicenter
cohorts to assess the robustness and generalizability of the clinical-
radiomics integrated model across diverse populations and further
confirm its clinical utility.

One of the most crucial aspects of our study was the validation
of the models using an independent test set derived from the PPMI
database. The test set, which was acquired using different MRI
scanners and imaging protocols, provided an opportunity to assess
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FIGURE 6

Decision curves for the radiomics, clinical, and radiomics-clinical
integrated models. The Y-axis shows the model benefit. The green
line represents the radiomics-clinical integrated model. The blue
line represents the radiomics model, and the yellow line represents
the Clinical model. The X-axis means the threshold probability.

the generalizability of the models. Despite these differences, our
models performed well, demonstrating AUC values of 0.852 in the
test set, which is comparable to other studies in the field (Sun
et al., 2024). This highlights the robustness and potential clinical
applicability of the proposed clinical-radiomics model. Second,
our findings supported the use of advanced radiomics techniques
in routine clinical settings. Given the relatively high diagnostic
accuracy of the MRI-based models, radiomics could be employed
as a supplementary tool, providing additional information to guide
decision-making in clinical settings. As the technology becomes
more accessible and automated, radiomics could play a central
role in the standard diagnostic workflow for PD. Furthermore,
DCA conducted as part of our evaluation showed that the clinical-
radiomics combined model provides a substantial clinical benefit
across a wide range of decision thresholds. DCA is a novel method
for evaluating the clinical utility of diagnostic models, and its
application in this study emphasizes the practical relevance of our
model in real-world clinics.

This study has several limitations. Firstly, the sample size,
although adequate for preliminary validation, is relatively small,
particularly in the test set. Future studies should aim to validate
our findings using larger, multicenter cohorts to assess the
robustness and generalizability of the integrated model across
diverse populations and clinical settings. Secondly, while T2-Flair
and T1WI are commonly used in routine clinical settings, other
advanced imaging modalities, such as diffusion tensor imaging
(DTI), functional MRI (fMRI), and iron-sensitive imaging, could
provide complementary information and enhance the model’s
diagnostic accuracy. Another limitation is the cross-sectional
nature of our study. Longitudinal data would provide a more robust
assessment of how radiomic features evolve over time and their
ability to track disease progression. Future studies should focus on
using radiomics to predict long-term outcomes, such as cognitive
decline or motor progression, which are key concerns for clinicians
managing PD patients. Additionally, while our integrated model
combined clinical and imaging data, further research is needed
to identify additional biomarkers that may improve diagnostic

performance. Genetic, biochemical, and other neuroimaging
markers could be incorporated into future models to capture the
full spectrum of pathological changes associated with PD.

Conclusion

In conclusion, this study developed an optimal radiomics
signature in combination with clinical data model to markedly
improve the diagnostic accuracy of PD, outperforming models
that relied solely on imaging or clinical features. The integration
of structural imaging biomarkers with clinical indexes not
only improves diagnostic accuracy but also provides a deeper
understanding of the neurobiological changes underlying PD. This
model could serve as a non-invasive, easily accessible tool which,
in conjunction with clinical variables, aiding in the early detection
of PD and facilitating timely interventions. Moving forward,
longitudinal studies should concentrate on validating a multimodal
combination of structural imaging techniques, functional images,
and potentially other modalities (e.g., inflammation, other
neurotransmitters) in larger, more diverse populations with the
aim of improving patient outcomes through earlier and more
accurate diagnosis and providing stronger interpretation of disease-
modifying therapies.
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