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Background: Alzheimer’s disease (AD) might be  best conceptualized as a 
disconnection syndrome, such that symptoms may be  largely attributable to 
disrupted communication between brain regions, rather than to deterioration 
within discrete systems. EEG is uniquely capable of directly and non-invasively 
measuring neural activity with precise temporal resolution; connectivity 
quantifies the relationships between such signals in different brain regions. 
EEG research on connectivity in AD and mild cognitive impairment (MCI), often 
considered a prodromal phase of AD, has produced mixed results and has yet 
to be synthesized for comprehensive review. Thus, we performed a systematic 
review of EEG connectivity in MCI and AD participants compared with cognitively 
healthy older adult controls.

Methods: We searched PsycINFO, PubMed, and Web of Science for peer-
reviewed studies in English on EEG, connectivity, and MCI/AD relative to 
controls. Of 1,344 initial matches, 124 articles were ultimately included in the 
systematic review.

Results: The included studies primarily analyzed coherence, phase-locked, and 
graph theory metrics. The influence of factors such as demographics, design, 
and approach was integrated and discussed. An overarching pattern emerged of 
lower connectivity in both MCI and AD compared to healthy controls, which was 
most prominent in the alpha band, and most consistent in AD. In the minority 
of studies reporting greater connectivity, theta band was most commonly 
implicated in both AD and MCI, followed by alpha. The overall prevalence 
of alpha effects may indicate its potential to provide insight into nuanced 
changes associated with AD-related networks, with the caveat that most 
studies were during the resting state where alpha is the dominant frequency. 
When greater connectivity was reported in MCI, it was primarily during task 
engagement, suggesting compensatory resources may be  employed. In AD, 
greater connectivity was most common during rest, suggesting compensatory 
resources during task engagement may already be exhausted.

Conclusion: The review highlighted EEG connectivity as a powerful tool 
to advance understanding of AD-related changes in brain communication. 
We address the need for including demographic and methodological details, 
using source space connectivity, and extending this work to cognitively healthy 
older adults with AD risk toward advancing early AD detection and intervention.
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1 Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder 
characterized by impairment in multiple cognitive domains (e.g., 
memory, planning, problem solving) and in the ability to complete 
instrumental activities of daily living (e.g., managing medications, 
preparing meals; Alzheimer’s Association, 2024). The 
neuropathological signatures of AD include the accumulation of 
neurofibrillary tangles and amyloid plaques. Although there is a great 
deal of attention on amyloid deposition and intervention in AD 
diagnosis and treatment (Long and Holtzman, 2019; Selkoe and 
Hardy, 2016), neurofibrillary tangles importantly and 
disproportionately impact the tracts that underlie communication 
between different brain regions (Delbeuck et al., 2003; Watanabe et al., 
2019; Yu et  al., 2021). These patterns, coupled with evidence of 
structural and functional brain network impairments in AD, have led 
to the hypothesis that AD is a “disconnection syndrome” (for review 
see Delbeuck et al., 2003; Stam, 2014; Yu et al., 2021). Specifically, AD 
symptoms are proposed to result from impaired connectivity between 
various brain regions and networks, rather than being due to the 
disruption of discrete neural systems.

Characterizing neural connectivity patterns may be crucial to 
tracking the development and progression of AD across its different 
stages. Mild cognitive impairment (MCI), considered a prodromal 
stage of AD, is characterized by cognitive decline beyond what is 
typical for healthy aging, but that is insufficient to meet criteria for 
AD, and without loss of the abilities required to live independently 
(Alzheimer’s Association, 2022, 2024; Petersen, 2004, 2016). Although 
the presentation of MCI is heterogeneous, with multiple underlying 
causes, approximately 10–20% of cases convert to AD every year, with 
approximately one-third developing AD within five years (Alzheimer’s 
Association, 2022; Bruscoli and Lovestone, 2004; Petersen et al., 2018; 
Ward et al., 2013). Thus, it is important to evaluate MCI toward better 
understanding early AD risk.

Despite increasing focus on the quantification of amyloid plaques 
and neurofibrillary tangles for AD diagnosis, the neuroimaging of 
these biomarkers is invasive and extremely expensive, which severely 
limits its feasibility (Fiandaca et al., 2014; Milà-Alomà et al., 2019). 
Conversely, electroencephalography (EEG) is a neuroimaging method 
that is non-invasive, inexpensive, and directly measures neural 
functioning at a millisecond scale, via summated post-synaptic 
potentials in real-time (Luck, 2014; Slotnick, 2017). EEG can be used 
to model the relationship between neural activity in different brain 
regions, providing information regarding the communication, or 
connectivity, between those regions, which can only be estimated by 
other in vivo neuroimaging methods. In addition, EEG signals may 
be  deconvolved into their underlying neural oscillations (i.e., 
rhythms), which have been suggested as a critical component of signal 
transfer between brain regions (Buzsáki and Watson, 2012; Chapeton 
et  al., 2019; Mulert, 2013; Schnitzler and Gross, 2005). For these 
reasons, recent international initiatives advocate for increased 
utilization and study of EEG as a biomarker of AD (Babiloni et al., 
2021; Babiloni et al., 2020; Maestú et al., 2019; Paitel et al., 2021).

There are multiple approaches to analyzing connectivity with EEG 
(cf. Bastos and Schoffelen, 2016; Cao et al., 2022; Chiarion et al., 2023; 
Sakkalis, 2011; Srinivasan et  al., 2007), either via bivariate or 
multivariate signal relationships. The most common approaches to 
connectivity are non-directed metrics, which quantify the relationship 
between the signals, without inferring causation (i.e., one region 
sending a signal to the other). Directed (i.e., effective) connectivity, on 
the other hand, seeks to establish a causal relationship, determining 
the causal flow of information between regions. EEG connectivity is 
analyzed in either the time or frequency domain, with additional 
time-frequency approaches gaining popularity in recent years 
(Chiarion et al., 2023; Morales and Bowers, 2022). The most common 
time domain metrics are those based in correlations, such as Pearson’s 
correlations, mutual information, and cross-correlation (Bastos and 
Schoffelen, 2016; Cao et al., 2022). Frequency domain approaches first 
decompose the signal into the underlying oscillatory activity, which 
are then commonly grouped by their fundamental frequency bands: 
delta (2-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz), and 
gamma (30 + Hz). Relationships may then be analyzed between the 
phase or power of the oscillatory signals. The most common 
frequency-based approaches include variations of coherence, phase-
locking value, and phase-slope index (Bastos and Schoffelen, 2016; 
Cao et al., 2022). It is important to note that the underlying meaning 
of connectivity computed from each of these metrics may have 
different interpretations. For example, it has been suggested that 
phase-based measures primarily reveal information regarding the 
timing of activity within neural populations, while power-based 
metrics are more informative about the quantity or spatial extent of 
such populations (Cohen, 2014). Thus, the use of different metrics, 
and even the data processing choices with the same metrics, may 
contribute to substantial variability across studies.

The existing EEG literature on resting state and task-induced 
connectivity in AD and MCI is both complex and nuanced, and it has 
yet to be systematically reviewed. Existing systematic reviews have 
been selective, focusing on certain connectivity approaches (e.g., 
magnitude squared coherence, Fischer et al., 2023), frequency bands 
(e.g., alpha, Lejko et al., 2020), only resting state activity (Babiloni 
et al., 2016a; Cassani et al., 2018; Teipel et al., 2016; Vecchio et al., 
2013), or considering either MCI or AD, but not both (Buzi et al., 
2023). While not a systematic review, the most recent paper to review 
EEG studies in both MCI and AD during task and rest included 
discussion of multiple EEG approaches, including connectivity studies 
(Horvath et al., 2018). A recent review from Adebisi and Veluvolu 
(2023) that covered the years of 2016–2020 evaluated the 
discriminative ability of EEG connectivity for dementia diagnoses, not 
specific to MCI or AD, with a methodological focus. Overall, existing 
reviews are biased toward assessing resting state activity (default-
mode network, DMN). They typically report reduced alpha band 
connectivity in MCI and AD compared to healthy control groups 
(HC), with some studies pointing to the strongest effects in longer-
distance communication, such as between frontal–parietal and 
frontal-temporal regions (Babiloni et al., 2016a; Fischer et al., 2023; 
Lejko et  al., 2020). Findings in other frequency bands have been 

https://doi.org/10.3389/fnagi.2025.1496235
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Paitel et al. 10.3389/fnagi.2025.1496235

Frontiers in Aging Neuroscience 03 frontiersin.org

inconsistent (Babiloni et al., 2016a; Buzi et al., 2023; Fischer et al., 
2023; Horvath et al., 2018). Thus, a comprehensive, up-to-date, and 
systematic review is timely and important.

The present systematic review summarizes studies comparing EEG 
connectivity in MCI or AD with healthy older adult controls, including 
resting state and task-activated studies, across all connectivity metrics. 
We report the results of studies grouped by connectivity approach, and 
we highlight overarching patterns both within and across these 
approaches by diagnostic group relative to controls. The contributions 
and limitations of demographic factors, methods, and study designs are 
also discussed. The aim of the present review is to both discern patterns 
in the rich and complex existing research on EEG connectivity in MCI 
and AD, as well as to guide future cognitive neuroscience research on 
the use of EEG as an early AD biomarker.

2 Methods

2.1 Search strategies

Database searches were conducted in PsycINFO, PubMed, and 
Web of Science, inclusive of all dates from the inception of the 
databases through February 9, 2023. Given its relevance to risk for AD 
and previous work indicating the potential importance of neural 
patterns in asymptomatic participants with risk for AD (Bondi et al., 
2005; Filippini et al., 2011; Paitel et al., 2021; Rao et al., 2015; Reuter-
Lorenz and Park, 2014; Woodard et al., 2010), we also conducted 
searches for studies with healthy, cognitively intact participants with 
genetic AD risk via the Apolipoprotein-E (APOE) ε4 allele 
(Alzheimer’s Association, 2024; Yu et al., 2014). The search strategy 
syntax was adjusted for each specific database, but specifically required 
the keywords [“EEG” AND “connectivity”] AND [“MCI” OR “mild 
cognitive impairment”] or [“Alzheimer’s”] or [“APOE” OR 
“Apolipoprotein E”], as well peer-reviewed, published paper type and 
that they be written in English. The number of articles at each step of 
the review process is detailed in Figure  1. Notably, returns only 
considered the role of APOE within cognitively impaired groups (i.e., 
MCI or AD), rather than in cognitively healthy groups. As such, 
APOE could not be evaluated separately from MCI and AD.

2.2 Article selection

Figure  1 displays the overall process for study inclusion and 
exclusion, consistent with the Preferred Reporting Items for Systematic 
reviews and Meta-Analyses (PRISMA) guidelines (Page et al., 2021). 
Duplicate articles were first deleted, and the remaining returns were 
then evaluated using the paper title and abstract. These papers were 
only further examined if the title and/or abstract suggested they: (1) 
were original, empirical, peer-reviewed studies, (2) analyzed 
functional or effective connectivity using EEG, (3) employed a sample 
of participants with MCI or AD, and (4) compared an MCI/AD group 
with a healthy older adult control group. The 241 studies that passed 
this initial evaluation were subjected to full article evaluation. Studies 
excluded at this stage failed inclusion criteria after detailed evaluation 
for the following reasons: not an original, empirical, peer-reviewed 
study (n = 5); did not include a sample with sporadic, late-onset AD, 
MCI, or APOE groups (n = 12); did not include direct, statistical 
comparison with a healthy, cognitively intact older adult control group 
(n = 44); did not analyze functional or effective connectivity (n = 34); 
connectivity analyses did not use EEG (n = 17); were duplicate articles 
(n = 4); or were unavailable in English (n = 1). Note that some 
excluded papers failed multiple inclusion criteria, but each was 
recorded under one category for simplicity. These exclusions resulted 
in a final total of 124 studies to be included in the review.

3 Results

The 124 studies included in this review included 35 papers that 
analyzed an MCI sample (Supplementary Table S1), 56 that examined 
AD (Supplementary Table S2), and 33 papers that analyzed both MCI 
and AD samples (shown in both Supplementary Tables S1, S2). These 
papers included 9,537 participants total (2,279 MCI (24%); 3,603 AD 
(38%); 3,655 HC (38%)), although there is some duplication of 
participants that were included in more than one study (e.g., Ruiz-
Gómez et al., 2019b; Ruiz-Gómez et al., 2021). Multiple methodological 
approaches were used to examine connectivity across studies (see 
Supplementary Table S3), with coherence, other phase-based approaches 
(which we will refer to as ‘phase-locked’ for brevity), and graph theory 
approaches most frequently applied. Quality of the included studies was 
variable; a quality assessment checklist to assess the risk of bias in 
individual studies adapted from the Newcastle-Ottawa scale (Lejko et al., 
2020; Wells et al., 2014) is provided in Table S4. We also note that the vast 
majority of the studies reviewed were conducted in independently 
recruited research samples, with little use of large public databases or 
repositories. Although there was some evidence of overlapping samples 
between some studies, they analyzed different connectivity metrics and/
or different EEG contexts within those samples.

3.1 Sample characteristics

3.1.1 Sample size
Group sample sizes ranged widely across studies (HC n = 7–135, 

MHC = 28.8, SD = 23.4; MCI n = 7–154, MMCI = 33.0, SD = 26.7; AD 
n = 6–318, MAD = 40.0, SD = 47.8). There was a marginal difference 
across sample types amongst the studies in the review, F(2,283) = 2.95, 
p = 0.054, 2η  = 0.02. Post-hoc contrasts were checked despite the 

FIGURE 1

Article selection process for inclusion in the systematic review, 
consistent with the Preferred Reporting Items for Systematic reviews 
and Meta-Analyses (PRISMA) guidelines (Page et al., 2021).
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marginal omnibus effect, given the lack of specific hypothesis and 
exploratory nature of the comparison; sample sizes were comparable 
between AD and MCI (7.0, p = 0.20) and MCI and HC (4.2, p = 0.40), 
with AD samples overall larger than HC samples (11.3, p = 0.02).

3.1.2 Age
Mean age was reported in 105 out of 124 studies (i.e., 85%). Seven 

additional studies reported only the age range or minimum age of the 
samples. Across studies that reported mean age, there was a significant 
overall difference amongst sample types, F(2,232) = 9.97, p < 0.001,  

2η  = 0.09. Post-hoc contrasts showed the effect was attributable to 
younger HC groups (range: 57.4–80.1 years, MHC = 69.3, SD = 4.8) 
than MCI groups (range: 61.0–85.5 years, MMCI  = 71.1, SD  = 5.1; 
−1.80, p = 0.02) and AD groups (range: 64.0–83.9 years, MAD = 72.4, 
SD = 4.0; −3.12, p < 0.001). Average age was not significantly different 
between AD and MCI groups (1.30, p = 0.11).

3.1.3 Education
Only 61 out of 124 studies (i.e., 49%) reported average years of 

education by group. Four additional studies reported education as a 
binary category (e.g., 5–11 years or > 11  years), and two studies 
reported only a minimum education level. Across studies reporting 
mean education, there was a significant difference between sample 
types, F(2,134) = 5.23, p = 0.007, 2η  = 0.07. Post-hoc contrasts showed 
that this difference was due to significantly fewer years of education 
in the AD groups (range: 3.31–14.14 years, MAD = 9.6, SD = 2.48) 
when compared with MCI groups (range: 5.86–15.39, MMCI = 11.0, 
SD  = 2.49; −1.35, p  = 0.04) or HC groups (range: 3.36–16.50, 
MHC = 11.2, SD = 2.87; −1.87, p = 0.005). HC did not significantly 
differ from MCI (0.53, p = 0.37).

3.1.4 Sex
The distribution of female and male participants was reported in 

103 out of 124 studies (i.e., 83%). Across these studies, sex distribution 
varied widely, with percent female ranging from 25–74% in HC 
(MHC  = 54.68%, SD  = 12.04), 24–76% in MCI (MMCI  = 52.39, 
SD  = 12.74), and 20–86% in AD (MAD  = 57.54%, SD  = 13.18). A 
Kruskal-Wallis non-parametric ANOVA showed no overall a 
significant difference in distribution of females, H(2) = 2.37, p = 0.31.

3.1.5 MMSE scores
83 out of 124 studies (i.e., 67%) reported average MMSE scores 

(possible range: 0–30) for their samples (Folstein et al., 1983). Of 
the 41 papers that lacked MMSE data (see 
Supplementary Tables S1, S2), four used a different metric, 17 
reported MMSE in a manner that could not be accurately tabulated 
(e.g., ranges, cutoffs, medians, unclear group values), and 13 papers 
provided no specific cognitive information or only reported that 
participants “met criteria” for the diagnostic category. For the 83 
studies reporting MMSE, there was a notable range of MMSE 
scores particularly in AD groups (HC: 25.73–30.00, MCI: 20.3–
28.41, AD: 9.40–26.30). Moreover, there was a significant overall 
group difference in MMSE, as expected (F(2,181) = 320.15, 
p < 0.001, 2η  = 0.78). Post-hoc contrasts showed that MMSE was 
significantly lower in AD than in MCI (−5.91, p  < 0.001, 
MAD  = 19.94, SD  = 3.07, MMCI  = 25.85, SD = 1.66) and in HC 
(−8.67, p < 0.001, MHC = 28.61, SD = 0.93), and MCI was lower 
than HC (−2.76, p < 0.001). Notably, MMSE within HC groups was 

comparable regardless of study sample composition differences 
(i.e., studies that compared HC with AD, HC with MCI, or all three 
groups, F(2,79) = 0.30, p = 0.74, 2η = 0.008).

3.2 Methodological characteristics

3.2.1 Metrics
The papers in this review represented most of the various 

metrics available for studying EEG connectivity, with some studies 
applying more than one approach. The primary approaches were 
coherence (n = 41), phase-locked (n = 35), and graph theory 
(n = 44), with multiple other less frequently applied approaches also 
represented (n = 34 studies). Importantly, these metrics analyze 
fundamentally different aspects of neural connectivity, which can 
contribute to the appearance of variability across studies (Cohen, 
2014). Moreover, even within methods, there were computational 
differences and methodological choices that might contribute to 
differences in study findings (see Supplementary Table S3). Four 
methodological factors deserve particular attention. First, only 29% 
of studies (i.e., 36/124) analyzed connectivity in source space. 
Instead, the majority of studies did analyses at the electrode level. 
Sensor-level approaches are limited by the effects of volume 
conduction, such that multiple EEG sensors record signals from the 
same underlying brain region, which can result in connectivity 
results that reflect activity from shared brain regions (Chiarion et al., 
2023; Mahjoory et al., 2017; Michel and Brunet, 2019; Schoffelen and 
Gross, 2009; Van de Steen et al., 2019).

3.2.2 Data segmentation
There was substantial variability across studies in the duration of 

the data segments used to compute connectivity. For connectivity 
metrics in the frequency domain, frequency resolution is determined 
by the number of samples included in the data segments. Durations 
ranged widely, from 400 milliseconds at 256 Hz (~1,563 samples, 
~2.5 Hz resolution; Bagattini et al., 2022) to 40 s at 500 Hz (80,000 
samples, ~.025 Hz resolution; Kabbara et al., 2018; but see also Vyšata 
et al., 2015). Generally, it is recommended to use a time window that 
includes three cycles at the lowest frequency of interest or at least one 
second before and after the time window of interest to ensure sufficient 
frequency resolution (Cohen, 2014). Thus, some of the reviewed 
samples used too few time points, likely resulting in smearing, which 
is a distortion (or “blurring”) of the EEG signal that makes it difficult 
to interpret a signal’s actual frequency (Buzzell et  al., 2022; 
Cohen, 2014).

3.2.3 Measurement context
The studies reviewed primarily analyzed EEG connectivity during 

the resting state. Indeed, only 19% (i.e., 24/124) of studies analyzed 
EEG during active task engagement. Eleven of 24 (46%) task-related 
studies used coherence methods. The tasks used typically tapped 
memory-related functions (n = 16; e.g., digit span, n-back, mental 
arithmetic) or basic sensory-attentional processing (n = 7; e.g., visual, 
auditory, or olfactory oddball paradigms).

3.2.4 Frequency bands
Most of the reviewed studies analyzed connectivity using multiple 

frequency bands. The most common frequency bands were alpha 
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(n = 94), theta (n = 87), beta (n = 84), and delta (n = 72). Gamma 
activity was less frequently included (n = 46), which is likely 
attributable to greater concerns of EEG artifact within high frequencies 
(Muthukumaraswamy, 2013). An additional 23 studies analyzed 
“broadband” EEG signals, using a range that included activity across 
multiple frequency bands (e.g., 1-100 Hz). Within alpha and beta 
bands, about half of the studies divided analyses into lower (alpha-1, 
beta-1) and upper (alpha-2, beta-2) bands. This approach may 
be advantageous given the relatively wide frequency range within 
alpha (typically ~8-12 Hz) and beta (~12-30 Hz), relative to delta 
(~2-4 Hz) and theta (~4-8 Hz), and some evidence of differential 
patterns by band subdivision (Bazanova and Vernon, 2014; 
Klimesch, 1999).

3.3 Connectivity results

The studies with significant connectivity findings are presented 
separately for each of the primary connectivity methods, specifically: 
coherence (Table 1); phase-locked (Table 2); graph theory (Table 3); 
and various other, less frequently used approaches (e.g., correlational 
metrics; Table 4). Three studies do not appear in these tables due to 
purely non-significant findings (Ding et al., 2022; Kim et al., 2018; 
Núñez et al., 2019); they can be found in Supplementary Table S3.

3.3.1 Coherence
Coherence is a non-directed metric that assesses the relationship 

between the power spectra of two signals. Coherence metrics are 
primarily based on the consistency of phase differences between the 
two sensors or brain regions, which are sensitive to both the phase and 
amplitude of the signals (Bastos and Schoffelen, 2016; Cao et al., 2022; 
Srinivasan et al., 2007).

3.3.1.1 MCI
Eighteen of 20 studies (90%) that examined MCI reported 

significant connectivity differences between MCI and HC using 
coherence metrics (Table  1). Four studies reported mixed 
directionality, dependent on the frequency band, region, and type of 
coherence (Handayani et al., 2018; Musaeus et al., 2019a; Musaeus 
et al., 2019b; Rodinskaia et al., 2022). Eight studies reported only 
lower connectivity in MCI compared to HC (44%, 8/18; Babiloni et al., 
2018b, 2019; Barzegaran et al., 2016; Michels et al., 2017; Tao and 
Tian, 2006; Teipel et al., 2009; Vanneste et al., 2021; Xu et al., 2014), 
while six reported only greater connectivity in MCI (33%; Babiloni 
et al., 2009; Fide et al., 2023; Jiang, 2005; Jiang and Zheng, 2006; Jiang 
et al., 2008; Zheng et al., 2007). One study analyzed resting and task 
conditions together, without post-hoc comparisons separating the 
conditions (Rodinskaia et al., 2022). Of the remaining studies, 83% 
(5/6) that reported greater connectivity in MCI examined active, task-
related connectivity using visual oddball (Fide et al., 2023) or working 
memory tasks (using the same sample - Jiang, 2005; Jiang and Zheng, 
2006; Jiang et al., 2008; Zheng et al., 2007). In contrast, resting state 
connectivity was most frequently reduced in MCI compared to HC 
(91%, 10/11; including three studies with mixed directionality). 
Furthermore, the reports of greater connectivity in MCI most 
frequently included the delta and/or theta band (80%; 8/10), with 
alpha the next most frequent (70%; 7/10), while lower connectivity in 
MCI was most commonly in the alpha (7/12) and beta (6/12) bands.

Given the relative advantages of connectivity analyses in source 
vs. sensor space, it is notable that all five studies conducted in source 
space reported lower resting state connectivity in MCI compared to 
HC, with most effects in alpha and beta bands (Babiloni et al., 2018b; 
Babiloni et al., 2019; Barzegaran et al., 2016; Michels et al., 2017; 
Vanneste et  al., 2021). Moreover, the only study to report lower 
connectivity in MCI in the theta band used source analysis to 
compute connectivity between posterior cingulate and 
parahippocampal cortices, finding lower connectivity both within the 
theta band and in theta-gamma coupling between these regions 
(Vanneste et al., 2021).

3.3.1.2 AD
Twenty-seven of 31 studies (87%) that examined AD groups 

found significant connectivity differences between AD and HC using 
coherence approaches (Table  1). Ten studies reported mixed 
directionality (Babiloni et al., 2018a; Babiloni et al., 2009; Babiloni 
et al., 2016b; Dubovik et al., 2013; Fide et al., 2022; Hidasi et al., 2007; 
Leuchter et al., 1994; Musaeus et al., 2019a; Musaeus et al., 2019b; 
Vyšata et al., 2015). All of the remaining studies reported only lower 
connectivity in AD compared to HC (63%, 17/27; Al-Nuaimi et al., 
2021; Barzegaran et al., 2016; Blinowska et al., 2017; Chan et al., 2013; 
Fide et al., 2023; Güntekin et al., 2008; Ho et al., 2014; Jelic et al., 1997; 
Locatelli et al., 1998; Rodinskaia et al., 2022; Sankari et al., 2011, 2012; 
Sedghizadeh et al., 2022; Sedghizadeh et al., 2020; Tao and Tian, 2006; 
Wang et al., 2014, 2015), including during resting state and in all six 
studies that used a cognitive task (Fide et al., 2023; Güntekin et al., 
2008; Ho et al., 2014; Sedghizadeh et al., 2022; Sedghizadeh et al., 
2020; Tao and Tian, 2006). Only four studies (15%) analyzed 
coherence in source space; all four reported lower resting connectivity 
in AD compared to HC, two with mixed directionality (Babiloni et al., 
2018a; Babiloni et al., 2016b; Barzegaran et al., 2016; Dubovik et al., 
2013). One study reported their findings in terms of wavelet scales; the 
relationship and comparability with traditional frequency bands was 
not described (Vyšata et  al., 2015). They overall reported lower 
connectivity in AD compared to HC within the frontal lobe and at 
higher frequencies, but greater connectivity in AD in frontal–parietal 
connections and at lower frequencies. Of the remaining studies, 
findings of lower connectivity in AD were most frequent in the alpha 
band (73%; 19/26), followed by beta (42%; 11/26) and theta (35%; 
9/26). All reports of greater connectivity in AD were part of studies 
that reported mixed directionality (Babiloni et al., 2018a; Babiloni 
et al., 2009; Babiloni et al., 2016b; Dubovik et al., 2013; Fide et al., 
2022; Hidasi et al., 2007; Leuchter et al., 1994; Musaeus et al., 2019a; 
Musaeus et al., 2019b), which were dependent on frequency band, 
region of interest, and coherence metric. The majority of the findings 
of greater connectivity in AD were in the delta and/or theta band 
(89%; 8/9), and all were during resting state.

3.3.2 Phase-locked
The phase-locked metrics reported in these studies primarily 

included phase lag index, phase-locking value, and phase 
synchronization, with variations including weighted, debiased, and 
lagged measures. These are non-directed frequency domain metrics 
that assess the phase synchrony between two signals. Unlike 
coherence, these measures are sensitive specifically to the phase 
information, rather than both phase and amplitude (Bastos and 
Schoffelen, 2016; Cao et al., 2022; Chiarion et al., 2023).
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TABLE 1 Summary of significant findings from studies using coherence metrics to assess connectivity.

1. Mild cognitive impairment (MCI) v. Healthy control (HC)

Authors 
(Year)

Connectivity
approach

Analysis
basis†

Recording
context†

Significant
bands†

Group
effects^

Ref.

Babiloni et al. 

(2009)

MSQ Sensors - pairs Rest - EC Delta MCI > HC 4

Babiloni et al. 

(2018b)

LL Source - eLORETA Rest - EC Alpha2, alpha3 MCI < HC 7

Babiloni et al. 

(2019)

LL Source - eLORETA Rest - EC Alpha2, alpha3 MCI < HC 8

Barzegaran et al. 

(2016)

LL Source - LAURA Rest‡ − EC, EO Beta MCI < HC 10

Fide et al. (2023) IM Sensors - pairs Task - VO Theta MCI > HC 31

Handayani et al. 

(2018)

MSQ Sensors - pairs Rest - EC Delta, theta (temporal) MCI > HC 43

Theta (FC), alpha, beta MCI < HC

Jiang (2005) MSQ Sensors - pairs Task - WM Delta, theta, alpha1, alpha2, 

beta1, beta2

MCI > HC 53

Jiang and Zheng 

(2006)

MSQ Sensors - pairs Task - WM Delta, theta, alpha1, alpha2, 

beta1, beta2

MCI > HC 54

Jiang et al. (2008) MSQ Sensors - pairs Task - WM Delta, theta, alpha1, alpha2, 

beta1, beta2

MCI > HC 55

Michels et al. (2017) MSQ, RPD Source - 

Beamformer

Rest - EC Alpha, beta MCI < HC 72

Musaeus et al. 

(2019a)

MSQ, IM Sensors - pairs Rest - EC MSQ: Alpha^, beta (frontal, 

frontal-occipital)

IM: Delta

MCI < HC 76

MSQ: Delta^, theta, beta 

(temporal, frontal-temporal)

IM: Theta, alpha

MCI > HC

Musaeus et al. 

(2019b)

MSQ Sensors - pairs Rest - EC, EO Delta, beta^ MCI < HC 77

Theta MCI > HC

Rodinskaia et al. 

(2022)

NA Sensors - pairs Rest - EC and task 

(combined)

Beta (parietal) MCI < HC 84

Alpha, Beta (temporal) MCI > HC

Tao and Tian (2006) NA Sensors - pairs Task -

COUNT

Gamma MCI < HC 99

Teipel et al. (2009) NA Sensors - pairs Rest - EC Alpha MCI < HC 100

Vanneste et al. 

(2021)

LL Source - eLORETA Rest - EC Theta MCI < HC 104

Xu et al. (2014) MSQ Sensors - pairs Rest - EC Alpha2 MCI < HC 117

Zheng et al. (2007) MSQ Sensors - pairs Task - WM Alpha1, alpha2 MCI > HC 124

2. Alzheimer’s disease (AD) v. Healthy control (HC)

Authors (Year) Connectivity
approach

Analysis
basis†

Recording
context†

Significant
bands†

Group
effects^

Ref.

Al-Nuaimi et al. 

(2021)

MSQ Sensors - pairs Rest - NA Alpha/theta,

beta/theta ratio

AD < HC 2

Babiloni et al. (2009) MSQ Sensors - pairs Rest - EC Delta AD > HC 4

Alpha1 AD < HC

(Continued)
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TABLE 1 (Continued)

2. Alzheimer’s disease (AD) v. Healthy control (HC)

Authors (Year) Connectivity
approach

Analysis
basis†

Recording
context†

Significant
bands†

Group
effects^

Ref.

Babiloni et al. 

(2016b)

LL Source - eLORETA Rest - EC Alpha1, alpha2 AD < HC 5

Delta, theta AD > HC

Babiloni et al. 

(2018a)

LL Source - eLORETA Rest - EC Alpha2, alpha3 AD < HC 6

Delta AD > HC

Barzegaran et al. 

(2016)

LL Source - LAURA Rest - EC, EO Beta AD < HC 10

Blinowska et al. 

(2017)

ORD Sensors - pairs Rest - EC Theta, alpha, beta, gamma AD < HC 12

Chan et al. (2013) MSQ Sensors - pairs Rest - PS Alpha, beta, theta AD < HC 20

Dubovik et al. 

(2013)

IM Source - 

Beamformer

Rest - EC Alpha AD < HC 27

Theta AD > HC

Fide et al. (2022) IM Sensors - avg. 

regions

Rest - EC Alpha1 AD < HC 30

Delta AD > HC

Fide et al. (2023) IM Sensors - pairs Task - VO Delta, theta, alpha AD < HC 31

Güntekin et al. 

(2008)

MSQ Sensors - pairs Task - VO Delta, theta, alpha AD < HC 39

Hidasi et al. (2007) NA Sensors - pairs Rest - EC, EO Alpha1 AD < HC 46

Alpha2, beta2 AD > HC

Ho et al. (2014) MSQ Sensors - CP3-F4 Task - AO Theta AD < HC 47

Jelic et al. (1997) MSQ Sensors - avg. 

regions

Rest - EC Alpha AD < HC 51

Leuchter et al. 

(1994)

MSQ Sensors - pairs Rest - EC 16 Hz AD < HC 65

4 Hz AD > HC

Locatelli et al. (1998) MSQ Sensors - pairs Rest - EC Alpha AD < HC 69

Musaeus et al. 

(2019a)

MSQ, IM Sensors - pairs Rest - EC MSQ: Alpha^, beta (frontal-

occipital)

IM: Delta

AD < HC 76

MSQ: Theta, beta (temporal, 

frontal-temporal)

IM: Theta, alpha

AD > HC

Musaeus et al. 

(2019b)

MSQ Sensors - pairs Rest - EC, EO Alpha, beta^ AD < HC 77

Delta, theta AD > HC

Rodinskaia et al. 

(2022)

NA Sensors - pairs Rest - EC, Task-

multiple

Rest: Beta AD < HC 84

Sankari et al. (2011) MSQ Sensors - pairs Rest - EC Delta^, theta, alpha, beta AD < HC 88

Sankari et al. (2012) WF Sensors - pairs Rest - EC Delta, theta,

alpha, beta

AD < HC 89

Sedghizadeh et al. 

(2020)

IM Sensors - pairs Task - OO Beta, gamma AD > HC§ 90

(Continued)
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3.3.2.1 MCI
Seventeen of 22 studies (77%) reported significant connectivity 

effects in MCI using phase-locked approaches (Table 2). Of these, 
two found mixed directionality, dependent on the frequency band 
or connectivity metric (Spyrou et al., 2018; Tóth et al., 2014). Twelve 
studies reported only lower connectivity in MCI compared to HC 
(71%, 12/17; Gómez et al., 2018; Gonzalez-Escamilla et al., 2015; 
Gonzalez-Escamilla et al., 2016; Gurja et al., 2022; Handayani et al., 
2018; Li et al., 2021; Požar et al., 2020; Su et al., 2021; Sweeney-Reed 
et al., 2012; Yan et al., 2021; Youssef et al., 2021; Zhang et al., 2022), 
typically in alpha (8/12), theta (5/12), or delta bands (4/12). The 
remaining three studies reported only greater connectivity in MCI 
during rest (18%, 3/17; Cantero et al., 2009a; Pons et al., 2010; Ruiz-
Gómez et  al., 2019b). When including studies with mixed 
directionality, the five studies reporting greater connectivity 
primarily reflected the alpha band (60%, 3/5); all but one were 
during rest. The task-based study used a visual short-term memory 
task and reported lower connectivity in MCI in theta, alpha, and 
beta bands, with greater synchronization between EEG components 
in MCI (Spyrou et al., 2018). Notably, only three studies analyzed 
MCI connectivity in source space, all in the resting state, with two 
finding lower alpha connectivity (Gurja et al., 2022; Zhang et al., 
2022) and one finding greater alpha connectivity (Cantero 
et al., 2009a).

3.3.2.2 AD
Fifteen of 20 studies (75%) found significant connectivity effects 

in AD using phase-locked approaches (Table 2). Seven resting state 
studies found only lower connectivity in AD compared to HC (47%, 
7/15; Engels et al., 2015; Gurja et al., 2022; Hata et al., 2016; Mehraram 
et al., 2020; Wang et al., 2022; Yan et al., 2021; Yu et al., 2019). Two 
studies found solely greater connectivity in AD (13%, 2/15): one used 
a spatial memory task (Han et al., 2017) and the other was during rest 
(Frangopoulou and Alimardani, 2022). All other reports of greater 

connectivity in AD were part of studies that reported mixed 
directionality, which were dependent on frequency band and region 
(40%, 6/15; Cai et al., 2018; Canuet et al., 2012; Kabbara et al., 2018; 
Knyazeva et al., 2010; Li et al., 2019; Ruiz-Gómez et al., 2019b). Only 
one of those studies was task-related, finding lower connectivity in AD 
than HC during a digit span task in alpha-1 and alpha-2 bands, as well 
as in beta in most regions, but greater beta band connectivity 
specifically within temporal regions (Li et al., 2019). Of the studies 
reporting lower AD connectivity, the pattern was most related to alpha 
(69%, 9/13) and beta (38%, 5/13) bands, while greater AD connectivity 
was most frequent in the theta band (75%, 6/8). Notably, 40% (6/15) 
of the AD studies using phase-locked approaches analyzed 
connectivity in source space (Canuet et al., 2012; Gurja et al., 2022; 
Hata et al., 2016; Kabbara et al., 2018; Li et al., 2019; Wang et al., 2022). 
All but one showed lower connectivity in AD than HC; the exception 
had mixed findings with primarily lower connectivity in AD, but 
greater salience network-related connectivity in the theta band 
(Kabbara et al., 2018).

3.3.3 Graph theory
Graph theory is an approach that models the brain as a complex 

network composed of nodes, which represent brain regions or sensors, 
and edges, representing the connections between them. From this 
foundation, numerous metrics can be  investigated that provide 
information regarding network function and information flow 
(Bassett and Sporns, 2017; Bassett et al., 2018; Bullmore and Bassett, 
2011). Compared to other connectivity metrics, for which lower 
values indicate lower connectivity, there is more nuance to interpreting 
graph theory metric directionality. For example, a larger divisibility 
value reflects greater separation between nodes, and thus suggests less 
efficient, or lower, connectivity. Because interpretation is highly 
dependent on the specific metric, we report group patterns for metrics 
that had at least five supporting studies. Results for all significant 
metrics can be found in Table 3.

TABLE 1 (Continued)

2. Alzheimer’s disease (AD) v. Healthy control (HC)

Authors (Year) Connectivity
approach

Analysis
basis†

Recording
context†

Significant
bands†

Group
effects^

Ref.

Sedghizadeh et al. 

(2022)

Amplitude Task-OO Gamma (Fz-Cz) AD < HC 91

Tao and Tian (2006) NA Sensors - pairs Rest - EC,

Task -

COUNT

Gamma AD < HC 99

Vyšata et al. (2015) Wavelet Sensors - pairs Rest - EC Frontal (all freq);

frontotemporal, temporal 

(higher freq)

AD < HC 111

Frontoparietal (all freq); 

fronto-occipital (lower freq)

AD > HC

Wang et al. (2014) MSQ Sensors - pairs Rest - EC Delta, theta, alpha1, alpha2, 

beta, gamma

AD < HC 112

Wang et al. (2015) MSQ Sensors - pairs Rest - EC Alpha2 AD < HC 113

Within-group effects are not shown. ^some mixed-directionality effects were found within-study, which are categorized by the most consistent pattern; †see Supplementary Table S1 for study 
specifications and technical descriptions; *individual landmarks; ‡ passive visual task; § Greater values on this metric represent lower connectivity; AO = auditory oddball; avg = averaged; 
COUNT = counting; EC = eyes closed; EO = eyes open; FC = frontal-central; IM = imaginary; LL = Lagged linear; MSQ = Magnitude squared; NA = not available/specified; OO = olfactory 
oddball; ORD = Ordinary; PS = photic stimulation; Ref = reference number; RPD = Renormalized partial Directed; VO = visual oddball; WF = Wavelet fraction; WM = working memory.
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TABLE 2 Summary of significant findings from studies using phase-locked methods to assess connectivity.

1. Mild cognitive impairment (MCI) v. Healthy control (HC)

Authors 
(Year)

Connectivity
approach

Analysis
basis†

Recording
context†

Significant
bands†

Group
effects

Ref.

Cantero et al. 

(2009a)

PSI Source - swLORETA Rest: EC Alpha1 MCI > HC 16

Gómez et al. (2018) PSLI Sensors - pairs Rest: EC Delta, theta, alpha, 

gamma

MCI < HC 36

Gonzalez-Escamilla 

et al. (2015)

PLI Sensors - avg. 

regions

Rest: EC Alpha MCI < HC 37

Gonzalez-Escamilla 

et al. (2015)

PLI Sensors - pairs Rest: EC Alpha MCI < HC 38

Gurja et al. (2022) LPS Source - eLORETA Rest: EC Alpha1 MCI < HC 41

Handayani et al. 

(2018)

PLV Sensors - pairs Rest: EC Alpha, beta MCI < HC 43

Li et al. (2021) PSI Sensors - NA Rest: EC Theta MCI < HC 67

Pons et al. (2010) PLI Sensors - pairs Rest: EC Alpha1, alpha2 MCI > HC 82

Požar et al. (2020) PLI Sensors - avg. 

regions

Rest: EC Delta MCI < HC 83

Ruiz-Gómez et al. 

(2019b)

PLI Sensors - pairs Rest: EC Theta MCI > HC 86

Spyrou et al. (2018) PLI (tensor factorization) Sensors - pairs Task: memory Theta, alpha, beta MCI < HC 94

Cross-component 

synchronization

MCI > HC

Su et al. (2021) PLV Sensors - pairs Rest: EC Alpha MCI < HC 95

Sweeney-Reed et al. 

(2012)

PLV (EMDPL) Sensors - avg. 

regions

Task: memory Theta MCI < HC 96

Tóth et al. (2014) PLI Sensors - avg. 

regions

Rest: EO Delta MCI < HC 102

Alpha1 MCI > HC

Yan et al. (2021) WPLI Sensors - pairs Rest: EC Delta MCI < HC 118

Youssef et al. (2021) Debiased WPLI Sensors - avg. 

regions

Rest: EC Theta MCI < HC 119

Zhang et al., 2022 PS Source - DICOS Rest: EC Alpha MCI < HC 122

2. Alzheimer’s disease (AD) v. Healthy control (HC)

Authors (Year) Connectivity
approach

Analysis
basis†

Recording
context†

Significant
bands†

Group
effects

Ref.

Cai et al. (2018) PSI Sensors - pairs Rest: EC Delta AD > HC 14

Alpha AD < HC

Canuet et al. (2012) LPS Source - eLORETA Rest: EC Alpha 2 AD < HC 18

Theta AD > HC

Engels et al. (2015) PLI Sensors - avg. 

regions

Rest: EC Alpha1 AD < HC 28

Frangopoulou and 

Alimardani (2022)

PLV Sensors - pairs Rest: EO Theta; Homotopic pairs: 

theta, delta

AD > HC 34

Gurja et al. (2022) LPS Source - eLORETA Rest: EC Alpha1 AD < HC 41

Han et al. (2017) PLI Sensors - avg. 

regions

Task: memory Delta, theta, alpha, beta, 

gamma

AD > HC 42

(Continued)
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Graph theory metrics with at least five supporting studies include 
clustering coefficient, path length, small worldness, local efficiency, 
and global efficiency. Clustering coefficients provide an index of how 
closely connected a node is to its neighbors (Masuda et al., 2018; 
Miraglia et al., 2022; Rubinov and Sporns, 2010; Van Diessen et al., 
2014). Path length describes the number of “steps” (i.e., edges) needed 
to get from one node to another; a longer path length is indicative of 
a less interconnected and less efficient network (Miraglia et al., 2022; 
Rubinov and Sporns, 2010; Thilaga et al., 2018; Van Diessen et al., 
2014). Small worldness describes networks that are characterized by 
high local clustering coefficients and short average path length 
between nodes (Bassett and Bullmore, 2006; Bassett and Bullmore, 
2017; Rubinov and Sporns, 2010). Networks high in small worldness 
have fewer long-distance connections. This topology is generally 
considered an efficient structure for neural network processing. 
Global and local efficiency describe how effectively information is 
transferred throughout the whole network and in  local regions, 
respectively (Achard and Bullmore, 2007; Rubinov and Sporns, 2010).

3.3.3.1 MCI
Twenty-one of 24 studies (88%) reported significant connectivity 

effects in MCI using graph theory metrics (Table  3). Six of these 
studies reported mixed directionality, largely dependent on the metric 

of interest, but also on frequency band. The majority of the findings 
indicated disrupted connectivity in MCI compared to HC.

The primary graph theory metric in MCI studies was clustering 
coefficient, with twelve studies reporting significant clustering 
coefficient results. Nine of these studies reported only smaller 
clustering coefficients in MCI compared to HC (75%, 9/12; Duan 
et al., 2020; Frantzidis et al., 2014; Ioulietta et al., 2020; Josefsson et al., 
2019; Lazarou et al., 2022; Li et al., 2021; Mammone et al., 2018; Wei 
et al., 2015; Xu et al., 2014), including both resting state and task-based 
connectivity (e.g., short-term memory tasks, Josefsson et al., 2019; 
Lazarou et al., 2022). These patterns were most commonly reported in 
alpha (50%, 5/10) and broadband (40%, 4/10), followed by theta (30%, 
3/10). In contrast, one study reported mixed directionality (i.e., 
frequency band-dependent), with smaller alpha-1 clustering 
coefficients, but larger beta-2 coefficients in MCI (Choi et al., 2021). 
In addition, two studies reported only greater clustering coefficients 
in MCI (17%, 2/12; Vecchio et al., 2014; Youssef et al., 2021). Taken 
together, studies reporting greater resting state clustering coefficients 
in MCI, which used coherence or weighted PLI computations, were in 
alpha-1 (1/3), beta-2 (1/3), and theta (1/3) bands. In addition, only 
two studies were conducted in source space, with both showing 
greater connectivity in MCI (Choi et al., 2021; Vecchio et al., 2014). 
The connectivity approach used to compute clustering coefficients in 

TABLE 2 (Continued)

2. Alzheimer’s disease (AD) v. Healthy control (HC)

Authors (Year) Connectivity
approach

Analysis
basis†

Recording
context†

Significant
bands†

Group
effects

Ref.

Hata et al. (2016) LPS Source - eLORETA Rest: EC, EO Delta, theta AD < HC 44

Kabbara et al. (2018) PLV Source - WMNE Rest: EC Theta, alpha2 (default 

mode network), beta 

(visual network)

AD < HC 57

Theta (salience attention 

network)

AD > HC

Knyazeva et al. (2010) PSI Sensors - NA Rest: EC Left frontal-temporal: 

delta, theta, alpha1, 

alpha2, beta1, beta2

AD < HC 59

Parietal: delta, theta, 

alpha1, alpha2, beta1, 

beta2

AD > HC

Li et al. (2019) WPLI Source - DBTN Task: WM Alpha1, alpha2, beta AD < HC 66

Beta (temporal regions) AD > HC

Mehraram et al. (2020) WPLI Sensors - avg. 

regions

Rest: EC Alpha, beta AD < HC 71

Ruiz-Gómez et al. 

(2019b)

PLI Sensors - pairs Rest: EC Alpha, beta2 AD < HC 86

Theta AD > HC

Wang et al. (2022) LPS Source - eLORETA, 

sLORETA

Rest: EC Gamma AD < HC 114

Yan et al. (2021) WPLI Sensors - pairs Rest: EC Delta AD < HC 118

Yu et al. (2021) PSI Sensors - pairs Rest: EC, EO Broadband AD < HC 121

Within-group effects are not shown. †see Supplementary Table S1 for study specifications and technical descriptions; avg = averaged; DBTN = Dynamic brain transition network; 
DICOS = Dynamic imaging of coherence sources; EC = eyes closed; EMDPL = empirical mode decomposition phase locking; EO = eyes open; LPS = Lagged phase synchronization; NA = not 
available/specified; PLI = phase lag index; PLV = phase locking value; PSLI = phase slope index; PSI = phase synchronization index; Ref = reference number; WPLI = weighted phase lag index; 
WMNE = Weighted minimum norm estimate; WM = working memory.
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TABLE 3 Summary of significant findings from studies using graph theory methods to assess connectivity.

1. Mild cognitive impairment (MCI) v. Healthy control (HC)

Authors 
(Year)

Connectivity
approach

Analysis
basis†

Recording
context†

Significant
metric

Significant
bands†

Group
effects

Ref.

Choi et al. 

(2021)

PLV Source - WNME Rest - EC Clustering coefficient Alpha1 MCI < HC 21

Beta2 MCI > HC

Das and 

Puthankattil 

(2020)

WPLI Sensors - avg. 

regions

Rest - EC, EO;

Task - Mental 

arithmetic

Eccentricity Gamma (task) MCI < HC 23

Leaf Fraction Alpha1 (rest) MCI < HC

Eccentricity,

diameter

Delta, theta, alpha1, 

alpha2, beta (task, 

rest)

MCI > HC

Betweenness centrality Alpha1, alpha2 

(task)

MCI > HC

Dattola et al. 

(2021)

LLC Source - 

eLORETA

Rest - EC Network robustness Broadband (1–

40 Hz)

MCI < HC 24

Duan et al. 

(2020)

Coherence,

PCOR

Sensors -NA Rest - EC Clustering coefficient,

node strength

Theta, alpha1 MCI < HC 26

Resilience Theta MCI < HC

Versatility Alpha2 MCI < HC

Path length Theta, alpha1 MCI > HC§

Betweenness centrality Theta MCI > HC

Franciotti et al. 

(2019)

Granger causality Sensors - pairs Rest - EC Degree, in-degree, out-

degree, local efficiency, 

global efficiency

NA MCI < HC 32

Frantzidis et al. 

(2014)

Relative wavelet 

entropy

Sensors - pairs Rest - EC Small worldness,

clustering coefficient, 

nodal strength & 

significance ratio 

(betweenness centrality)

Broadband (>1 Hz) MCI < HC 35

Ioulietta et al. 

(2020)

PCOR Sensors-NA Rest - EC, EO Clustering coefficient, 

strength

Broadband (0.3-

75 Hz)

MCI < HC 48

Josefsson et al. 

(2019)

JDE Sensors-NA Task - memory Clustering coefficient,

small worldness

Beta MCI < HC 56

Eccentricity Beta MCI > HC

La Foresta et al. 

(2019)

LLC Source - 

eLORETA

Rest - EC Path length 1–40 Hz 

(Broadband)

MCI > HC§ 62

Lazarou et al. 

(2022)

PCOR Sensors-NA Task - visual 

attention,

memory

Clustering coefficient, 

strength

Broadband (0.3-

70 Hz)

MCI < HC 63

Li et al. (2021) PSI, DTF Sensors-NA Rest - EC Clustering coefficient,

node degree,

global efficiency

Theta MCI < HC 67

Mammone et al. 

(2018)

PDI Sensors - pairs Rest - EC Path length Broadband (1–

40 Hz)

MCI > HC§ 70

Clustering coefficient, 

global efficiency

Broadband (1–

40 Hz)

MCI < HC

Miraglia et al. 

(2016)

LLC Source - 

eLORETA

Rest - EC, EO Small worldness Delta, theta MCI < HC 73
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TABLE 3 (Continued)

1. Mild cognitive impairment (MCI) v. Healthy control (HC)

Authors 
(Year)

Connectivity
approach

Analysis
basis†

Recording
context†

Significant
metric

Significant
bands†

Group
effects

Ref.

Miraglia et al. 

(2023)

LLC Source - 

eLORETA

Hypervent Global efficiency Alpha1, alpha2 MCI < HC 74

Požar et al. 

(2020)

PLI Sensors - avg. 

regions

Rest - EC Vertex degree, degree 

divergence, leaf fraction

Delta MCI < HC 83

Vertex eccentricity, 

diameter

Delta MCI > HC

Vecchio et al. 

(2014)

LLC Source - 

sLORETA, 

eLORETA

Rest - EC Clustering coefficient Alpha1 MCI > HC 105

Vecchio et al. 

(2016)

LLC Source - 

sLORETA, 

eLORETA

Rest - EC Small worldness Delta MCI < HC 106

Vecchio et al. 

(2021)

LLC Source - 

eLORETA

Rest - EC Small worldness Delta, Theta MCI < HC 109

Wei et al. (2015) PSI Sensors - pairs Task - visual 

attention

Clustering coefficient Alpha, beta MCI < HC 115

PSI Sensors - pairs Task - visual 

attention

Path length Alpha, beta MCI < HC§

PSI Sensors - pairs Task - visual 

attention

Small worldness Alpha MCI < HC

Xu et al. (2014) MSC Sensors-NA Rest - EC Clustering coefficient Theta, alpha1, alpha2 MCI < HC 117

Shortest path length Theta, alpha1, alpha2 MCI > HC§

Youssef et al. 

(2021)

Debiased

WPLI

Sensors-NA Rest - EC

(pre-, post-task)

Clustering coefficient,

global efficiency

Theta

(pre-task)

MCI > HC 119

2. Alzheimer’s disease (AD) v. Healthy control (HC)

Authors 
(Year)

Connectivity
approach

Analysis
basis†

Recording
context†

Significant
metric

Significant
bands†

Group
effects

Ref.

Afshari and 

Jalili (2016)

DTF Sensors-NA Rest - EC Global efficiency,

attack tolerance

Alpha, beta AD < HC 1

Local efficiency Alpha, beta AD > HC

Bagattini et al. 

(2022)

PDC Sensors - avg. 

regions

Task - enumeration Divisibility Theta AD > HC 9

Cai et al. (2018) PSI Sensors – pairs, 

global

Rest - EC Cross-frequency, regional 

synchronization strength, 

local efficiency, small 

worldness

Delta-theta, delta-

alpha, delta-beta

AD < HC 14

Global efficiency Delta-alpha, delta-

beta

AD > HC

Local efficiency Theta-alpha AD < HC

Cai et al. (2020) NIPLV Sensors-NA Rest - EC Clustering coefficient Cross-frequency, 

beta

AD < HC 15

Participation coefficient Cross-frequency, 

delta (parietal)

AD < HC

Participation coefficient Cross-frequency

(frontal), delta

(frontal-central), 

alpha

AD > HC
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TABLE 3 (Continued)

2. Alzheimer’s disease (AD) v. Healthy control (HC)

Authors 
(Year)

Connectivity
approach

Analysis
basis†

Recording
context†

Significant
metric

Significant
bands†

Group
effects

Ref.

Node degree proportion Delta

(posterior)

AD < HC

Node degree proportion Delta (frontal) AD > HC

Cecchetti et al. 

(2021)

LLC Source - 

eLORETA

Rest - EC Path length Theta AD < HC§ 19

Nodal strength, clustering 

coefficient

Alpha2 AD < HC

Nodal strength, local 

efficiency, clustering 

coefficient

Theta AD > HC

Choi et al. 

(2021)

PLV Source - WNME Rest - EC Clustering coefficient Alpha1 AD < HC 21

Theta AD > HC

Dattola et al. 

(2021)

LLC Source - 

eLORETA

Rest - EC Network robustness Broadband (1–

40 Hz)

AD < HC 24

Duan et al. 

(2020)

Coherence,

PCOR

Sensors-NA Rest - EC Clustering coefficient,

node strength

Alpha1 AD < HC 26

Resilience Alpha1, alpha2 AD < HC

Betweenness centrality,

versatility

Alpha1, alpha2 AD > HC

Path length Alpha1, alpha2 AD > HC§

Engels et al. 

(2015)

PLI Sensors - avg. 

regions

Betweenness centrality Beta

(posterior)

AD < HC 28

Betweenness centrality Alpha1, alpha2,

beta (anterior)^

AD > HC

Escudero et al. 

(2016)

IPC Sensors-NA Rest - EC Degree centrality,

efficiency

Broadband (0.5-

40 Hz)

AD < HC 29

Franciotti et al. 

(2019)

Granger causality Sensors - pairs Rest - EC Degree, in-degree, out-

degree, local efficiency, 

global efficiency, out-

degree assortativity

NA AD < HC 32

Franciotti et al. 

(2022)

MI Sensors-NA Rest - EC Network assortativity Broadband (1-

100 Hz)

AD < HC

Frantzidis et al. 

(2014)

Relative wavelet 

entropy

Sensors - pairs Rest - EC Small worldness,

clustering coefficient, 

nodal strength 

(betweenness centrality)

Broadband (>1 Hz) AD < HC 35

Ioulietta et al. 

(2020)

PCOR Sensors-NA Rest - EC, EO Clustering coefficient, 

strength

Broadband (0.3-

75 Hz)

AD < HC 48

Jalili (2016) Coherence,

PCOR, PO, SL

Sensors-NA Rest - EC, EO Global & local efficiency, 

betweenness centrality

Alpha AD < HC 49

Assortativity Alpha AD > HC

Jalili (2017) PCOR Sensors - pairs Rest - EC, EO Local efficiency, 

modularity (EC)

Delta, theta, alpha, 

beta, gamma

AD < HC 50

Kabbara et al. 

(2018)

PLV Source - WNME Rest - EC Global efficiency Theta AD < HC 57

Integration Theta, alpha1, alpha2 AD < HC

(Continued)
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TABLE 3 (Continued)

2. Alzheimer’s disease (AD) v. Healthy control (HC)

Authors 
(Year)

Connectivity
approach

Analysis
basis†

Recording
context†

Significant
metric

Significant
bands†

Group
effects

Ref.

Connector hubs & node 

vulnerability

Broadband (0.1–

45 Hz)

AD < HC

Clustering coefficient Theta AD > HC

Segregation Theta, alpha1, 

alpha2

AD > HC

Provincial

hubs

0.1–45 Hz 

(Broadband)

AD > HC

La Foresta et al. 

(2019)

LLC Source - 

eLORETA

Rest - EC Path length Broadband (1–

40 Hz)

AD > HC§ 62

Clustering coefficient AD < HC

Lazarou et al. 

(2022)

PCOR Sensors-NA Task - visual 

attention, memory

Clustering coefficient, 

strength, betweenness 

centrality

Broadband (0.3–

70 Hz)

AD < HC 63

Li et al. (2019) WPLI Source - DBTN Task - WM Degree, clustering 

coefficient

Alpha1, alpha2,

beta

AD < HC 66

Centrality index Alpha1 AD < HC

Degree, clustering 

coefficient

Alpha1, alpha2, 

beta, Superior 

temporal - all bands

AD > HC

Centrality index Alpha2 AD > HC

Mammone et al. 

(2018)

PDI Sensors - pairs Rest - EC Path length Broadband (1–

40 Hz)

AD > HC§ 70

Clustering coefficient, 

global efficiency

Broadband (1–

40 Hz)

AD < HC

Mehraram et al. 

(2020)

WPLI Sensors - avg. 

regions

Rest - EC Clustering coefficient Alpha AD < HC 71

Miraglia et al. 

(2016)

LLC Source - 

eLORETA

Rest - EC, EO Small worldness Delta, theta AD < HC 73

Peraza et al. 

(2018)

PLI Sensors-NA Rest - EC Nodal degree, leaf ratio Alpha AD < HC 81

Smith et al. 

(2016)

WPLI Sensors-NA Rest - EC Clustering coefficient Beta AD < HC 92

Tait et al. (2019) PLF Source - 

eLORETA

Rest - EO Small worldness,

closeness centrality

Theta AD < HC 98

Mean degree, path length Theta AD > HC§

Vecchio et al. 

(2014)

LLC Source - 

sLORETA, 

eLORETA

Rest - EC Path length Theta AD > HC§ 105

Clustering coefficient Theta, alpha1 AD > HC

Vecchio et al. 

(2016)

LLC Source - 

sLORETA, 

eLORETA

Rest - EC Small worldness Delta, theta, beta1, 

beta2

AD < HC 106

Alpha AD > HC

Vecchio et al. 

(2017)

LLC Source - 

sLORETA, 

eLORETA

Rest - EC Small worldness Delta, theta, beta AD < HC 107

Alpha AD > HC
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these studies varied, including Pearson correlations, coherence 
metrics, phase-locked approaches, and entropy measures.

The next most frequent metric was small worldness, with six 
studies reporting significant group effects. All of the studies found 
lower small worldness in MCI compared to HC (Frantzidis et al., 2014; 
Josefsson et al., 2019; Miraglia et al., 2016; Vecchio et al., 2021; Vecchio 
et al., 2016; Wei et al., 2015). These patterns were consistent across 
resting state (Frantzidis et al., 2014; Miraglia et al., 2016; Vecchio et al., 
2021; Vecchio et al., 2016) and task-based studies, including short-
term memory recall (Josefsson et al., 2019) and visual attention (Wei 
et al., 2015). Half analyzed small worldness in source space (Miraglia 
et al., 2016; Vecchio et al., 2021; Vecchio et al., 2016). Results included 
delta (3/6), theta (2/6), beta (2/6), alpha (1/6), and broadband (1/6). 
The most common approach used to compute small worldness was 
lagged linear connectivity (3/6).

Five studies reported significant effects with path length, four 
of which found greater path length in MCI compared to HC (Duan 
et al., 2020; La Foresta et al., 2019; Mammone et al., 2018; Xu et al., 

2014), including the only study in source space (La Foresta et al., 
2019). Half reported greater path length in theta and alpha bands 
(Duan et  al., 2020; Xu et  al., 2014) and the other half used a 
broadband approach (La Foresta et  al., 2019; Mammone et  al., 
2018). The only study to report lower path length in MCI compared 
to HC was during a visual attention task, with significant effects in 
alpha and beta (Wei et al., 2015). Approaches to computing path 
length varied widely, including coherence metrics, correlations, and 
phase-locked approaches.

Five studies had significant findings with global efficiency. Four 
found lower global efficiency in MCI compared to HC (Franciotti 
et al., 2019; Li et al., 2021; Mammone et al., 2018; Miraglia et al., 
2023), including the only one in source space (Miraglia et al., 2023). 
Results included broadband (2/4), alpha (1/4), and theta (1/4). The 
remaining study found greater global efficiency in MCI in the theta 
band (Youssef et al., 2021). Connectivity metrics used to compute 
efficiency included phase-locked, coherence, and 
correlational metrics.

TABLE 3 (Continued)

2. Alzheimer’s disease (AD) v. Healthy control (HC)

Authors 
(Year)

Connectivity
approach

Analysis
basis†

Recording
context†

Significant
metric

Significant
bands†

Group
effects

Ref.

Vecchio et al. 

(2018)

LLC Source - 

sLORETA, 

eLORETA

Rest - EC

(pre-, post-task)

Small worldness Alpha2 AD ↓

HC ↑

108

Vecchio et al. 

(2021)

LLC Source - 

eLORETA

Rest - EC Small worldness Delta, theta, beta1, 

beta2

AD < HC 109

Alpha1, alpha2 AD > HC

Vecchio et al. 

(2022)

LLC Source - 

eLORETA

Rest - EC Small worldness Delta, theta AD < HC 110

Alpha2 AD > HC

Wang et al. 

(2014)

MSC Sensors-NA Rest - EC Clustering coefficient Theta, alpha1, 

alpha2, beta, gamma

AD < HC 112

Global, local efficiency,

small worldness

Delta, theta, alpha1, 

alpha2, beta, gamma

AD < HC

Mean network

connectivity

Theta, alpha2, 

gamma

AD < HC

Path length Delta, theta, alpha1, 

alpha2, beta, gamma

AD > HC§

Yu et al. (2018) PDI Sensors - pairs Rest - EC Global efficiency, 

clustering coefficient, 

small worldness

Broadband (0.5–

30 Hz)

AD < HC 120

Yu et al. (2021) Clustering coefficient; 

Global, local efficiency; 

nodal, edge between-

ness

Sensors - pairs Rest - EC, EO Clustering coefficient, 

global efficiency, local 

efficiency

Broadband (0.5–

30 Hz)

AD < HC 121

Nodal betweenness, edge 

betweenness

AD > HC

Within-group effects are not shown. †see Supplementary Table S1 for study specifications and technical descriptions; § Greater values on this metric represent lower connectivity; 
avg = averaged; DTF = directed transfer function; EC = eyes closed; EO = eyes open; Hypervent = hyperventilation; IPC = Imaginary part of coherence; JDE = joint distribution entropy; 
LLC = lagged linear coherence; LPS = Lagged phase synchronization; MSC = magnitude squared coherence; MI = Mutual information; NA = not available/specified; NIPLV = Normalized 
imaginary phase locking value; PCOR = Pearson correlations; PDC = partial directed coherence; PDI = Permutation disalignment index; PO = Phase order; PLF = phase locking factor; 
PLI = phase lag index; PLV = phase locking value; PSLI = phase slope index; PSI = phase synchronization index; Ref = reference number; SL = Synchronization likelihood; WM = working 
memory; WPLI = weighted phase lag index; WMNE = Weighted minimum norm estimate.
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TABLE 4 Summary of significant findings from studies using miscellaneous methods to assess connectivity.

1. Mild cognitive impairment (MCI) v. Healthy control (HC)

Authors (Year) Connectivity
approach

Analysis
basis†

Recording
context†

Significant
bands, network†

Group
effects

Ref.

Babiloni et al. (2009) DTF Sensors - avg. 

regions

Rest - EC Theta, alpha1, alpha2, 

beta1

MCI < HC 3

Bonanni et al. (2021) MI Sensors – pairs, avg. 

regions

Rest - EC 1–100 Hz MCI > HC 13

Cantero et al. 

(2009b)

DTF Source - swLORETA Rest - EC Alpha1 MCI > HC 17

Alpha2 MCI < HC

Crook-Rumsey et al. 

(2023)

SNN Sensors - avg. 

regions

Task - memory, WM SNN connectivity,

# of significant 

connections

MCI < HC 22

Guo et al. (2021) PEC Source - custom 

scripts

Rest - EC Beta MCI < HC 40

Delta, theta MCI > HC

Koenig et al. (2005) GFS Sensors - global Rest - EC Beta MCI < HC 61

Li et al. (2021) DTF Sensors - NA Rest - EC Theta global DTF, node 

degree, global efficiency

MCI < HC 67

Liu et al. (2012) CMI Sensors - pairs Task - AO Theta NA 68

Movahed and 

Rezaeian (2022)

SL Sensors - pairs Rest - EC Frontal-central, within-

frontal, frontal-

temporal, central-

occipital, within-central

MCI < HC 75

Only P3-F7,

P4-Cz

MCI > HC

Núñez et al. (2021) Meta-states

via IACDRP

Source - sLORETA Rest - EC Alpha dwell time; alpha 

& beta1 modularity

MCI < HC 79

Sedghizadeh et al. 

(2022)

Phase-amplitude coupling Sensors - Fz, Cz, Pz OO Theta-gamma, at all 

three sites

MCI > HC 91

Timothy et al. (2017) Recurrence rate from 

CRQA

Sensors - avg. 

regions

Rest - EC Widespread (Task > 

Rest)

MCI > HC 101

Vanneste et al. 

(2021)

PACFC Source - eLORETA Rest - EC Theta-gamma coupling MCI < HC 104

Wen et al. (2014) GSI, GCI, SES Sensors - global Rest - EC GSI alpha MCI < HC 116

GCI alpha, beta1, beta2 MCI < HC

SES alpha MCI < HC

2. Alzheimer’s disease (AD) v. Healthy control (HC)

Authors (Year) Connectivity
approach

Analysis
basis†

Recording
context†

Significant 
bands, network†

Group
effects

Ref.

Babiloni et al. (2009) DTF Sensors - avg. 

regions

Rest - EC Theta, alpha1, alpha2, 

beta1, beta2

AD < HC 3

Birba et al. (2022) WSMI Sensors – pairs, 

clusters

Rest (NA) 4-10 Hz AD > HC 11

Blinowska et al. 

(2017)

DTF Sensors - pairs Rest - EC Theta, alpha AD < HC 12

Chan et al. (2013) CMI Sensors - pairs Rest - EC, EO, PS 0.5-70 Hz AD < HC 20

(Continued)
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3.3.3.2 AD
Thirty-five of 36 studies (97%) reported significant connectivity 

effects in AD using graph theory metrics (Table 3). The majority (56%, 
20/36) reported mixed directionality, with effects dependent on both 

the metric of interest and the frequency band. The majority of the 
findings indicated disrupted connectivity in AD compared to HC.

The most frequent metric in AD studies was clustering coefficient, 
with 16 studies reporting significant results. Three studies, all done at 

TABLE 4 (Continued)

2. Alzheimer’s disease (AD) v. Healthy control (HC)

Authors (Year) Connectivity
approach

Analysis
basis†

Recording
context†

Significant 
bands, network†

Group
effects

Ref.

Herzog et al. (2022) DTC Source - sLORETA Rest - EC ^Delta, theta, alpha, 

beta, gamma

AD < HC 45

Jeong et al. (2001) CMI Sensors - pairs Rest - EC 1–35 Hz AD < HC 52

Knyazeva et al. 

(2013)

SES Source - LAURA Rest - EC Temporal, frontal AD < HC 60

Posterior AD > HC

Koenig et al. (2005) GFS Sensors - global Rest - EC Delta AD > HC 61

Alpha, Beta AD < HC

Lee et al. (2010) GSI Sensors - global Rest - EC Beta1, beta2, beta3, 

gamma

AD < HC 64

Núñez et al. (2021) Meta-states

via IACDRP

Source - sLORETA Rest - EC Alpha dwell time; alpha, 

beta1 modularity

AD < HC 79

Park and Reuter-

Lorenz (2009)

GFS Sensors - global Rest - EC Beta1, beta2, beta3, 

broadband

AD < HC 80

Ruiz-Gómez et al. 

(2019a)

AEC Sensors - pairs Rest - EC Alpha, beta1 AD < HC 85

Delta AD > HC

Ruiz-Gómez et al. 

(2021)

CC Source - sLORETA Rest - EC Multiplex clustering 

coefficient

AD < HC 87

Multiplex global 

strength; path length

AD > HC

Song et al. (2018) GCMEV Sensors - NA Rest - EC 0.5–40 Hz AD < HC 93

Tahaei et al. (2012) Synchronization via 

eigenratio

Sensors - NA Rest - EC Delta, alpha, beta, 

gamma

AD < HC 97

Tyrer et al. (2020) DCM Source - multiple 

spare priors

Task - memory 2–30 Hz AD < HC 103

Vyšata et al. (2015) MI Sensors - pairs Rest - EC Frontolateral AD < HC 111

Centroparietal AD > HC

Yu et al. (2018) PDI Sensors - pairs Rest - EC PDI AD > HC§ 120

Zhao et al. (2019) ROLS, DRC, AMM Sensors - pairs Rest - EC, EO <70 yrs.: Nonlinear 

AMM

AD < HC 123

>70 yrs.: Linear AMM, 

nonlinear AMM;

nonlinear DRC;

# of significant 

connections

AD > HC

Notes: Group effects based on mean differences. Within-group effects are not shown. †see Supplementary Table S1 for study specifications and technical descriptions; ^some mixed-
directionality effects were found within-study, which are categorized by the most consistent pattern; # = number; § Greater values on this metric represent lower connectivity; 
DBTN = Dynamic brain transition network; avg = averaged; AEC = amplitude envelope correlation; AMM = average mean magnitude; AO = auditory oddball; CC = canonical correlation; 
CMI = Cross-mutual information; CPSD = cross-power spectral density; CRQA = cross recurrence quantification analysis; DCM = dynamic causal modeling; DRC = dynamic range of 
connectivity; DTC = dual total correlation; DTF = directed transfer function; EC = eyes closed; EO = eyes open; GCMEV = generalized composite multiscale entropy vector; GCI = global 
clustering index; GFS = global field synchronization; GSI = global synchronization index; IACDRP = amplitude correlation-derived recurrence plots; MI = mutual information; NA = not 
available/specified; PACFC = phase-amplitude cross-frequency coupling; OO = olfactory odball; PDI = Permutation disalignment index; PEC = power envelope connectivity; PS = photic 
stimulation; Ref = reference number; ROLS = Revised orthogonal least squares; SES = S-estimator synchronization; SL = synchronization likelihood; SNN = spiking neural network; 
WM = working memory; WSMI = weighted symbolic mutual information.
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source-level, reported mixed directionality (i.e., dependent on 
frequency band and/or region), with two at rest (Cecchetti et al., 2021; 
Choi et al., 2021) and one during a digit span task (Li et al., 2019). At 
rest, alpha clustering coefficients were smaller, while theta coefficients 
were larger in AD compared to HC. During digit span, AD alpha and 
beta clustering coefficients were smaller in frontal and postcentral 
regions, but larger in the superior temporal sulcus. The other two 
studies performed in source space reported only larger clustering 
coefficients in AD compared to HC at rest (2/16, 13%; Kabbara et al., 
2018; Vecchio et  al., 2014), with findings in the theta band and 
alpha-1. In contrast, eleven studies reported only smaller clustering 
coefficients in AD compared to HC (69%, 11/16; Cai et al., 2020; Duan 
et al., 2020; Frantzidis et al., 2014; Ioulietta et al., 2020; La Foresta 
et al., 2019; Lazarou et al., 2022; Mammone et al., 2018; Mehraram 
et al., 2020; Smith et al., 2016; Wang et al., 2014; Yu et al., 2018). Taken 
with the three mixed directionality studies, most reports of lower 
clustering coefficients were in the alpha and beta bands (57%, 8/14), 
with alpha most frequent. The connectivity approaches used to 
compute clustering coefficient in these studies varied widely, most 
frequently using coherence, correlations, or phase-locked metrics.

The next most frequent metric in AD studies was small worldness, 
with eleven studies, all analyzing connectivity during resting state. 
Four studies reported mixed directionality (36%; Vecchio et al., 2022; 
Vecchio et  al., 2021; Vecchio et  al., 2017; Vecchio et  al., 2016), 
dependent on the frequency band. Specifically, while comparisons 
across most bands showed lower small worldness in AD compared to 
HC (including delta, theta, and beta bands), small worldness in the 
alpha band was greater in each of these four studies (Vecchio et al., 
2022; Vecchio et al., 2021; Vecchio et al., 2017; Vecchio et al., 2016). 
Indeed, most reports of greater small worldness were in the alpha 
band (4/5), all four of which were from the same research group, 
computed via lagged linear coherence. The other study showed greater 
small worldness in cross-frequency bands between delta with theta, 
alpha, and beta (Cai et al., 2018). All other studies reported only lower 
small worldness in AD compared to HC (Frantzidis et  al., 2014; 
Miraglia et al., 2016; Tait et al., 2019; Wang et al., 2014; Yu et al., 2018), 
showing results in the theta band (78%, 7/9) and delta band (67%, 
6/9). Vecchio and colleagues (Vecchio et al., 2018) further showed that 
alpha-2 small worldness during resting state decreased in AD but 
increased in HC when change was measured from before, then to 

FIGURE 2

Overview of findings across connectivity metrics, frequency bands, and groups with corresponding reference numbers (see Tables 1–4), with blue 
indicating lower connectivity, red indicating greater connectivity, and purple representing mixed directionality in Alzheimer’s disease (AD) and/or Mild 
Cognitive Impairment (MCI) groups relative to healthy controls (HC). Twelve studies are not shown due to purely negative findings (n = 3), unclear 
directionality (n = 1), unique study design (n = 2), only cross-frequency results (n = 1), or graph theory methods represented by less than five studies 
(n = 5). Solid cell = EEG recorded at rest; diagonal line (╲ or ╱) = EEG recorded during task; GE = global efficiency; LE = local efficiency; PL = path 
length; CC = clustering coefficient; SW = small worldness; Dotted fill = greater PL implies poorer network efficiency (blue cell, red dots), or lower PL 
implies better network efficiency (red cell, blue dots). Overall, the most frequent reports were of lower connectivity in MCI/AD vs. HC (blue), especially 
in the alpha band. Greater connectivity in MCI/AD vs. HC (red) was most commonly reported in the theta band and during task-based studies in MCI.
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during a sensory motor learning task, and then to after the task. The 
majority of the small worldness studies (64%, 7/11) were conducted 
in source space (Ferreri et al., 2016; Miraglia et al., 2016; Tait et al., 
2019; Vecchio et al., 2022; Vecchio et al., 2021; Vecchio et al., 2017; 
Vecchio et  al., 2018), and most were computed with a coherence 
metric (7/11).

Ten studies reported significant group effects in global efficiency. 
All but one (Cai et al., 2018) found lower efficiency in AD compared 
to HC during rest (Afshari and Jalili, 2016; Escudero et  al., 2016; 
Franciotti et al., 2019; Jalili, 2016; Kabbara et al., 2018; Mammone 
et al., 2018; Wang et al., 2014; Yu et al., 2019; Yu et al., 2018). The one 
study to find greater efficiency in AD analyzed cross-frequency 
coupling, finding greater global efficiency specifically in delta-alpha 
and delta-beta (Cai et al., 2018). Only one study analyzed efficiency in 
source space (Kabbara et al., 2018). Overall, the most frequent findings 
were in broadband (5/10) and alpha bands (3/10). Metrics used to 
compute efficiency varied widely.

Eight studies reported significant group effects in local efficiency, 
all during resting state. Six found lower local efficiency in AD 
compared to HC (Cai et al., 2018; Franciotti et al., 2019; Jalili, 2016, 
2017; Wang et al., 2014; Yu et al., 2019), most frequently in alpha (3/6). 
The two remaining studies found greater local efficiency in AD 
compared to HC, one in theta band in source space (Cecchetti et al., 
2021) and the other in alpha and beta in sensor space (Afshari and 
Jalili, 2016). Metrics used to compute efficiency varied widely.

Seven studies reported significant effects in path length. All of 
these studies were conducted using resting state data, and all but two 
used coherence metrics (Mammone et al., 2018; Tait et al., 2019). Most 
reported greater path length in AD compared to HC (86%, 6/7; Duan 
et al., 2020; La Foresta et al., 2019; Mammone et al., 2018; Tait et al., 
2019; Vecchio et al., 2014; Wang et al., 2014). Specifically, two studies 
showed the effect in the theta band (source space, Tait et al., 2019; 
Vecchio et al., 2014), two using broadband metrics (source space, La 
Foresta et  al., 2019; sensor space, Mammone et  al., 2018), one in 
alpha-1 and alpha-2 (sensor space, Duan et al., 2020), and one found 
significant effects in delta, theta, alpha-1 and alpha-2, beta, and 
gamma bands (sensor space without specific statistics reported, Wang 
et  al., 2014). The only study to report lower path length in AD 
compared to HC was in the theta band using source space (Cecchetti 
et al., 2021).

3.3.4 Other methods
Of the 124 total papers in this review, 31 reported significant 

effects using methods distinct from the previously described 
categories. Examples of these other methods include variations of 
mutual information (e.g., cross-mutual information, weighted 
symbolic mutual information), amplitude envelope correlation, and 
directed transfer function, amongst others, some of which are based 
in correlational approaches. A collective summary of results from 
these studies would be  overly speculative. Thus, we  show the 
methodological approach of each study in Supplementary Table S3 
and the results of each individual study in Table 4. Here we summarize 
only a few overarching points. In MCI, 14 of 17 studies (82%) using 
these other methods found significant group differences. Most studies 
found reduced connectivity in MCI, although not all studies reported 
the directionality of the effect, and directionality varied across the 
methods, regions, and frequency bands, particularly when task-
related. Of those with significant findings, four studies were conducted 

in source space (29%, 4/14). Three found only lower connectivity in 
MCI compared to HC, and the fourth had mixed directionality 
depending on the alpha sub-band. In AD participants, 19 of 25 studies 
(76%) reported significant connectivity effects. The majority of the 
results indicated lower connectivity in AD compared to HC, but with 
variability by method, region, and frequency band. Five of the studies 
with significant findings were conducted in source space (26%, 5/19). 
Three found only lower connectivity in AD compared to HC; the 
other two had mixed directionality, dependent on region and metric 
of interest. Of note, a longitudinal study of MCI participants who later 
progressed to AD reported greater broadband connectivity (1–100 Hz, 
via mutual information between sensors) only during the prodromal 
(i.e., MCI) stage, which was no longer evident at the time of AD 
diagnosis or at three years post-diagnosis (Bonanni et al., 2021). This 
evidence of hyperconnectivity in the prodromal stage was theorized 
to be  indicative of plasticity (i.e., recruitment) that subsides with 
greater disease progression.

4 Discussion

It has been theorized that AD may best be characterized as a 
disconnection syndrome (Delbeuck et al., 2003; Stam, 2014; Yu et al., 
2021). As such, recent research has evolved to emphasize studies of 
neural connectivity differences and changes in people diagnosed with 
MCI and AD relative to cognitively healthy elders. As this work has 
rapidly expanded, many techniques have been developed to examine 
connectivity using EEG (Bastos and Schoffelen, 2016; Cao et al., 2022; 
Chiarion et al., 2023; Srinivasan et al., 2007). The particular advantage 
of EEG is to capture neural connectivity in real time, with millisecond-
level precision, and without use of a proxy (Luck, 2014; Slotnick, 
2017). Yet, there are no truly comprehensive systematic reviews of this 
literature. Thus, the current study conducted such a systematic review, 
comparing findings across EEG connectivity methods, in resting and 
task-activated states, where MCI and/or AD participants were 
compared to cognitively healthy elders. Ultimately, 124 studies were 
included, with 35 that examined MCI relative to HC, 56 that examined 
AD relative to HC, and 33 that examined all three groups. The primary 
methods used to examine EEG connectivity were coherence, phase-
locked, and graph theory metrics, although various other approaches 
were also employed. The majority of the approaches were non-directed, 
phase-based metrics in the frequency domain; thus, results primarily 
speak to the synchronicity of timing of neural population activity 
between different brain regions, without inferring causal direction of 
information flow (Cohen, 2014). With the exception of graph theory, 
where multivariate connectivity was more prevalent, most of the 
connectivity metrics were bivariate, analyzing the relationship 
between two pairwise signals. Here we discuss patterns that emerged 
within method types, and across studies, as well as the variability and 
limitations in the existing literature, toward enhancing future EEG 
connectivity research with these populations.

4.1 Connectivity differences in MCI/AD 
relative to HC

The majority of the included studies found significant differences 
in EEG connectivity between cognitively healthy elders and those with 
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MCI or AD. While there was variability in the directionality of the 
effects, an overarching pattern emerged of lower connectivity in both 
MCI and AD compared to healthy controls, with patterns most 
consistent in AD (see Figure  2). The trends are in line with the 
expected progressive neural network degradation consequent to AD 
(Alzheimer’s Association, 2024). Notably, lower connectivity was most 
robust in the alpha band, followed by beta and theta. When greater 
connectivity was reported in MCI or AD relative to controls, it was 
most common in the theta band, followed by delta and alpha. EEG 
research on power within specific regions (e.g., power spectral density) 
collectively suggests a pattern of neural slowing during AD 
progression, with greater power in slower bands and lower power in 
faster bands (Dauwels et al., 2010; Smailovic and Jelic, 2019). The 
connectivity findings herein are in relative agreement with those 
conclusions, showing prevalent patterns of lower connectivity in alpha 
and beta bands and greater connectivity in theta and delta bands. 
However, there were also frequent reports of greater connectivity in 
alpha and lower connectivity in theta. Although various study 
differences, particularly in sample characteristics (e.g., age, degree of 
cognitive decline, and possible resilience factors such as education) 
may contribute to conflicting findings, these differences could also 
suggest a more nuanced interpretation. Specifically, the overall 
prevalence of results in alpha frequencies and the prevalence of 
findings with both lower and greater connectivity suggests that alpha 
may be particularly sensitive to the transition from the dominance of 
faster to slower frequencies that typifies AD-related change (Hamilton 
et al., 2021; Wijaya et al., 2023).

While patterns of lower connectivity were evident overall in MCI 
and AD relative to controls, more nuanced trends emerged when 
considering the EEG recording context. In AD, lower connectivity was 
common whether measured during the resting state or during active 
task engagement. This finding suggests that connectivity deficits are 
relatively widespread across various neural networks in AD. However, 
in MCI, lower connectivity was most commonly reported during the 
resting state, while greater connectivity was more often found during 
task engagement. This difference of recording context-dependent 
patterns between MCI and AD suggests that those with MCI may still 
be able to engage compensatory resources, while these resources are 
more likely to already be exhausted in AD (Paitel and Nielson, 2023; 
Rao et al., 2015; Reuter-Lorenz and Cappell, 2008; Reuter-Lorenz and 
Park, 2014). Specifically, compensatory theories of cognitive aging 
suggest that during earlier stages of disease progression there is a 
period of increased brain activity and connectivity that reflects 
compensation for AD-related neuropathology, thereby allowing for 
the maintenance of task performance (Cabeza, 2002; Cabeza et al., 
2002; Davis et al., 2008; Park and Reuter-Lorenz, 2009; Reuter-Lorenz 
and Cappell, 2008; Reuter-Lorenz and Park, 2014). However, such 
compensatory resources are finite; as neuropathology advances, these 
resources are exhausted, which results in the progression of cognitive 
impairment (Park and Reuter-Lorenz, 2009; Rao et al., 2015; Reuter-
Lorenz and Cappell, 2008; Reuter-Lorenz and Park, 2014). Thus, 
greater connectivity specifically during task performance in MCI 
suggests that some compensatory resources may remain, at least early 
in MCI, and that these resources are recruited during task engagement. 
This is also consistent with a recent study of working memory 
encoding that showed lower directed connectivity from prefrontal to 
temporal lobes, but greater connectivity from prefrontal to parietal 
and occipital lobes in MCI compared to HC (Jiang et al., 2024).

Although neural compensation is more common early in 
cognitive decline, it is most notable in cognitively healthy elders at 
elevated risk for AD (Elverman et al., 2021; Rao et al., 2015; Reuter-
Lorenz and Park, 2014; Sugarman et  al., 2012). Importantly, the 
greatest risk factor for AD other than age is inheritance of the APOE 
ε4 allele (Alzheimer’s Association, 2024; Yu et al., 2014). We would 
therefore expect greater connectivity in asymptomatic ε4 carriers than 
in individuals with MCI, with evidence of reduced connectivity in 
carriers who eventually develop cognitive symptoms (Paitel and 
Nielson, 2023; Rao et al., 2015). However, attempts to evaluate this 
expectation failed; no studies of cognitively healthy ε4 carriers were 
available to include in the review. Yet, within MCI and AD samples, a 
few studies examined the role of ε4. Two studies saw no ε4 differences 
within MCI (Cantero et al., 2009a; Cantero et al., 2009b), while two 
others found lower alpha phase lag index connectivity (primarily 
frontal) in ε4+ compared to ε4- (Gonzalez-Escamilla et  al., 2015; 
Gonzalez-Escamilla et  al., 2016), which is consistent with our 
expectation. Of note, these two studies were from the same research 
group and conducted with the same sample. Only one study examined 
ε4 in AD, showing that lower connectivity in AD relative to HC was 
attributable specifically to homozygous ε4+ (i.e., carrying both ε4 
alleles), thus suggesting a persistent influence of ε4 (Jelic et al., 1997). 
The general lack of studies considering ε4, and particularly the lack of 
study of asymptomatic carriers precludes drawing any clear 
conclusions and highlights an important gap in the existing literature.

While coherence and other phase-based metrics may 
be interpreted to generally quantify the interdependence of signals 
between brain regions, graph theory metrics provide more specific 
information regarding network function and information flow 
(Bassett and Sporns, 2017; Bassett et al., 2018; Bullmore and Bassett, 
2011). Overall, the reviewed studies revealed that MCI and AD 
networks had lower density of interconnected notes, via clustering 
coefficient. Contrasting reports of larger clustering coefficients were 
most common specifically in the theta band in AD, which may suggest 
that clustering of connections in that lower frequency band remains 
relatively robust, compared to the faster bands (Abazid et al., 2022). 
Furthermore, MCI and AD groups overall had greater path length 
than HC groups, indicating less integrated networks (Miraglia et al., 
2022; Rubinov and Sporns, 2010; Van Diessen et al., 2014). Taking into 
account both clustering coefficient and path length, MCI and AD 
networks were generally characterized by lower small worldness, 
which is often interpreted as the balance between network segregation 
and integration (Miraglia et al., 2022; Rubinov and Sporns, 2010). The 
exception was a collection of studies from Vecchio and colleagues that 
reported greater small worldness in AD specifically in the alpha band 
(Vecchio et al., 2022; Vecchio et al., 2021; Vecchio et al., 2017; Vecchio 
et al., 2016). Closer investigation of those results revealed that small 
worldness values in HC groups were modulated by frequency band, 
with relatively higher values in delta, theta, and beta bands and lower 
values in alpha and gamma. In contrast, small worldness in the AD 
group tended to be “flatter,” or more static, across frequency bands. 
Thus, the organization of neural networks may become less adaptive 
with AD progression. Finally, MCI and AD networks were overall less 
efficient compared to those of HC, considering both global and local 
network efficiency. Taken together, the findings of these graph theory 
metrics suggest that neural networks become less efficient in MCI and 
AD, compared to healthy older adults, consistent with the expected 
impact of AD-related neuropathology, particularly synaptic 

https://doi.org/10.3389/fnagi.2025.1496235
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Paitel et al. 10.3389/fnagi.2025.1496235

Frontiers in Aging Neuroscience 21 frontiersin.org

dysfunction and loss of neural connections (Delbeuck et al., 2003; 
Martínez-Serra et al., 2022; Shankar and Walsh, 2009).

There are many graph theory metrics, which each describe a 
different aspect of neural networks. Across the 44 studies that used 
graph theory metrics, over 30 different metrics were reported. There 
was such variability in which metrics were analyzed between studies 
that only five could be summarized in AD and four in MCI (with ≥5 
studies). Yet, graph theory metrics were particularly informative, 
especially in AD, with 97% (i.e., 35/36) of studies finding significant 
group effects. Thus, graph theory may be particularly advantageous, 
given its ability to quantify important aspects of complex network 
organization that result from AD-related neuropathology. In MCI, 
significant effects were most consistently detected using coherence 
(90%, 18/20), closely followed by graph theory metrics (88%, 21/24). 
It is possible that network-level disruptions assessed with graph theory 
metrics become more robust with disease progression, with simpler, 
between-region connectivity assessments more robust in earlier stage 
decline (i.e., MCI). However, other factors may be responsible for the 
marginal difference in detection of group effects, and indeed, with 
88% of studies finding significant patterns, graph theory is likely to 
provide key insights into network-level changes earlier in the AD 
spectrum. More research with graph theory in MCI, AD, and 
cognitively healthy groups with AD risk will certainly advance 
understanding of the timeline of network-level neural changes in the 
course of AD.

4.2 Study quality and transparency of 
reporting

Considering studies that reported sample demographics, there was 
a very wide range of sample sizes, especially with AD samples 
(range = 6 to 318). Particularly given the large number of comparisons 
made in connectivity studies, some of the studies likely did not have 
sufficient statistical power to assure the interpretations. Despite that 
concern, sample sizes were generally well balanced for the relative 
comparisons. There were also age differences that may have influenced 
study findings. HC groups were significantly younger overall than both 
MCI and AD groups, which would amplify MCI and AD connectivity 
differences by confounding them with expected age-related differences 
(Ferreira and Busatto, 2013; Park and Reuter-Lorenz, 2009; Reuter-
Lorenz and Park, 2014; Sala-Llonch et al., 2015). Similarly, AD groups 
had overall lower education than both MCI and HC groups, which 
would serve to artificially exacerbate group differences (Montemurro 
et al., 2023; Roldán-Tapia et al., 2017; Tucker and Stern, 2011). While 
sex distributions were overall comparable between groups, we note that 
there are few studies interrogating sex differences in these neural 
patterns, which would be valuable given the greater risk of AD in 
women (Alzheimer’s Association, 2024; Andrew and Tierney, 2018; 
Mielke et al., 2014). We further note that evaluating gender differences, 
beyond simply sex differences, is also of great importance but is 
essentially unstudied (Correro and Nielson, 2020; Mielke, 2018; Mielke 
et al., 2014). Supplementary Table S4 includes report of which studies 
controlled for age, education, and sex by study design or analysis. 
Finally, the range of average MMSE scores raised some concerns about 
the validity of the diagnostic groupings. The MMSE (range = 0–30) 
generally uses ≤24 as a cutoff for cognitive impairment (≤ 26 has been 
suggested as superior; Chun et al., 2021; Folstein et al., 1983; Kvitting 

et al., 2019; Salis et al., 2023). However, the average HC MMSE scores 
were as low as 25.7, while average MCI scores were as high as 28.4, and 
average AD scores were as high as 26.3. These variances can suppress 
or obfuscate real group differences and their interpretations.

An important caveat to the interpretation of the sample 
characteristics in this review is the generally low rate of reporting such 
information (see Supplementary Table S1 and S4). Specifically, 15% of 
studies did not include mean ages of the groups, 17% did not report sex 
distribution, 33% did not report global cognitive functioning metrics, 
and 51% did not report educational attainment. Reporting and 
transparency about these factors is essential for contextualizing and 
interpreting patterns of neural activity in MCI and AD. Specifically, age 
is the greatest risk factor for AD (Alzheimer’s Association, 2024), 
women have a higher risk of developing AD that is not due to greater 
longevity (O’Neal, 2024), education is an important cognitive resilience 
factor (Tucker and Stern, 2011), and global cognitive functioning is 
needed to assure the comparability across studies and clarity of 
diagnostic criteria.

A meta-analysis of this literature would have been extremely 
valuable to expand upon our descriptive analysis. However, this was 
not feasible due to a lack of detailed statistical reporting in a large 
proportion of the papers, along with vast numbers of methods and 
comparisons in most studies (including sensors/ROIs, frequency 
bands, and groups; see Supplementary Table S3).

4.3 Methodological considerations for 
studying and interpreting connectivity

4.3.1 Sensor versus source space
While many EEG research questions may be best addressed 

using sensor-level data (e.g., event-related potentials from cortical 
regions), connectivity analyses involve a higher risk of spurious 
connectivity when conducted at the sensor level (Chiarion et al., 
2023; Mahjoory et al., 2017; Michel and Brunet, 2019; Schoffelen 
and Gross, 2009; Van de Steen et al., 2019). For this reason, relying 
solely on findings from sensor-level studies may over-estimate 
connectivity results. Specifically, sensor-level results may carry a 
greater risk of detecting patterns that may not actually be attributable 
to shared neural coupling or co-activation. Connectivity analyses in 
source space are better equipped to delineate the likely neural 
generators of EEG signals and more appropriately account for 
underlying sources of shared variance, thus increasing the likelihood 
of accurately modeling connectivity between two distinct brain 
regions. Despite these important advantages, only 29% (i.e., 36/124) 
of the current studies analyzed connectivity in source space. Trends 
from sensor- and source-level studies in the present review had 
overall similar patterns. That is, there was no discernible difference 
in preponderance or direction of effects using source space rather 
than sensor-level data. Yet, the subset of studies available with 
source-level findings was too limited to in any way be conclusive. 
We advocate for future analyses in source space, which has become 
particularly accessible and feasible with advances in user-friendly, 
open-source software and detailed published tutorials (e.g., Delorme 
and Makeig, 2004; Oostenveld et al., 2011; Penny et al., 2011; Tadel 
et  al., 2011). This does require thoughtful consideration of the 
appropriate computation of sources. For example, some studies 
analyzed 84 ROIs computed from only 19 electrodes; a low-density 
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EEG array is not ideal for delineating a large number of sources 
(Michel and Brunet, 2019; Song et al., 2015). Relatedly, thoughtful 
consideration should be given to using a priori brain regions of 
interest, rather than extensive or exhaustive numbers 
of comparisons.

4.3.2 Resting versus task state
The majority of the papers reviewed here analyzed EEG 

connectivity during the resting state. Given the cognitive 
limitations inherent in studying MCI and AD, this tendency 
toward resting state analysis is understandable. However, the 
current findings are certainly biased toward documenting patterns 
within the default mode network. Future complementary study is 
needed using tasks that tap specific cognitive processes, with 
attention to high or comparable task accuracy across groups (at 
least in milder forms of cognitive impairment). High accuracy 
tasks discern neural activity patterns that are not conflated with 
group differences due to error or cognitive demand (Reuter-Lorenz 
and Cappell, 2008). Some examples include tasks that tap aspects 
of crystallized intelligence (e.g., vocabulary; Ferré et  al., 2019; 
Salthouse, 2014), semantic access (Nielson et al., 2006; Pistono 
et al., 2019; Seidenberg et al., 2009; Sugarman et al., 2012), stop-
signal tasks (Elverman et al., 2021; Hsieh and Lin, 2017a, 2017b; 
Paitel and Nielson, 2021, 2023), and oddball paradigms (Invitto 
et  al., 2018; Iragui et  al., 1993; Schiff et  al., 2008; Stevens 
et al., 2000).

4.3.3 Frequency domain
The most common approaches to analyzing connectivity used 

metrics that are based on EEG frequencies (e.g., coherence, phase 
lag index, etc.). While there are advantages to investigating 
connectivity within specific oscillatory bands, these approaches 
are limited in temporal resolution (Cohen, 2014; Luck, 2014). A 
primary strength of EEG is its precise recording of summated 
post-synaptic potentials with millisecond temporal resolution 
(Luck, 2014; Slotnick, 2017). However, most frequency domain 
approaches average activity across several seconds, thereby 
compromising that temporal precision. Such an approach is more 
appropriate for resting state analyses, in which participants are not 
completing a specific task. However, in the context of active task 
engagement, temporal precision provides crucial information 
regarding temporally specific neural network connectivity. In 
using longer time windows of several seconds to allow for higher 
frequency resolution, the ability to provide temporal precision 
about cognitive subprocesses is compromised. For example, Li 
et  al. (2019) used a digit span task, but across epochs of 17 s, 
which was inclusive of two seconds pre-stimulus, the ten second 
duration of the stimulus presentation, and five seconds post-
stimulus. Thus, rather than specifically analyzing neural activity 
relevant to the holding or manipulating of information in working 
memory, this lengthy window encompassed a broad number of 
cognitive processes underlying task performance.

The vast majority of the studies analyzed connectivity within 
a specific frequency band. Yet, oscillatory activity in the brain 
simultaneously occurs across multiple frequency ranges. For this 
reason, there has been a recent increase in prevalence of cross-
frequency approaches that analyze the relationship between 
activity across different bands. Two categories of cross-frequency 

coupling are phase-amplitude and phase-phase coupling. Recent 
work with these methods points to their potential import for 
understanding the neuroscience of cognition (Abubaker et al., 
2021; Canolty and Knight, 2010; Riddle et al., 2021), as well as for 
application in contexts such as MCI and AD (Dimitriadis et al., 
2015; Musaeus et al., 2020). Of the studies in the present review 
that analyzed cross-frequency coupling, most found lower 
coupling in MCI or AD compared to HC, including theta-gamma 
coupling in MCI (Vanneste et al., 2021), and delta-theta, delta-
alpha, delta-beta (Cai et  al., 2018) and multiplex (across four 
bands and two bands) network features (Cai et al., 2020) in AD. In 
contrast, the only study during active task engagement found 
greater theta-gamma coupling for frequent (non-oddball) trials in 
MCI compared to HC during an olfactory oddball task 
(Sedghizadeh et al., 2022). Thus, while this area of research is 
young, it is likely that unique insights may be  obtained by 
pursuing application in MCI and AD.

4.3.4 Time domain
In contrast to the frequency domain, connectivity approaches 

in the time domain, such as those based in correlations, allow for 
shorter time windows, and thus superior temporal resolution. The 
primary limitation of such correlational methods is that most do 
not account for volume conduction. However, this is not a concern 
that is unique to correlational methods. For example, magnitude 
squared coherence is also sensitive to volume conduction (Bastos 
and Schoffelen, 2016; Khadem and Hossein-Zadeh, 2014; Ruiz-
Gómez et  al., 2019a; Srinivasan et  al., 2007). Measures such as 
imaginary coherence have been specifically developed to better 
account for those effects (Nolte et al., 2004). Furthermore, with 
recent advances in computational processing, approaches that 
allow for evaluating temporal–spatial dynamics are becoming 
more feasible. For example, Crook-Rumsey et al. (2023) used a 
novel network modeling approach (i.e., spiking neural networks) 
during working memory and prospective memory tasks to 
interrogate connectivity within three separate time windows: 
200-400 ms (cue detection and monitoring), 400-800 ms (deeper 
contextual and memory processes), and 0-1,000 ms (full epoch). 
They found lower connectivity in MCI compared to HC that was 
specific to the 200 to 400 ms window in a central cluster during a 
1-back task, and in lateral frontal clusters during a perceptual 
prospective memory task. Importantly, these effects were not 
significant using the full 1,000 ms time window.

4.4 Conclusion and future directions

Altogether, the existing literature highlights EEG connectivity as 
a powerful tool to advance understanding of AD-related changes in 
brain communication via functional and effective connectivity 
metrics. The studies reviewed highlight overall dominant patterns of 
lower connectivity in MCI and AD compared to HC, particularly in 
the alpha band. The prevalence of findings in the alpha band may 
suggest that it holds particular promise for characterizing AD-related 
neural network changes. It is notable that the majority of the studies 
report on alert resting state connectivity, for which alpha is the 
dominant EEG frequency (Millett, 2001; Nunez and Srinivasan, 2006). 
Thus, different patterns or other prominent frequencies may emerge 
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when a greater proportion of task-based studies is available. 
Contrasting patterns of greater connectivity were most common in 
the theta band for both MCI and AD, and were more prevalent in MCI 
during task engagement, suggestive of the recruitment of neural 
resources to accomplish the task (Reuter-Lorenz and Cappell, 2008; 
Reuter-Lorenz and Park, 2014).

This review explores connectivity patterns with attention to the 
influence of factors including sample characteristics, study design, 
and methodological considerations. Overall trends in connectivity 
were evident despite substantial variability in these factors across 
studies. The most consistent reports of significant group differences 
were found using graph theory metrics in AD and coherence in 
MCI (closely followed by graph theory). We further suggest the 
need to extend this work to cognitively healthy, high-AD-risk older 
adults to advance characterization of the earliest possible indicators 
of network-level changes that may portend risk for future 
cognitive decline.

The present review exclusively focused on sporadic, late-onset AD, 
which is the most common form (Alzheimer’s Association, 2024). In 
contrast, early-onset AD (prior to age 65) is rare but has a stronger 
genetic component (APP, PSEN1, or PSEN2 variants) and is associated 
with a more aggressive and often atypical clinical presentation 
(Mendez, 2017). At present, there is relatively less research on 
connectivity in early-onset AD; greater study and synthesis of such 
research may reveal distinct patterns and progression of neural 
network changes, both compared with late-onset AD, but also in 
distinguishing the distinct phenotypes of early-onset AD (Adebisi 
et al., 2024; Adebisi and Veluvolu, 2023; Filippi et al., 2017; Gour 
et al., 2014).

We note that there was a paucity of a priori, theory-driven 
analyses in specific bands, time windows, and between specific 
brain regions. Many studies conducted a very large number of 
exploratory comparisons, including bivariate comparisons of 
sensors and regions across the whole brain. This approach limits the 
meaningfulness of interpretations, elevates the likelihood of 
statistical error, and reduces the likelihood of replication. 
We  advocate for future studies employing thoughtful a priori 
hypotheses guided by the existing literature, to improve the clarity 
and confidence of interpretations and replications.
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