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Introduction: This study investigated the influence of rhythmic auditory cues

(RAC) on gait asymmetry (GA) during unobstructed and obstacle avoidance

walking in people with Parkinson’s disease (PD) and neurologically healthy

individuals.

Methods: Thirteen individuals with PD (70.33 ± 6.02 years) and 13 healthy

controls (CG) (70.77 ± 7.56 years) participated in this study. They performed

a total of five trials during unobstructed walking and 10 trials during obstacle

walking under each auditory cue condition (without and with RAC). For obstacle

walking, five trials were performed with each limb as leading during obstacle

avoidance. First, the volunteers performed the trials without RAC. The trial

order, unobstructed or obstacle walking, was randomly defined, and the cues

(controlled by a metronome) were personalized according to participants’

cadence. The symmetric index of gait parameters was analyzed using 2 × 2

factorial analysis of variance (group and RAC as factors) separately for each gait

type (unobstructed and obstructed walking).

Results: A group-by-auditory cue interaction for step velocity (p = 0.027)

showed that the PD group exhibited 57.6% reduced asymmetry with RAC during

unobstructed walking, with no significant effects observed for the CG. However,

RAC had no effect on GA during obstacle avoidance walking in people with

PD. Conversely, the CG exhibited 10.5% greater step length asymmetry, 7.1%

greater step duration asymmetry, 7.0% greater step velocity asymmetry, and

10.6% greater double support duration asymmetry during obstacle avoidance

with RAC (p < 0.001).
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Conclusion: We conclude that RAC can reduce GA in people with PD during

unobstructed walking, but appear to have no effect and negative effects on GA

during obstacle walking in people with PD and neurologically healthy individuals,

respectively.

KEYWORDS

walking, rhythmic auditory cueing, rehabilitation, symmetry, neurodegenerative
disease, movement disorders

1 Introduction

Symmetric onset, which refers to the simultaneous or nearly
equal appearance of motor symptoms on both sides of the body,
is considered a “red flag” for the diagnosis of Parkinson’s disease
(PD) (Postuma et al., 2015). Traditionally, motor symptoms on the
initially affected side are more severe compared to the other side
(Miller-Patterson et al., 2018). This disparity in motor symptom
severity contributes to an asymmetric gait (Barbieri et al., 2017).
During unobstructed walking, individuals with PD show increased
stride time, swing time (Patoz et al., 2023) and step length
asymmetry (Seuthe et al., 2024) compared to neurologically healthy
controls. Asymmetry also manifests when crossing an obstacle
with asymmetry patterns in the leading and trailing toe clearance
(Orcioli-Silva et al., 2020). In fact, obstacle avoidance requires
heightened sensorimotor integration, leading to reduced automatic
control due to the absence of cognitive compensatory options
(Vitório et al., 2023). This increases gait asymmetry compared
to unobstructed walking in people with PD (Barbieri et al.,
2018a). Although not entirely understood, the asymmetric neural
dysfunction in the basal ganglia (Riederer and Sian-Hülsmann,
2012; Van der Hoorn et al., 2011) and the asymmetrical onset
of motor symptoms, such as bradykinesia, rigidity and postural
control (Peterson and Horak, 2016), may contribute to gait
asymmetry in people with PD.

Pharmacological treatment is widely implemented to decrease
PD signs and symptoms and also seems to be effective in
reducing gait asymmetry (Barbieri et al., 2018a; Warmerdam
et al., 2021; Wilson et al., 2020). Barbieri et al. (2018a)
showed that antiparkinsonian medication reduced both stride
length asymmetry and stride velocity asymmetry during obstacle
circumvention in people with PD. However, prolonged use of
dopaminergic medication may cause dependency, side effects (e.g.,
dyskinesia), and reduce the medication’s effectiveness (Olanow
and Stocchi, 2018). The effect of medication tends to decrease
throughout the years with the progression of the disease, leading
to gait impairments such as reduced step length, decreased walking
speed, and increased variability in stride time (Wilson et al., 2020).
Additionally, Warmerdam et al. (2021) indicated that walking at
higher speeds or avoiding obstacles may reduce the effectiveness
of dopaminergic medication in people with PD. These conditions
increase the complexity of motor control demands, potentially
surpassing the compensatory effects of the medication. Hence,
complementary interventions have been explored to decrease gait
asymmetry, such as the use of additional externally driven stimuli.

Previous studies indicated that rhythmic auditory cues (RAC),
defined as external rhythmic stimuli, such as metronome beats or

music with a consistent tempo, are a complementary and effective
intervention for counteracting PD-related gait impairments (Forte
et al., 2021; Ghai et al., 2018; Rinaldi et al., 2019). RAC complement
drug treatment for PD by using the constant beat of a metronome
or music to improve balance and gait problems (Ginis et al.,
2018; Pando-Naude et al., 2024), resulting in improvements in
walking velocity and stride length (Belluscio et al., 2021; Minino
et al., 2021). Additionally, Rinaldi et al. (2019) observed that RAC
could increase muscle activation, potentially improving stability
and aiding individuals with PD to safely cross obstacles. Particularly
relevant, the use of RAC may minimize PD-related impairments in
gait control, reflecting improved obstructed walking performance
through greater propulsive braking impulses and shorter time
to process obstacle characteristics (Rinaldi et al., 2019), thereby
reducing the risk of falls.

From a neurological perspective, RAC’s effects on regulating
gait are likely related to improvements in brainstem and cerebellum
activations (Devlin et al., 2019), reducing deficits involved in
automatic movement in the basal ganglia (Koshimori and Thaut,
2018), and providing phasic cues to the supplementary motor
area (Woerd et al., 2017). Prior studies have employed diverse
methodologies to apply RAC, such as metronome beats at
individualized cadences (Devlin et al., 2019) or music with
embedded rhythmic patterns (Koshimori and Thaut, 2018). These
stimuli were typically synchronized with participants’ steps to
enhance temporal gait parameters, with variations in time, to
examine effects during both steady-state and obstacle-crossing
scenarios. Our experimental design builds on these findings
by specific justification, e.g., testing novel rhythmic patterns,
focusing on obstacle negotiation, or exploring underrepresented
gait metrics, allowing for a comprehensive evaluation of RAC’s
effects on both obstructed and unobstructed walking. Brodie
et al. (2015) found that symmetry-matched RAC compensated for
unsteady gait in most people with PD without exacerbating gait
asymmetry. However, the authors suggested that RAC may be
particularly beneficial in cognitively demanding walking tasks, such
as obstacle avoidance, which require precise motor coordination
and significant attentional resources. Based on this evidence, we
hypothesize that RAC will reduce gait asymmetry (e.g., decrease
step length and velocity asymmetry) during obstacle avoidance
walking, where its effects are more likely to manifest, but not during
unobstructed walking, where motor demands are comparatively
lower.

The purpose of this study is to investigate whether auditory
cueing can reduce gait asymmetry during unobstructed walking
and obstacle avoidance in people with PD. The novelty of this
study lies in testing the effects of RAC on gait asymmetry
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during obstacle avoidance in people with PD and matched-
control individuals. Understanding how people with PD interact
with sensory information during walking is crucial in order to
make clinical decision-making for personalized care and design
assistive devices.

2 Materials and methods

2.1 Participants

The analysis with G∗Power software (version 3.1; University
of Düsseldorf, Dusseldorf, Germany) showed that a sample size
of at least 26 individuals (13 in each group) would be necessary
to obtain a power of 80% probability to detect a difference of
20% between the two groups for the primary outcome with a
type I error of 0.05, based on previously published data (Rinaldi
et al., 2019). Hence, a total of 13 individuals with PD (PD group
- seven females) and 13 neurologically healthy participants (CG)
(eight females) matched by age, height, and body mass participated
in this study. Participants with PD and neurologically healthy
control participants were recruited from the local community and
rehabilitation programs. All participants underwent an interview to
collect demographic, sociocultural, and overall health information.
An experienced neurologist evaluated and confirmed the diagnosis
of PD specifically for this study using the London Brain Bank
criteria (Hughes et al., 1992). This evaluation included a detailed
clinical assessment and a comprehensive review of medical
history to ensure diagnostic accuracy and participant eligibility.
Neurologically healthy individuals were screened to ensure the
absence of any neurological or motor impairments.

The inclusion criteria were: independent living in the
community; ability to walk without the use of any aids; absence
of uncontrolled diabetes, hypertension, cardio-respiratory diseases,
balance, and vision disorders that may impair locomotion. In
addition, for the PD group, the individuals were included in the
study if they had a diagnosis of idiopathic PD, were taking their
antiparkinsonian medication regularly and with a Hoehn & Yahr
stage (H&Y) (Hoehn and Yahr, 1967) 3 or below. Participants with
PD were evaluated in the ON-state of medication (1 h after taking
their dopaminergic medication).

2.2 Clinical evaluations and
determination of footedness of the
control group and most affected limb for
individuals with PD

Initially, an experienced evaluator conducted an anamnesis to
characterize both the PD and control groups, focusing particularly
on the side where PD symptoms were present. After that, a clinical
assessment using the motor section of the Unified Parkinson’s
Disease Rating Scale (UPDRS) (Fahn and Elton, 1987; Goetz
et al., 2003) and the H&Y scale was applied to determine the
motor disease severity and the stage of disease of PD participants,
respectively. In addition, cognitive condition screening in both
groups was analyzed using the Mini-Mental State Examination
(MMSE) (Brucki et al., 2003).

Footedness was assessed in the CG by asking all participants to
kick a ball to hit a target. The limb that each individual preferred
to kick the ball was considered as the preferred limb. For PD
participants, motor UPDRS items 20–23 and 25–26 were used
to assess appendicular asymmetry (Araújo-Silva et al., 2022). The
most affected limb was determined by calculating the difference
between the scores of the right and left limbs in the UPDRS items
mentioned above. A positive value indicated the right limb as the
most critically affected, whereas negative values indicated the left
limb.

2.3 Gait asymmetry evaluation with and
without rhythmic auditory cues

Participants performed four walking conditions: unobstructed
gait without and with RAC, and obstacle avoidance without and
with RAC. A total of five trials were performed in each auditory cue
condition for unobstructed walking, and 10 trials were performed
in each auditory cue condition for obstacle avoidance - five trials
for each limb crossing the obstacle. First, participants performed
a trial without RAC. The order of trial conditions was randomly
assigned, comprising unobstructed trials, obstacle avoidance trials
with the most affected/non-preferred limb, and obstacle avoidance
trials with the least affected/preferred limb. The same sequence was
maintained for the trials conducted with and without RAC.

Participants were instructed to walk at their self-selected pace
with the instruction, “Please walk at your preferred speed, just
like you would on the street,” to maintain uniformity across trials.
Walking took place on a 10-m wooden pathway covered with a
3 mm thick black rubber carpet. During the obstacle avoidance
trials, participants were instructed to avoid contact with a single
obstacle (15 cm high, 80 cm wide, and 2 cm thick) placed midway
at the 5-m mark. The starting point was adjusted to ensure
participants completed at least two strides before encountering the
obstacle, ensuring consistency in task complexity and conditions
for all participants. The experimental design is demonstrated in
Figure 1.

For auditory cue trials, the cues were personalized for
each individual according to the cadence determined by three
unobstructed trials performed prior to the start of the experiment.
During auditory cue trials, participants were instructed to walk
normally, while stepping in time with the metronome beats,
trying to synchronize each heel contact with the beat. Participants
performed two trials to practice before starting. The trials were
stopped and repeated if participants ceased to follow the cues
during the experiment.

RAC were delivered using a metronome application on a
smartphone, played through a speaker placed at a comfortable
distance from the participants. The participants listened to the
cues during the walking trials through the speaker, and the volume
was adjusted individually to ensure that the cues were clearly
audible but not overwhelming. The auditory cues were provided
continuously throughout the walking task, starting at the beginning
of the trial and stopping once the participant had completed
the walking task. The tone of the metronome was consistent
throughout, and the frequency was maintained at the specified
beats per minute for each group.
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FIGURE 1

Representative illustration of the steps analyzed in unobstructed walking (A) and obstacle avoidance (B). Obstacle features: 15 cm height × 80 cm
width × 2 cm thick. W/ AC, with auditory cue; W/O AC, without auditory cue. A total of five trials in each cue condition were performed in
unobstructed walking and 10 trials, five for each limb crossing the obstacle in obstacle walking. The crossing step was analyzed when the leading
limb crossed the obstacle.

2.4 Data acquisition

The acquisition of kinematic gait parameters was accomplished
using a GAITRite R© system (CIR System, Clifton, NJ, USA) with a
sample rate of 200 Hz. For unobstructed gait, one step from each
side of the middle of the pathway was analyzed per trial. Steps
were taken from the middle of the 10-m pathway, defined as the
section between 2.5 and 7.5 m. This segment was selected to capture
steady-state walking, minimizing the influence of acceleration and
deceleration phases. The same length was used for all participants
to ensure uniformity in the data collection process.

For obstacle avoidance, the crossing step taken by the leading
limb during the avoidance maneuver was analyzed in each trial.
Length, duration, width, velocity, limb swing duration (as a
percentage of step duration), and double support duration (as a
percentage of step duration) were calculated for each step.

To investigate the gait asymmetry, we considered the steps
with the most and least affected limb (right or left according to
UPDRS items) for PD participants as well as preferred and non-
preferred limb (right or left according to footedness test) for the
control group in each gait type. Although a recent study by Seuthe
et al. (2024) suggests a potential mismatch between step length
dominance and UPDRS-based dominance, our classification was
solely used to ensure consistent averaging for the same leg across
multiple trials.

Initially, the average of each gait parameter was calculated for
the most and least affected limb in PD participants, and for the
preferred and non-preferred limb in the control group. Next, the
Symmetry Index (SI) (Herzog et al., 1989) was calculated for each
participant based on gait conditions, where MA represents the
most affected limb, P is the preferred limb, LA is the least affected
limb, and NP is the non-preferred limb. A value of zero for an
index indicates no difference between the sides. Since we were not
interested in the side effect of asymmetry but in the effect of RAC,
we adopted the absolute value of the SI for the statistical analysis.
For obstacle avoidance, the average of each gait parameter of the
crossing step with the most and least affected limb, or preferred and
non-preferred limb, was used to calculate the SI.

SI =[(
value of MA or P limb−value of LA or NP limb

)
(value of MA or P limb+value of LA or NP limb)

]
× 100%

2.5 Statistical analysis

Statistical analyses were performed using the JASP (version
0.18.3) for Windows. Normality and homogeneity were checked
through the Shapiro-Wilk and Levene’s tests, respectively. To
analyze cognitive status, a Student’s t-test for independent samples
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was employed to compare the PD group with the control
group. Additionally, this test was conducted to evaluate potential
differences in cadence between the groups under the RAC
condition. To analyze the symmetric index of gait parameters, a
2 × 2 factorial analysis of variance (ANOVA) with independent
measures was performed, considering the factors “Group” (PD
group vs. CG) and “RAC” (with vs. without auditory stimulus).
These analyses were conducted separately for unobstructed walking
and obstacle-avoidance walking conditions. Post hoc analyses using
Tukey’s tests were conducted to explore significant effects. Cohen’s
d was used to report the effect size for the Student’s t-test comparing
cognitive status between the PD group and the control group, while
Eta squared (η2) was used to report effect sizes for the ANOVA
results. Statistical significance for all analyses was set at p < 0.05,
with effect sizes interpreted as Cohen’s d (>0.2 small effect; >0.5
medium effect; >0.8 large effect) or η2 as small (effect size > 0.01),
moderate (effect size > 0.06), or large (effect size > 0.14) (Cohen,
1988).

3 Results

The group characteristics and clinical variables are detailed
in Table 1. Cognitive levels, measured by the Mini Mental State
Examination, were comparable between the PD group and CG
(t24 = 1.95; p = 0.059, d = 0.783). The average frequencies were
106.92 beats per minute for the PD group and 109.07 beats per
minute for the CG.

Means and standard deviations of kinematic gait parameters
under each condition (unobstructed vs. obstacle walking), by group
(PD vs. CG), side (preferred vs. non-preferred), and cue presence
(with vs. without RAC), are presented in Supplementary Tables 1–
6. The ANOVAs revealed statistically significant differences in step
length, duration, width, velocity, limb swing duration, and double
support duration between PD and control groups across walking
conditions and limb preferences.

3.1 Unobstructed walking

Table 2 presents the symmetry index of the spatial-temporal
parameters. The ANOVAs revealed a main effect of group for limb
swing [F(1, 26) = 4.013; p = 0.007, η2 = 0.16] and double support
duration [F(1, 26) = 7.728; p = 0.008, η2 = 0.14], demonstrating
greater asymmetry (44.8% and 40.4% higher, respectively) in the
PD group compared to the CG (Figure 2). Furthermore, a group-
by-auditory cue interaction for step velocity [F(1, 26) = 5.193;
p = 0.027, η2 = 0.10] showed that the PD group exhibited 57.6%
reduced asymmetry with RAC, with no significant effects observed
for the CG.

3.2 Obstacle avoidance walking

The presence of obstacles significantly increased the asymmetry
scores for both PD and control groups (Figure 3). A main effect
of group was found for step length [F(1, 26) = 9.93; p = 0.003,
η2 = 0.14], step duration [F(1, 26) = 11.75; p = 0.001, η2 = 0.15],

step velocity [F(1, 26) = 13.68; p < 0.001, η2 = 0.15], limb swing
duration [F(1, 26) = 5.575; p < 0.001, η2 = 0.31], and double
support duration [F(1, 26) = 23.06; p< 0.001, η2 = 0.27], indicating
that the CG exhibited significantly greater asymmetry compared to
the PD group (step length: 59%, step duration: 47%, step velocity:
56%, limb swing duration: 12%, and double support duration: 23%
higher, respectively).

A main effect of auditory cue was found for step length [F(1,
26) = 10.54; p = 0.002, η2 = 0.15], step duration [F(1, 26) = 6.852;
p = 0.012, η2 = 0.09], step velocity [F(1, 26) = 21.94; p < 0.001,
η2 = 0.25], and double support duration [F(1, 26) = 8.004;
p = 0.007, η2 = 0.09, moderate], indicating that the CG showed
more asymmetry with RAC compared to without RAC (step length:
10.5%, step duration: 6.9%, step velocity: 21.9%, and double support
duration: 8.0% higher, respectively).

ANOVAs revealed a group-by-auditory cue interaction for step
length [F(1, 26) = 4.325; p = 0.043, η2 = 0.06], step duration [F(1,
26) = 15.58; p < 0.001, η2 = 0.21], step velocity [F(1, 26) = 10.93;
p = 0.002, η2 = 0.12], and double support duration [F(1, 26) = 8.468;
p = 0.006, η2 = 0.10]. During the condition with RAC, the CG
showed 10.9% greater step length asymmetry, 6.9% greater step
duration asymmetry, 21.9% greater step velocity asymmetry, and
8.5% greater double support duration asymmetry than the PD
group (p < 0.001). Furthermore, the CG exhibited 10.5% greater
step length asymmetry, 7.1% greater step duration asymmetry,
7.0% greater step velocity asymmetry, and 10.6% greater double
support duration asymmetry during obstacle avoidance with RAC
compared to without RAC (p < 0.001), with no significant effects
observed for the PD group.

4 Discussion

We investigated whether rhythmic auditory cues reduce
gait asymmetry during unobstructed and obstacle avoidance
walking in people with PD and neurologically healthy individuals.
Interestingly, our hypothesis was only partially supported.
Although RAC decreased step velocity asymmetry during
unobstructed walking in people with PD, they had no effect on
gait asymmetry during obstacle avoidance walking. Additionally,
one unexpected finding was that RAC during obstacle avoidance
increased asymmetry in step length, duration, velocity, and double
support duration in neurologically healthy individuals. Our results
extend the current literature, suggesting that RAC represent an
effective strategy to reduce gait asymmetry in people with PD
during unobstructed walking, without affecting gait asymmetry
during obstacle avoidance. These findings may have significant
implications for planning gait interventions in people with PD.

4.1 Rhythmic auditory cues reduce step
velocity asymmetry during unobstructed
walking in people with PD

RAC significantly improved gait asymmetry in people with
PD during unobstructed walking, notably reducing step velocity
asymmetry (η2 = 0.10, moderate). Our findings are in line
with previous research and highlight the effectiveness of RAC
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TABLE 1 Means and standard deviations of characteristics and clinical variables for individuals with PD and the control group.

Variable PD group CG Min-max (PD) Min-max (CG) p-value Cohen’s d

Age (years) 70.33± 6.02 70.77± 7.56 61–80 59–81 0.869 0.065

Height (m) 1.62± 0.08 1.60± 0.06 1.50–1.70 1.50–170 0.784 −0.109

Body mass (kg) 68.20± 12.48 70.15± 10.32 42.00–82.80 56.40–83.50 0.667 0.171

MMSE (pts) 26.85± 1.82 28.38± 2.10 23–30 24–30 0.058 0.783

UPDRS III ON (score) 24.08± 6.18 – 14–35 – – –

H&Y (score) 2.08± 0.34 – 1.5–2.5 – – –

CUW-RAC (steps/min) 107.37± 12.75 113.01± 12.73 83.14–132.18 90.88–136.18 0.270 0.443

COW-RAC (steps/min) 80.93± 10.75 89.21± 10.57 65.80–106.08 68.95–104.38 0.059 0.777

MMSE, Mini Mental State Examination; UPDRS III ON, motor section of the Unified Parkinson’s disease rating scale conducted when the participant was in the “ON” state of medication;
H&Y, Hoehn & Yahr; CUW-RAC, Cadence during unobstructed walking with RAC; COW-RAC, Cadence during obstacle-avoidance walking with RAC; p-values marked in bold represent
statistically significant results.

TABLE 2 The means and standard deviations of the symmetric index (%) of walking parameters in the PD group (PD group) and control group (CG) are
presented for unobstructed and obstacle avoidance walking, both without and with auditory cues.

PD group CG Effects of
group

Effects of
auditory

cue

Effects of
interaction

Symmetric
index (%)

Without
cues

With cues Without
cues

With cues

UNOBSTRUCTED WALKING

Step length 1.31± 0.91 1.30± 1.09 1.42± 0.77 1.68± 0.75 0.350 (0.02) 0.643 (0.01) 0.616 (0.01)

Step duration 1.23± 0.77 1.17± 0.70 1.07± 0.86 0.94± 0.56 0.345 (0.02) 0.661 (0.00) 0.849 (0.00)

Step width 2.54± 1.43 2.42± 1.26 3.10± 1.76 2.85± 2.19 0.350 (0.02) 0.734 (0.00) 0.901 (0.00)

Step velocity 2.60± 1.96 1.50± 1.19 1.56± 1.05 2.29± 1.30 0.760 (0.00) 0.639 (0.00) 0.027 (0.10)

Limb swing duration 1.12± 1.09 1.00± 0.66 0.62± 0.43 0.33± 0.36 0.007 (0.16) 0.336 (0.02) 0.672 (0.00)

Double support
duration

4.33± 4.74 3.49± 2.48 1.99± 1.63 1.17± 2.48 0.008 (0.14) 0.328 (0.02) 0.991 (0.00)

OBSTACLE WALKING

Step length 1.59± 1.04 2.34± 1.36 2.28± 1.69 5.74± 3.92 0.003 (0.14) 0.002 (0.15) 0.043 (0.06)

Step duration 2.30± 1.67 1.42± 1.37 1.96± 0.68 6.29± 4.13 0.001 (0.15) 0.012 (0.09) <0.001 (0.21)

Step width 3.80± 2.76 7.60± 5.24 7.57± 5.85 9.77± 9.31 0.104 (0.06) 0.102 (0.06) 0.657 (0.00)

Step velocity 2.20± 1.55 3.18± 2.50 2.48± 1.53 8.13± 3.93 <0.001 (0.15) <0.001 (0.25) 0.002 (0.12)

Limb swing duration 0.36± 0.26 0.32± 0.23 0.82± 0.53 1.22± 0.76 <0.001 (0.31) 0.227 (0.02) 0.148 (0.03)

Double support
duration

2.04± 1.40 1.98± 1.89 3.43± 1.85 7.62± 3.85 <0.001 (0.27) 0.007 (0.09) 0.006 (0.10)

Effect size - η2 (eta squared); p-values marked in bold represent statistically significant results. The final three columns display the significance values and effect sizes (in parentheses) for the
main effects of group and auditory cue, as well as the group× auditory cue interaction.

in improving gait in people with PD. RAC, utilized through a
metronome or via music, have been recommended for reducing
gait impairments in people with PD (Forte et al., 2021; Ghai
et al., 2018; Rinaldi et al., 2019), potentially enhancing balance
(Pando-Naude et al., 2024), walking speed, and stride length
(Belluscio et al., 2021; Minino et al., 2021) by increasing muscle
activation (Rinaldi et al., 2019) during unobstructed walking. The
key neurophysiological mechanism behind this effectiveness is that
external cues can redirect neural circuits from those that are more
affected to those that are not, leading to a shift from habitual to
goal-directed (Redgrave et al., 2010). RAC, in particular, perform an
executive role in facilitating attention focus on gait and a stabilizing
role in reducing variability while improving spatiotemporal gait

parameters (Ginis et al., 2018). Moreover, RAC can also reduce
gait asymmetry in individuals with PD by enhancing external
timing, motor planning, and sensory integration (Ghai et al.,
2018). Previous theories suggest that RAC may act as an external
generator, optimizing motor execution by recalibrating predictions
based on sensory consequences (Harrison and Earhart, 2023;
Izawa et al., 2012).

Using RAC can be a beneficial strategy for dealing with the
asymmetric neural neurodegeneration seen in PD. It induces
functional asymmetry between hemispheres, with a relative
reduction of neural excitability in the most affected hemisphere
and an apparent increase in the least affected one (Claassen et al.,
2016; Riederer and Sian-Hülsmann, 2012), as well as reduced
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FIGURE 2

Bar graphs showing the results of the Group × RAC interaction for the unobstructed walking condition. Circles represent individual values.
#Indicates significant differences identified in post-hoc comparisons between the groups (PD vs. CG) without auditory cues. SI (%), symmetry index;
w/o, without auditory cue (white); w/, with auditory cue (gray); PD, Parkinson’s disease group; CG, control group. Panel (A) Step length; (B) Step
duration; (C) Step Width; (D) Step velocity; (E) Limb swing; (F) Double support.

FIGURE 3

Bar graphs showing the results of the Group × RAC interaction for the obstacle avoidance walking condition. Circles represent individual values.
#Indicates significant differences identified in post-hoc comparisons between the groups (PD vs. CG) with auditory cues. *Denotes the main effect
of the auditory cue within the group. SI (%), symmetry index; w/o, without auditory cue (white); w/, with auditory cue (gray); PD, Parkinson’s disease
group; CG, control group. Panel (A) Step length; (B) Step duration; (C) Step Width; (D) Step velocity; (E) Limb swing; (F) Double support.
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transcallosal sensorimotor structural connectivity (Fling et al.,
2018). In a previous study of our group, we showed that people
with PD presented asymmetric cortical activity behavior during gait
initiation, with no asymmetry in anticipatory postural adjustments
(Faria et al., 2023). We interpreted that higher asymmetry in
cortical activity was an adaptive mechanism to improve motor
behavior (specifically, gait initiation), as damaged areas of the
most affected hemisphere are substituted by residual networks
within both hemispheres (Berenguer-Rocha et al., 2020; Brain et al.,
2020; Knights et al., 2021; Peterson and Fling, 2018). Therefore, in
the current study, we suggest that RAC can also have a positive
impact on brain activity, functionally remapping from degenerated
areas onto homologous areas within the hemisphere experiencing
less degeneration (Berenguer-Rocha et al., 2020). Additionally,
RAC are likely to enhance the activity of the brainstem and
cerebellum (Devlin et al., 2019), mitigating deficits related to
automatic movement control in the basal ganglia (Koshimori
and Thaut, 2018), providing temporal cues to the supplementary
motor area (Woerd et al., 2017), and consequently reducing gait
asymmetry.

The effect on step velocity is intriguing as it encompasses both
the spatial and temporal aspects of gait. Gait velocity is determined
by the ratio of step length to step duration. Thus, one may argue
that a reduction in step velocity asymmetry can indicate a decrease
in either step length asymmetry, step duration asymmetry, or
both. While step velocity asymmetry tends to worsen with age to
compensate for the reduction in step length (Forte et al., 2021), our
study demonstrates that RAC can be effective in promoting gait
symmetry in people with PD during unobstructed walking. These
findings offer novel insights for gait interventions in people with
PD.

4.2 Rhythmic auditory cues do not
change gait asymmetry in PD, but
increase asymmetry in healthy
individuals during obstacle avoidance

RAC did not affect obstacle avoidance during walking in people
with PD. Therefore, it seems that RAC do not interfere with gait
asymmetry during obstacle avoidance in people with PD. Obstacle
avoidance represents a challenging task that is likely to increase
gait asymmetry in both people with PD and neurologically healthy
individuals (Barbieri et al., 2018b). Although previous studies have
shown that RAC during obstacle avoidance walking benefit both
people with PD and neurologically healthy individuals to safely
overcome obstacles due to better positioning of the feet on the
ground, stability and ability to maintain synchronization with RAC
(Rinaldi et al., 2019), our findings indicated that they do not appear
to have an effect on gait asymmetry.

One possible explanation is that due to the increase in
difficulty, complexity, motor cortex activity and cognitive resources
required during obstacle avoidance (Ambike et al., 2021), PD
participants probably prioritized the motor task and ignored
the external cues, increasing the attention control to perform
obstacle avoidance. A possible additional explanation may be
related to the weight of sensory information attributed to vision.
According to Faria et al. (2023), obstacles up to 15 cm high,

such as the one used in our study, act as a visual cue during
the gait of people with PD. In this case, visual information
is utilized to track the characteristics of the obstacle in order
to make adjustments to safely prevent it (Santos et al., 2010).
Furthermore, Föcker et al. (2022) elucidated that the visual signal
can make it difficult to integrate an auditory cue. Therefore, due
to the risk and importance of spatial variables when negotiating
with an obstacle to avoid tripping, visual information may have
had more relevance/weight compared to auditory information.
However, our findings should not be interpreted negatively. On
the contrary, these results may serve as helpful indicators for
implementing the RAC approach in gait intervention, considering
that RAC do not interfere with gait asymmetry and promote
other benefits in gait during obstacle avoidance in people with
PD.

An intriguing finding of this study is that, for certain gait
parameters such as step velocity and step length the PD group
exhibited lower asymmetry values than the control group during
obstacle avoidance walking, particularly in the absence of RAC.
One possible explanation for this observation is that individuals
with PD are more accustomed to managing motor deficits and
may inherently adopt compensatory mechanisms to maintain
balance and motor control, even without external cues. One
important aspect here is that our sample is composed of adults
over 65 years old, which may be minimally affected by the
aging process in motor and non-motor variables. It may suggest
that the gait pattern is disrupted during obstacle avoidance in
older adults, likely increasing gait variability (Baker et al., 2008;
Harrison and Earhart, 2023). Harrison and Earhart (2023), in a
recent systematic review, found similar findings for gait variability
during rhythmic RAC: from 11 papers with neurologically healthy
older adults, 10 papers found no or negative (higher) effects
on gait variability. The authors suggest that for healthy older
adults with minimal gait impairment, RAC may disrupt the
normal gait pattern, potentially relating to increased attentional
or cognitive demands in order to synchronize gait to an outside
source.

The increase in gait asymmetry in the CG can be explained by
the fact that it is more challenging for older adults to synchronize
their gait with a rhythm as it is an action that can lead to dual-
task interference that slows gait and shortens steps (Roberts et al.,
2021). Very likely, RAC during obstacle avoidance increase the
robustness of the task, which may interfere with well-learned
movement patterns in people without basal ganglia deficits and
perturb the functioning of internal mechanisms (Brodie et al.,
2015). Nevertheless, the study’s major limitation was the lack
of specificity in determining the metronome pace for obstacle
walking, potentially causing discrepancies between unobstructed
and obstacle situations. This may have interfered with the obstacle
walking results. Future studies should confirm auditory cue
frequency separately for each condition. It is possible that the CG
walked faster during unobstructed walking, which may have been
too fast to maintain during obstacle avoidance, leading to increased
asymmetry. The CG might have adjusted their gait rhythm during
obstacle avoidance, possibly changing the rhythm only on the
non-preferred side, contributing to gait asymmetry.

Other limitations of our study should be mentioned. First,
participants were restricted to those with mild to moderate PD.
As demonstrated by Lirani-Silva et al. (2019), the benefits of RAC
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increase as diseases progress. Future research could include people
with more severe PD (H&Y ≥ 3), who experience freezing of
gait with and without medication, and those with greater gait
asymmetry. Furthermore, gait parameters did not demonstrate any
significant changes in the auditory cue condition. Although we
observed significant changes in certain gait parameters, such as
step velocity asymmetry during unobstructed walking in the PD
group, other parameters like step length and step duration did
not demonstrate significant changes in response to RAC. This
suggests that RAC may not uniformly affect all gait parameters
and highlights the complexity of gait modulation in different
walking conditions. Even though a single session of auditory cue
administration may improve gait asymmetry in people with PD
(Belluscio et al., 2021), familiarization and longer administration
of auditory cue training could be necessary to observe significant
improvements in spatiotemporal gait parameters in PD.

5 Conclusion

We conclude that even though RAC demonstrate a beneficial
effect on gait asymmetry during unobstructed walking in people
with PD, their impact on gait asymmetry during obstacle avoidance
is negligible in this population. Interestingly, in neurologically
healthy older adults, RAC during obstacle avoidance may disrupt
rhythmicity and contribute to increased gait asymmetry. These
conclusions suggest that while RAC can enhance gait symmetry
in certain conditions, their efficacy and potential disturbances vary
across different walking contexts and neurological statuses.
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