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Cognitive impairment, marked by a decline in essential mental aspects such

as attention, memory, and problem-solving, is significantly correlated with

advancing age. This condition presents a major challenge for the elderly,

adversely a�ecting quality of life, diminishing independence, and imposing

substantial burdens on healthcare systems. Recent research indicates that

vitamin K2 may be vital for preserving brain health and cognitive function.

Traditionally recognized primarily for its role in blood coagulation, vitamin K has

emerged in recent years as a nutrient with diverse biological e�ects essential

for healthy aging. A growing body of evidence from both observational and

interventional studies underscores the pivotal role of vitamin K2 in mitigating

arterial calcification. This mechanism may link vascular health to cognitive

function, suggesting that vitamin K2 could play a critical role in the prevention of

cognitive impairment in aging populations.

KEYWORDS
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Introduction

By 2050, the World Health Organization (WHO) projects that the global population

of individuals aged 80 and older will triple, leading to a significantly aged population

worldwide (Ageing and Health, 2024). Since aging is usually accompanied by heavy

mortality and comorbidity which burdens the economic healthcare systems, recently,

healthy aging has been in the center of scientific research. Cognitive impairment, termed as

decline in mental status and abilities including attention, memory, and problem-solving, is

a condition tightly and bidirectionally associated with advanced age. Decline in cognitive

function is a major concern for the elderly, because it might affect quality of life and

lead to loss of independence and burden health care systems. Therefore, it soon became

evident that early detection of modifiable risk factors for cognitive decline is of utmost

importance. Among these factors, during recent years, accumulating evidence suggest that

dietary components, like nutritional vitamin K might play pivotal role in brain function

and cognitive function.

Cardiovascular disease (CVD) is the leading cause of morbidity and mortality

worldwide (Mensah et al., 2019). Previous research has established a link between vascular

remodeling, atherosclerosis and brain function, and it is now widely recognized that CVD
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is negatively correlated with cognitive health (Alosco and Hayes,

2015; Dolan et al., 2010; Rusanen et al., 2014). Arterial stiffness,

in particular, appears to be a critical factor in the functional

and structural brain changes associated with aging (Vlachopoulos

et al., 2010). Previous studies have demonstrated that arterial

stiffness contribute to cognitive decline through impaired cerebral

perfusion. Given these, arterial stiffness has emerged as a potential

therapeutic target to mitigate cognitive decline, highlighting

the importance of early vascular interventions in preserving

cognitive health.

In this article, we review the association between vitamin K

and cerebral function, discussing novel developments regarding its

therapeutic role in arterial stiffness and cognitive health.

The link between arterial sti�ness and
cognitive status

As arterial stiffness increases with age, the pulsatile load

transmitted to peripheral arteries becomes abnormal, resulting in

end-organ damage. The brain, with its high-flow, low-resistance

vascular system, is particularly vulnerable to this damage (Thorin-

Trescases and Thorin, 2016). Arterial stiffness has been associated

with age-related cerebral changes, such as atrophy and small vessel

disease (Townsend et al., 2015; Laurent and Boutouyrie, 2020).

Among the non-invasive measures of vascular stiffness, pulse wave

velocity (PWV) is considered the gold standard. PWV measures

arterial stiffness along the entire aortic pathway, providing a

reliable, feasible, and accurate assessment of vascular health

(Laurent et al., 2006; Boutouyrie et al., 2014). Increased arterial

stiffness leads to impaired cerebral blood flow and white matter

hypoperfusion, contributing to white matter (WM) structural

abnormalities and white matter hyperintensities (WMH) (Jefferson

et al., 2018; Promjunyakul et al., 2016). Moreover, recent studies

have demonstrated that arterial stiffness, as measured by PWV, is

negatively associated with total brain volume, brain atrophy, and

cognitive function (Palta et al., 2019; Haidegger et al., 2023; Tomoto

et al., 2023; Coffin et al., 2022).

In the Atherosclerosis Risk in Communities–Neurocognitive

Study, the authors measured cognition status and performed brain

magnetic resonance imaging to identify cerebral microbleeding,

lacunar infarcts, white matter hyperintensities’ volumes, and the

signature pathognomonic region for Alzheimer’s disease in a big

cohort if older adults, aged 67–90 years (Palta et al., 2019).

When patients were stratified according to their cfPWV and

central pulse pressure values, the authors found that those with

impaired central arterial hemodynamics presented with increased

white matter hyperintensities, reduced total brain volumes and

significantly poorer scores for general cognition, processing speed

and executive function (Palta et al., 2019). This tight association

between central arterial stiffness and brain structure impairment

(assessed by reduced total brain volume, increased brain white

matter hyperintensity volume and brain atrophy), is independent

of gender and age (Tomoto et al., 2023) and of BP values and

variability (Haidegger et al., 2023). Even in a diverse population

of 460 people with a mean age of 70 ± 8 years with normal

cognitive ability, mild impairment or dementia, surrogate markers

of arterial stiffness were strongly associated with brain macro-

and micro-structure impairment and both executive and global

cognitive function decline. Specifically, cfPWVwas an independent

predictor of both high brain white matter volumes and diffusion

based free water volumes (Coffin et al., 2022).

Several studies have proposed a causal relationship between

arterial stiffness and cognitive impairment (Beulens et al., 2010;

Rahimi Sakak et al., 2021; Tarkesh et al., 2020), with the

most robust evidence emerging from meta-analyses. Pase et al.

conducted a meta-analysis of six longitudinal studies involving

3,947 participants, finding that PWV is predictive of cognitive

decline, as measured by the Mini-Mental State Examination

(MMSE; β= −0.03, 95% CI: −0.06 to 0.01) (Pase et al., 2012).

Van Stolen et al. performed a systematic review and meta-analysis

to explore the association between arterial stiffness, microvascular

cerebral disease (assessed by brain MRI), and cognitive function

(van Sloten et al., 2015). While this study demonstrated a positive

association between arterial stiffness and microvascular cerebral

disease (OR: 1.39, 95% CI: 1.21–1.60), it could not definitively

establish a correlation between PWV and cognitive impairment due

to significant heterogeneity among the included studies (van Sloten

et al., 2015). The primary limitations of these meta-analyses are the

variability and quality of the studies involved.

To address these limitations, more recent meta-analyses have

provided a comprehensive examination of the association between

arterial stiffness and cognitive function over a long period. Alvarez-

Bueno et al. conducted a meta-analysis of 38 studies (29 cross-

sectional and nine longitudinal), including 43,115 participants,

and assessed the relationship between arterial stiffness and specific

cognitive indices, such as global cognition, executive function,

and memory (Alvarez-Bueno et al., 2020). The results indicated

that PWV was inversely correlated with global cognition (adjusted

pooled ES = −0.21, 95% CI: −0.30 to −0.11), executive function

(adjusted pooled ES = −0.08, 95% CI: −0.14 to −0.03), and

memory (adjusted pooled ES = −0.13, 95% CI: −0.20 to −0.05)

(Alvarez-Bueno et al., 2020). For the first time, this meta-analysis

provided pooled estimates of the tight relationship between arterial

stiffness and various cognitive functions. Another meta-analysis,

spanning studies from January 1986 to March 2020, conducted

separate qualitative and quantitative assessments of both cross-

sectional and longitudinal studies (Liu et al., 2021). The cross-

sectional analysis revealed a strong, negative association between

memory, processing speed, and aortic PWV, while the longitudinal

analysis found that participants in the high PWV category had

a 44% higher risk of cognitive decline compared to those in the

low category (OR: 1.44; 95% CI: 1.24–1.85) (Liu et al., 2021).

Moreover, for every 1 m/s increase in aortic PWV, there was a

3.9% increase in the risk of cognitive impairment (OR: 1.039; 95%

CI: 1.005–1.073) (Liu et al., 2021). The meta-regression analysis

further indicated that the association between arterial stiffness and

cognitive impairment intensified with age (Liu et al., 2021).

Traditionally, it has been proposed that intimal arterial

calcification leads to obstruction of the artery and plaque rupture,

whereas, calcification of the media might lead to arterial stifness,

systolic hypertension and high PWV, which in turn trigger diastolic

dysfunction and eventually heart failure. Arterial calcification is a

major determinant of stiffening the arteries, which is considered
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the hallmark of vascular aging and an independent predictor if

cardiovascular diseases. The pathogenetic mechanisms responsible

for vascular stifness recently shifted from collagen and elastin to

the differentiation of vascular smooth muscle cells to osteoblastic

phenotype, which is triggered by oxidative stress and inflammation,

membrane mechanotransduction, lipid metabolism, genetic factors

and epigenetics (Lacolley et al., 2020).

Cognitive dysfunction, which is prevalent in aging populations,

may be partially explained by increased arterial stiffness

and calcification.

Vitamin k

Vitamin K is a family of fat-soluble compounds, including

vitamin K1 (phylloquinone) and vitamin K2 (menaquinones),

which are structurally similar. While traditionally recognized for

its role in blood clotting, recent studies have expanded the clinical

relevance and understanding of vitamin K and now include bone

and vascular health. Vitamin K-dependent proteins (VKDPs) rely

on vitamin K to undergo γ-glutamylcarboxylation, a modification

essential for their biological activity. This family of proteins

includes hepatic VKDPs such as prothrombin, FVII, FIX, and

FX, protein S and protein C as well as extrahepatic VKDPs such

as matrix Gla-protein (MGP), which is involved in inhibiting

vascular calcification, and osteocalcin, which plays a role in

bone mineralization.

Vitamin K1, predominantly found in plant-based foods like

leafy green vegetables, is the primary dietary form of vitamin K.

Vitamin K2, however, is mainly produced by bacteria and is present

in animal-derived foods and fermented products such as natto

(fermented soy) and cheese. The structural differences between

K1 and K2 influence their bioavailability, absorption, bioactivity,

and distribution within tissues (Halder et al., 2019). Compared

to vitamin K1, the K2 subtype menaquinone-7 (MK-7) has a

significantly longer half-life, accumulates more effectively in blood,

and exhibits greater biological activity, particularly in facilitating

the carboxylation of extrahepatic VKDPs (Schurgers et al., 2007b).

Currently, the daily recommended intake (DRI) for vitamin K is

based solely on its role in blood coagulation and focuses primarily

on preventing hemorrhaging. However, there is no established

consensus on the optimal intake of vitamin K2, particularly with

respect to its broader roles in bone, vascular, and cognitive health

(Akbulut et al., 2020; Neofytou et al., 2024).

Recent research suggests that adequate vitamin K intake is

necessary for activating extrahepatic VKDPs, which are critical for

long-term health and cognitive function (Popescu and German,

2021). Circulating dephosphorylated, uncarboxylated Matrix Gla

protein (dp-ucMGP), a marker of extrahepatic vitamin K

deficiency, could represent a novel therapeutic target for mitigating

both arterial stiffness and cognitive decline. MK-7 supplementation

has been shown to be safe and well-tolerated, with no serious

adverse events, and has demonstrated efficacy in improving vitamin

K status in the elderly. Furthermore, evidence from clinical trials

suggests that MK-7 may delay or even reverse vascular calcification

(Knapen et al., 2015; Mansour et al., 2017; Eelderink et al., 2023;

Naiyarakseree et al., 2023; Kurnatowska et al., 2015; Lees et al., 2019;

Li et al., 2023).

TABLE 1 VKDPs connected with the brain function.

VKD Involved in References

Gas6 Cell survival and growth, chemotaxis,

mitogenesis, and myelination

Binder et al., 2011;

Varnum et al., 1995;

Gilchrist et al., 2020

Protein S Antithrombotic and signaling-mediated

neuroprotective actions

Zhu et al., 2010

Modulation of the blood–brain barrier

Protein C Antithrombotic, anti-inflammatory,

anti-apoptotic, and cell-signaling

activities

Griffin et al., 2016

Osteocalcin Brain development Oury et al., 2013

Production of several neurotransmitters

that favor learning and memory

formation

Obri et al., 2018

MGP Inhibition of vascular calcification Schurgers et al.,

2008; Santa-Maria

et al., 2010

Evaluation of vitamin K

Assessing vitamin K intake and status in both population

and clinical studies presents several challenges, as a range of

methods are employed, each with limitations (Akbulut et al.,

2020). The food frequency questionnaire (FFQ) is commonly

used but is often inadequate for evaluating vitamin K2 intake

due to incomplete food composition databases. Biomarkers that

reflect vitamin K intake, absorption, and metabolism provide

a more comprehensive assessment than dietary questionnaires.

However, there is no single gold-standard test for vitamin K

status. Various VKDPs, such as uncarboxylated prothrombin

(PIVKA-II), the ratio of uncarboxylated to carboxylated osteocalcin

(ucOC/cOC), and desphosphorylated-uncarboxylated MGP (dp-

ucMGP), serve as markers of vitamin K status and are

linked to diverse health outcomes. Recent studies have also

linked these biomarkers to cognitive decline. Given the distinct

functions of these biomarkers, employing multiple markers or

combining them with dietary intake data could enhance the

precision of vitamin K status evaluation (Shea and Booth,

2016).

The role of vitamin K in brain function

Beyond its well-established role in haemostasis, emerging

evidence suggests that vitamin K plays a critical role in brain

function. Vitamin K affects cognitive and neural processes through

various mechanisms, including the activity of several VKDPs

(Table 1). Notably, growth arrest-specific 6 (Gas6) regulates cell

survival and myelination (Binder et al., 2011; Varnum et al., 1995;

Gilchrist et al., 2020), protein S mediates neuroprotective and

antithrombotic effects by modulating the blood-brain barrier (Zhu

et al., 2010) and MGP, a potent inhibitor of vascular calcification,

has been linked to cognitive performance (Shea et al., 2022).

In addition to influencing VKDPs, vitamin K exerts antioxidant

effects by reducing levels of reactive oxygen species (ROS), with

Frontiers in AgingNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fnagi.2024.1527535
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Roumeliotis et al. 10.3389/fnagi.2024.1527535

MK-7 being particularly effective in this regard (Mukai et al.,

1993; Muszyńska et al., 2020; Shandilya et al., 2021). Given

the link between oxidative stress, inflammation, and cognitive

decline in the elderly (Baierle et al., 2015), the anti-inflammatory

and antioxidant properties of vitamin K offer a promising

prevention strategy (Huang et al., 2021; Yu et al., 2016). It

is well established that vitamin K exerts beneficial effects on

glucose homeostasis. Although the majority of studies focused

on phylloquinone, MK-7 has also shown promising results in

experimental studies and clinical trials. The large community-

dwelling, prospective Dutch study in 38,094 participants showed

that only dietary menaquinones were strongly and inversely

associated with the risk for developing incident type 2 diabetes,

during a long follow-up of 10 years; the association with

dietary vitamin K1 was marginally lost (Beulens et al., 2010).

Moreover, an RCT showed that daily 360 µg of MK-7 for

12 weeks in insulin-dependent patients with diabetes improved

significantly fasting glucose levels, glycated hemoglobin, insulin

concentrations and homeostatic model assessment for insulin

resistance (HOMA-IR). Moreover, compared to the placebo,

the MK-7 group had significantly higher number of patients

that achieved optimum glycemic control (assessed by HbA1c

and plasma glucose levels within target values) (Rahimi Sakak

et al., 2021). Similar results were reported by another RCT in

polycystic ovary syndrome patients; even low dose of MK-7

(90 µg daily for 8 weeks) significantly reduced serum fasting

insulin, homeostatic model assessment for insulin resistance

and β-cell function index, increased insulin sensitivity check

index, improved lipid profile parameters and decreased waist

circumference and body fat mass (Tarkesh et al., 2020). Taken

together, these data highlight the beneficial effects of vitamin K

(especially MK-7) on glycemic homeostasis, lipid metabolism and

fat mass distribution. Maintaining optimum glucose metabolism

is of utmost importance of brain cell function and viability

and on the other hand, impaired glucose homeostasis occurs

even at early stages of degenerative neurological conditions,

including Parkinson’s and Alzheimer’s disease and contributes to

the progression of these diseases (Camandola and Mattson, 2017;

Putzu et al., 2018). This might be explained by the fact that

glucose metabolism affects various factors that trigger brain aging,

including glucose transport, nucleic acid repair, mitochondrial

function and gut microbiome, which is the backbone of the gut-

brain bidirectional axis (Wachsmuth et al., 2022). Therefore, MK-

7, by regulating glucose metabolism might affect indirectly, brain

structure and function.

Vitamin K also influences sphingolipid metabolism, which

plays a critical role in neuronal function by regulating enzymes

involved in sphingolipid biosynthesis (Alessenko and Albi, 2020;

Denisova and Booth, 2005). Notably, certain functions of vitamin

K2, such as its role as a mitochondrial electron carrier and

transcriptional regulator via the steroid and xenobiotic receptor

(SXR), are unique compared to vitamin K1 (Horie-Inoue and

Inoue, 2008; Lin et al., 2021; Tang et al., 2022). While

mitochondrial dysfunction is strongly associated with cognitive

decline (Apaijai et al., 2020), further research is needed to

establish whether improved mitochondrial function correlates with

cognitive enhancement in humans.

FIGURE 1

Multiple beneficial for brain actions of vitamin K2.

Experimental studies

Animal studies have demonstrated that vitamin K deficiency

leads to decreased levels of menaquinone-4 and sphingolipids in

the brain, which may impair cognition and behavior (Tamadon-

Nejad et al., 2018). Given the detrimental impact of suboptimal

vitamin K status on the nervous system, it has been hypothesized

that vitamin K2 supplementation could benefit brain function

and cognition. In aged rats, MK-7 treatment reversed age-related

cognitive deficits, improved inflammatory markers and redox

balance, inhibited cerebrovascular calcification, and increased

Gas6 protein expression, which was accompanied by cognitive

improvements (Elkattawy et al., 2022; Lee et al., 2022). Another

potential mechanism linking vitamin K deficiency to cognitive

decline involves gut microbiome alterations. Inadequate vitamin

K intake has been associated with significant changes in gut

microbial composition (Tooley, 2020; Ellis et al., 2021) and animal

models have demonstrated that vitamin K2 supplementation can

improve cognitive outcomes by modulating the gut-brain axis

(Chatterjee et al., 2023). These findings suggest that vitamin K2 has

amultifaceted potential to enhance cognitive function, as illustrated

in Figure 1.

Clinical studies

The hypothesis that vitamin K depletion may adversely affect

brain function is supported by clinical evidence, primarily derived

from observational studies. A meta-analysis of eight studies

involving 97,595 patients revealed that, compared to traditional

long-term antithrombotic therapy with vitamin K antagonists

(VKAs), which significantly reduce overall vitamin K status,

the use of novel oral anticoagulants (NOACs) may reduce the

risk of cognitive impairment (Zhang et al., 2018). Moreover,

community-based studies have demonstrated that higher vitamin

K intake is associated with reduced cognitive decline in the

elderly (Chouet et al., 2015; Presse et al., 2008), and increased

circulating vitamin K levels are linked to improved cognitive

function (Presse et al., 2013), suggesting a potential preventive role

against cognitive deterioration. Although multiple observational
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studies have examined the relationship between cognitive status,

vitamin K-dependent biomarkers, and vitamin K2 concentrations

in the brain, the results have been inconsistent, highlighting

inherent challenges in this research area (Shea et al., 2022; Kiely

et al., 2020; Ross et al., 2022; van den Heuvel et al., 2015).

There is accumulating data suggesting that increased dietary

vitamin K intake abrogates the progression of cognitive decline

in older adults and increased plasma/serum markers of vitamin

K status are correlated with improved cognitive function. Since

vitamin K is mainly found in leafy vegetables, this association

could be an epiphenomenon of healthy diet and lifestyle. Moreover,

the data regarding the types and quantity of vitamin K in

the brain and their clinical significance are scarce. To test

the research hypothesis that brain vitamin K levels might be

associated with cognitive impairment and dementia, Booth et al.,

quantified vitamin K levels in regions of the human brain and

examined their possible association with ante-mortem tests of

cognitive ability and post-mortem neuropathologic findings in

325 decedents that participated in the Rush Memory and Aging

Project (MAP). Apolipoprotein E genotypes were determined

and K1 and MK-4 levels were evaluated in 4 different brain

regions. Compared to phylloquinone, vitamin K2 (specifically

MK-4) was the predominant form of vitamin K in all brain

regions. Increased brain MK-4 levels were linked to decreased

odds of mild cognitive decline, dementia, Braak stage, Alzheimer’s

disease scores and less neurofibrillary tangle density (Booth et al.,

2022). Moreover, higher pro-mortem vitamin K1 was related with

better cognitive function test scores and delayed progression of

cognitive decline (Booth et al., 2022). These findings support

the hypothesis that vitamin K2 plays a significant role in brain

health. Although preliminary, these insights into the connection

between vitamin K2 and cognitive performance in human studies

offer intriguing avenues for further investigation (Booth et al.,

2022).

Vitamin k2 and cardiovascular
health—evidence from interventional
studies

Arterial stiffness is a dynamic process regulated by various

proteins and molecules. Among these, matrix Gla protein (MGP) is

themost potent tissue inhibitor of arterial stiffness and calcification.

Experimental data suggest that vitamin K2, by activating MGP,

may prevent vascular calcification and arterial stiffness, and support

cardiovascular health (Spronk et al., 2003; Schurgers et al., 2007a;

Scheiber et al., 2015). Based on these findings, a growing number

of clinical studies have been conducted to investigate the effects

of vitamin K2 in high-risk populations, such as patients with

chronic kidney disease (CKD), end-stage kidney disease (ESKD),

and diabetes. However, clinical research specifically evaluating

the effects of vitamin K2 on arterial stiffness and cognitive

performance remains limited (Figure 2). These emerging findings

warrant further exploration, particularly through well-designed

interventional studies, to fully elucidate the role of vitamin K2 in

both cardiovascular and cognitive health.

Accumulating evidence suggests that dp-ucMGP is associated

with several surrogate markers of arterial calcification (Roumeliotis

et al., 2019; Hariri et al., 2021). Additionally, clinical data from

studies in patients with impaired kidney function suggest that

elevated plasma dp-ucMGP levels serve as independent predictors

of adverse clinical outcomes, including all-cause and cardiovascular

mortality (Kaesler et al., 2021; Keyzer et al., 2015; Roumeliotis

et al., 2020, 2022a). The Rotterdam study was among the first to

investigate the association between dietary vitamin K intake and

cardiovascular events and all-cause mortality in a large cohort of

4,807 subjects without pre-existing cardiovascular disease (CVD) at

baseline (Geleijnse et al., 2004). This landmark study demonstrated

that only vitamin K2 (menaquinones) was inversely associated

with coronary heart disease incidence, aortic calcification and

mortality whereas vitamin K1 failed to show association with any

of the outcomes. Moreover, vitamin K2 intake was negatively

correlated with all-cause mortality and severe aortic calcification,

underscoring the pivotal role of vitamin K consumption in

cardiovascular disease prevention (Geleijnse et al., 2004).

Following the recognition of dp-ucMGP as an independent

predictor of vascular calcification (VC), several studies explored

its association with cardiovascular morbidity and mortality.

Findings indicate that elevated dp-ucMGP levels are linked to

adverse cardiovascular outcomes and mortality in both the general

population (van den Heuvel et al., 2014; Liu et al., 2015) and

in specific patient groups, including individuals with diabetes

(Dalmeijer et al., 2013; Liabeuf et al., 2014), chronic kidney disease

(CKD) (Schurgers et al., 2010; Roumeliotis et al., 2017) and those

with pre-existing cardiovascular conditions (Ueland et al., 2010;

Capoulade et al., 2014; Mayer et al., 2016).

Given this scientific background, numerous randomized

controlled trials (RCTs) have been conducted to investigate

the potential effects of vitamin K2, specifically menaquinone-

7 (MK-7), on the progression of vascular calcification and

cardiovascular disease prevention. One of the earliest double-blind

RCTs investigating MK-7 supplementation in 244 postmenopausal

women found that long-term (3-year) MK-7 administration of 180

µg/day improved arterial stiffness, as measured by the stiffness

index (SI β; MK-7 group:−0.67± 2.78 vs. placebo group:+0.15±

2.51, p = 0.018) (Knapen et al., 2015). The beneficial effects were

particularly pronounced in participants with increased baseline

vascular stiffness (Knapen et al., 2015).

The KING trial (Vitamin K2 in Renal Graft), a single-

center study involving 60 stable kidney transplant recipients,

demonstrated that daily supplementation with MK-7 (360 µg/day)

for 8 weeks resulted in a 14.2% reduction in carotid-femoral pulse

wave velocity (cfPWV), a measure of arterial stiffness (pre-VK: 9.8

± 2.2 m/s vs. post-VK: 8.4 ± 1.5 m/s, p < 0.001), reflecting a 40%

improvement in subclinical vitamin K deficiency (Mansour et al.,

2017). Similarly, another RCT in 40 kidney transplant recipients

showed that 12 weeks of MK-7 supplementation (360 µg/day) led

to a significant reduction in dp-ucMGP levels and arterial stiffness

[MK-7 group: 1dp-ucMGP −385 (−631 to −269) pmol/L vs.

placebo group:+39 (−188 to+183) pmol/L, p < 0.001] (Eelderink

et al., 2023).

A notable study conducted by Naiyarakseree et al. evaluated

the effects of oral MK-7 (375 µg once daily) for 24 weeks
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FIGURE 2

The connection between arterial sti�ness, cognitive function, and optimal vitamin K intake.

in 96 hemodialysis patients with pre-existing arterial stiffness,

demonstrating that MK-7 reduced cfPWV in diabetic patients

[−10.0% (95% CI: −15.9 to −0.8) vs. placebo: +3.8% (95% CI:

−5.8 to +11.6), p = 0.008] (Naiyarakseree et al., 2023). A meta-

analysis of 14 longitudinal studies, encompassing 10,726 patients

and 13 RCTs involving 2,162 participants, found that vitamin K

supplementation decreased arterial calcification by 9.1% (95% CI:

−17.7 to−0.5, p= 0.04) through a 44.7% improvement in vitamin

K status (95% CI: −65.1 to −24.3, p < 0.0001). Moreover, vitamin

K-dependent proteins were strongly associated with reductions in

cardiovascular disease and mortality (HR: 0.45, 95% CI: 0.07 to

0.83, p= 0.02) (Lees et al., 2019).

While MK-7 has proven to be the most bioactive and clinically

relevant form of vitamin K, some studies have investigated the

effects of vitamin K1 supplementation on vascular calcification

and cardiovascular health. These studies suggest that vitamin K1

reduces vascular calcification (Brandenburg et al., 2017; Saritas

et al., 2022). However, it is important to note that once vitamin K1

enters the body, it is partially converted to MK-4 in the intestines

and other tissues, implying that the clinical effects of phylloquinone

may be mediated via its transformation into MK-4.

However, when K1 enters the human body, it is converted to

K2 in the intestine and other tissues and thus, the clinical effects of

phylloquinone are exerted through transformation to K2.

Despite promising results, some RCTs, particularly in CKD

patients, have yielded negative outcomes regarding the effects of

vitamin K supplementation on arterial stiffness and cardiovascular

risk. Trials such as the Trevasc-HDK study (Haroon et al., 2023),

K4Kidneys study (Witham et al., 2020), ViKTORIES study (Lees

et al., 2021), Valkyrie study (De Vriese et al., 2020), RenakVit

trial (Levy-Schousboe et al., 2021) and the study by Oikonomaki

et al. (2019). reported no significant improvement in cardiovascular

outcomes. However, these studies suffered from various limitations,

including small sample sizes, high dropout rates, and suboptimal

vitamin K dosing (360 µg MK-7, 3 times/wk in the Trevasc-HDK,

400 µg/day m-7 in the K4Kidneys, menadiol diphosphate 5mg,

thrice weekly in the ViKTORIES, vitamin K2 2000µg thrice weekly

in the Valkyrie, 360 µg MK-7 daily in the RenakVit, 200 µg MK-

7 daily in the Greek study). For example, in the RenakVit trial,

only 21 patients completed the study (Levy-Schousboe et al., 2021).

The ViKTORIES study raised concerns about the methods used

to assess vitamin K deficiency, specifically regarding the accuracy

of dp-ucMGP assays (Te Velde-Keyzer and de Borst, 2022) and

the Valkyrie study, included very old patients with increased

Agatston score (where arteries are in an advanced calcification

non-reversable state) (De Vriese et al., 2020). Moreover, dose-

finding studies have indicated that even doses as high as 460µg/day

of MK-7 are insufficient to fully correct vitamin K deficiency in

hemodialysis patients, suggesting that higher doses (>500 µg/day)

are necessary (Caluwé et al., 2014; Westenfeld et al., 2012).

To address these limitations, ongoing trials such as the

UCASAL-VITK study (NCT04539418) and the VIKIPEDIA study

(NCT04900610) are investigating the effects of higher MK-7 doses

in hemodialysis (2,000 µg iv thrice weekly) and peritoneal dialysis

(1,000 µg/day) patients, respectively (Roumeliotis et al., 2022b).

The results of these trials are expected to provide crucial insights

into the safety, tolerability, and efficacy of optimal MK-7 doses in

uremic populations.

Conclusion

Vascular calcification and arterial stiffness may represent

pathophysiological mechanisms underlying the onset and

progression of cognitive decline. Vitamin K deficiency is a key

determinant of arterial health and, by extension, may influence

cognitive function in the elderly. To elucidate the potential

therapeutic benefits of MK-7 supplementation on cognitive

function, future RCTs are needed. These trials should focus on

using optimal dosages (>500 µg/day), ensuring long follow-up
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periods, and utilizing the most bioactive form of vitamin K

(MK-7). Such studies are essential to establish whether vitamin

K2 supplementation can play a role in preventing or mitigating

cognitive decline in aging populations.
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