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Background: Alzheimer’s disease (AD) has a major negative impact on people’s

quality of life, life, and health. More research is needed to determine the

relationship between age and the pathologic products associated with AD.

Meanwhile, the construction of an early diagnostic model of AD, which is mainly

characterized by pathological products, is very important for the diagnosis and

treatment of AD.

Method: We collected clinical study data from September 2005 to August

2024 from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database.

Using correlation analysis method like cor function, we analyzed the pathology

products (t-Tau, p-Tau, and Aβ proteins), age, gender, and Minimum Mental

State Examination (MMSE) scores in the ADNI data. Next, we investigated the

relationship between pathologic products and age in the AD and non-AD groups

using linear regression. Ultimately, we used these features to build a diagnostic

model for AD.

Results: A total of 1,255 individuals were included in the study (mean [SD]

age, 73.27 [7.26] years; 691male [55.1%]; 564 female [44.9%]). The results of the

correlation analysis showed that the correlations between pathologic products

and age were, in descending order, Tau (Corr=0.75), p-Tau (Corr=0.71), and Aβ

(Corr=0.54). In the AD group, t-Tau protein showed a tendency to decrease

with age, but it was not statistically significant. p-Tau protein levels similarly

decreased with age and its decrease was statistically significant. In contrast to

Tau protein, in the AD group, Aβ levels increased progressively with age. In the

non-AD group, the trend of pathologic product levels with age was consistently

opposite to that of the AD group. We finally screened the optimal AD diagnostic

model (AUC=0.959) based on the results of correlation analysis and by using the

Xgboost algorithm and SVM algorithm.

Conclusion: In a novel finding, we observed that Tau protein and Aβ had opposite

trends with age in both the AD and non-AD groups. The linear regression

curves of the AD and non-AD groups had completely opposite trends. Through

a machine learning approach, we constructed an AD diagnostic model with

excellent performance based on the selected features.
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1 Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease that

seriously jeopardizes human health and affects patients’ quality

of life (2023, 2024). It is the number one cause of dementia

and mainly affects the middle-aged and elderly population (2022;

Scheltens et al., 2021). Before developing Alzheimer’s disease,

patients will go through the stages of subjectivememory complaints

(SMC), mild cognitive decline and so on. How to diagnose

Alzheimer’s disease more accurately and distinguish it from

the preclinical stage of Alzheimer’s disease as well as normal

people has been a hot topic of research. Previous researchers

have attempted to differentiate AD using biomarkers, imaging,

and some behavioral-based kinesiology tests, among others, with

biomarker research undoubtedly receiving the most attention

(Bai et al., 2021; Winchester et al., 2023; Küçükali et al., 2023;

Yang et al., 2020). A large number of biomarkers have been

detected in blood, cerebrospinal fluid tests, etc., which have a

good ability to differentiate between patients with AD (Izzo et al.,

2021; Kumari et al., 2022). The researchers even spent a great

deal of time studying longitudinal changes in these biomarkers,

monitoring changes in their levels throughout the course of the

onset of Alzheimer’s disease (Jia et al., 2024; Yakoub et al., 2023).

And with the continuous advancement of histologic research

techniques, more and more biomarkers are being discovered in a

higher throughput manner. Our team has previously uncovered

a very large number of AD biomarkers through both blood and

urine testing methods, using histology-related techniques, and

has built an AD diagnostic model based on them (Wang et al.,

2023a,b).

β-amyloid (Aβ) and Tau proteins are the focus of biomarker

research as recognized markers of AD pathology. Many of both

protein families have been found to be closely associated with the

onset and progression of AD (Ferrari-Souza et al., 2022; Ashton

et al., 2021; Horie et al., 2023).Previous studies have focused on

the particular significance of these two pathologic products in the

molecular mechanisms underlying the developmental process of

Alzheimer’s disease (Zhang H. et al., 2021; Busche and Hyman,

2020). In contrast, the association between these two pathologic

products and age in the preclinical and onset stages of AD

has lacked elucidation in large-sample studies (Stern et al.,

2023).

In terms of research on diagnostic models for AD, there are

many studies that use biomarkers as features, and not a few

of them incorporate Aβ and Tau protein (Ferreiro et al., 2023).

However, in previous studies, Aβ and Tau protein were hardly

used as core features, and the inclusion of other biomarkers

mixed the significance of the two in modeling. At the same

time, previous studies also suffered from the shortcomings of

using algorithms mainly focusing on regression algorithms, a

single type of algorithm and a lack of sample size (Hammond

et al., 2020; Gao et al., 2023). We used classification algorithms

with excellent performance in this study to construct and train

an AD diagnostic model using Aβ and Tau protein as the

core features.

2 Methods

2.1 Design

The Alzheimer’s Disease Neuroimaging Initiative (ADNI)

database1 provided the data used in this investigation, which were

gathered between September 2005 and August 2024. Established

in 2003, the ADNI program is a research endeavor with the goal

of examining the course of Alzheimer’s disease and its preclinical

phases through the use of MRI, PET, biomarkers, and clinical and

neuropsychological examinations. All participating institutions’

Institutional Review Boards have given their approval for the ADNI

trial. All participants, or their authorized representatives, have

given written informed permission to ADNI in compliance with

the Declaration of Helsinki.

2.2 Participants

After undergoing a battery of cognitive functioning tests, each

individual was assigned to one of four groups: AD, mild cognitive

impairment (MCI), SMC, or control (CN). The Mini-Mental State

Examination (MMSE) scores for AD were 20–26, while for CN,

SMC, and MCI, they were 24–30. For CN, MCI, and AD, the

Clinical Dementia Rating (CDR) was 0.5, 0.5, and ≥0.5. For the

various ADNI cohorts, the enrollment processes and inclusion

criteria were generally the same. Previous descriptions have been

made of the specific enrollment processes and inclusion criteria

for the various diagnostic categories of the ADNI cohort (Petersen

et al., 2010). You could find the ADNI database protocol2 with

detailed inclusion and exclusion requirements. In order to evaluate

cognitive function, we used the MMSE.

2.3 Biomarker collection and analysis

CSF Tau protein and Aβ protein data from the ADNI database

were used in our study. Methods of CSF collection and biomarker

measurement have been previously reported (Hampel et al., 2010;

Shaw et al., 2009). The ADNI database did not report outliers.

However, biomarker assays have detection intervals. The upper

limit of detection for Aβ is 1,700 pg/mL and the lower limit is 200

pg/mL. The upper limit of detection for t-Tau is 1,300 pg/mL and

the lower limit is 80 pg/mL. The upper limit of detection for p-Tau

is 120 pg/mL and the lower limit is 8 pg/mL. The detections that

exceeded the detection interval the most accounted for <15% of

the total data, and only a very small number of the other detections

exceeded the detection interval. For data exceeding the detection

range of Tau or Aβ proteins, we took half of the lower detection

limit value to replace data below the lower detection limit, and used

the upper detection limit value to replace data above the upper

detection limit.

1 http://adni.loni.usc.edu

2 https://adni.loni.usc.edu/help-faqs/adni-documentation/
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FIGURE 1

Variable correlation analysis of all features. Aβ, β-amyloid; t-Tau, total-Tau; p-Tau, phosphorylated tau; MMSE, Minimum Mental State Examination.

2.4 Model constructing and training

We employed twomachine learning algorithms, support vector

machine (SVM) and extreme gradient boosting (XGBoost), to

build AD diagnostic models. Cross-validation is used to evaluate

the performance of machine learning models as well as for

hyperparameter tuning. Ten-fold cross-validation was applied to

the training and validation sets in order to reduce overfitting and

enhance the model’s functionality. We tuned the hyperparameters

based on the results of the ten-fold cross-validation to get the best

performingmodel. The bestmodel for this study was determined by

looking at the Receiver Operating Characteristic (ROC) curve and

selecting the model with the highest area under the curve (AUC).

2.5 Statistical analysis

R software (version 4.3.1) and IBM SPSS Statistics forWindows

version 27.0 were used to conduct all statistical tests. We employed

nonparametric tests to compare the Non-AD (include CN, SMC,

EMCI, and LMCI) and AD groups for variables like total-Tau (t-

Tau), phosphorylated tau (p-Tau), Aβ, age, and MMSE that did

not match the requirements of analysis of variance (ANOVA).

The chi-square test was used for statistical analysis of counts like

gender. The threshold for a difference to be deemed statistically

significant was p < 0.05. Since the data are derived from public

databases, the occurrence of missing values is often unavoidable.

In this study, the proportion of missing values to the total data has

been well over 50%. In order to minimize the error in the study,

we used direct culling of missing values in the data instead of using

interpolation. In contrast, this is the optimal way to ensure data

integrity and accuracy.

One popular technique for determining how closely variables

correlate with one another is correlation analysis. To determine the

correlation coefficient and compute the correlation of variables, we

utilize the cor function found in R-4.3.1. The correlation between

the variables is higher the closer the correlation coefficient’s

absolute value is to 1.

In several contexts, the relationship between diseased products

and age was estimated using linear regression analysis. Initially, we

examined the relationship between pathogenic products (include

Aβ, t-Tau protein, and p-Tau protein) and age in the AD and

non-AD groups. We also investigated the relationship between p-

Tau/t-Tau and Aβ/t-Tau and age using linear regression in an effort

to better understand the relationship between these pathogenic

products and age.

3 Results

3.1 Demographic and clinical
characteristics of patients

A total of 1,255 individuals were included in the study (mean

[SD] age, 73.27 [7.26] years; 691 male [55.1%]; 564 female [44.9%]).
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FIGURE 2

Association between t-Tau and age in AD and non-AD groups. The cyan dots and lines represent the samples and fitted lines for the non-AD group,

respectively. Red dots and lines represent samples and fitted lines for the AD group, respectively. Scatterplot of the association between t-Tau and

age (A) and Fitted curves for all participants (B). Association between t-Tau and age in the AD and non-AD groups (C) and The p-value and R-value

for each of the two groups (D).

Six factors in all were examined: pathogenic products (Aβ, t-Tau,

and p-Tau), age, sex, and MMSE scores. The average score for the

MMSE test was 26.96 [3.18], the average score for Aβ was 966.19

[458.57], the average score for t-Tau was 290.57 [136.04], and the

average score for p-Tau was 27.96 [14.91] for every subject. There

were statistically significant differences in every attribute between

the groups (Table 1).

3.2 Correlation analysis between variables

Figure 1 displays the findings of the six factors’ correlation

study with disease type. where the Corr values are between −1.0

and 1.0; the higher the correlation between the variables, the closer

the Corr value’s absolute value is to 1. Conversely, a correlation is

less the closer it is to 0. The pathogenic products and age had the

following associations, in decreasing order of absolute Corr values:

t-Tau (0.75), p-Tau (0.71), and Aβ (0.54).

3.3 Association of Tau proteins with age

As Figure 2 shows, when we studied all subjects, we

found that overall the level of Tau protein increased with

age (Figures 2A, B). Interestingly, in the AD group, Tau

protein appeared to slowly decrease with age, although this

decrease was not statistically significant (p > 0.05). In the

Non-AD group, the longitudinal rise in Tau protein was

similarly associated with a lateral increase in age (p < 0.05)

(Figures 2C, D).

3.4 Association of p-Tau protein with age

As Figure 3 shows, when we studied all subjects, we

found that, overall, the levels of p-Tau protein increased

with age (Figures 3A, B). Like t-Tau protein, in the AD

group, p-Tau protein appeared to slowly decrease with
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FIGURE 3

Association between p-Tau and age in AD and non-AD groups. The cyan dots and lines represent the samples and fitted lines for the non-AD group,

respectively. Red dots and lines represent samples and fitted lines for the AD group, respectively. Scatterplot of the association between p-Tau and

age (A) and Fitted curves for all participants (B). Association between p-Tau and age in the AD and non-AD groups (C) and the p-value and R-value

for each of the two groups (D).

age. However, the difference was that the decrease in p-

Tau protein was statistically significant (p < 0.05). In the

non-AD group, the longitudinal rise in p-Tau protein was

similarly associated with a lateral increase in age (p < 0.05)

(Figures 3C, D).

3.5 Association of p-Tau/t-Tau with age

Overall, as seen in Figures 4A, B, there was a slight but steady

tendency for p-Tau/t-Tau levels to rise with aging. p-Tau/t-Tau

significantly decreased in the AD group as age increased, and this

decline was statistically distinct (p < 0.05). On the other hand,

p-Tau/t-Tau increased with age (p < 0.05) in the non-AD group

(Figures 4C, D).

3.6 Association of Aβ with age

Overall, as Figure 5 illustrates, Aβ levels steadily declined with

age, which was different from t-Tau and p-Tau (Figures 5A, B). Aβ

levels significantly increased with age in the AD group, which was

likewise in contrast to t-Tau and p-Tau (p < 0.05). Conversely,

Aβ levels in the non-AD group dropped with age (p < 0.05)

(Figures 5C, D).

3.7 Association of Aβ/t-Tau with age

As shown in Figure 6, as a whole, Aβ/t-Tau levels gradually

decreased with age, which is consistent with the change of Aβ with

age (Figures 6A, B). In the AD group, Aβ/t-Tau levels increased

significantly with age (p < 0.05). While in the non-AD group,

Aβ/t-Tau instead decreased with age (p < 0.05) (Figures 6C, D).
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FIGURE 4

Association between p-Tau/t-Tau and age in AD and non-AD groups. The cyan dots and lines represent the samples and fitted lines for the non-AD

group, respectively. Red dots and lines represent samples and fitted lines for the AD group, respectively. Scatterplot of the association between

p-Tau/t-Tau and age (A) and Fitted curves for all participants (B). Association between p-Tau/t-Tau and age in the AD and non-AD groups (C) and the

p-value and R-value for each of the two groups (D).

3.8 Construction and optimization of AD
diagnostic models

Webuilt twomachine learningmodels for diagnosing ADusing

the XGBoost classifier and the SVM classifier, respectively, based

on the six previously mentioned features. To avoid overfitting,

we further enhanced the model performance via ten-fold cross-

validation. Among them, the classifier model based on the XGBoost

algorithm has superior performance (AUC of 0.959), accuracy of

0.69, specificity of 0.86, and sensitivity of 0.95. The classifier model

based on the support vector machine (SVM) algorithm has an AUC

of 0.924, accuracy of 0.90, sensitivity of 0.96, and Specificity of 0.66

(Figure 7).

4 Discussion

Our study systematically analyzed the relationship between

changes in intracranial t-Tau protein, p-Tau protein, and Aβ

protein levels and age in AD patients and Non-AD population

through data mining and analysis of the ADNI database. The

results of the study were very interesting. We found that for

both t-Tau protein and Aβ protein, the trends with age were

diametrically opposed in AD patients and Non-AD populations.

For both t-Tau protein and p-Tau protein, the levels of these

pathogens progressively decreased the older the AD patient

was. The difference, however, was that t-Tau protein showed a

decreasing trend but was not statistically different compared to
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FIGURE 5

Association between Aβ and age in AD and non-AD groups. The cyan dots and lines represent the samples and fitted lines for the non-AD group,

respectively. Red dots and lines represent samples and fitted lines for the AD group, respectively. Scatterplot of the association between Aβ and age

(A) and Fitted curves for all participants (B). Association between Aβ and age in the AD and non-AD groups (C) and the p-value and R-value for each

of the two groups (D).

the statistically significant decrease in p-Tau protein. As for Aβ

protein, the older the age of AD patients, the Aβ level was

continuously increasing. In contrast, Aβ levels in the Non-AD

population gradually declined with age. Previous studies on the

correlation between these pathologic products and patient age

are lacking and not clearly recognized or elaborated. However,

longitudinal changes in these pathologic products over time at

the individual level have been examined in previous studies,

which is different from our observation of the association between

pathologic products and age at the population level (Barthélemy

et al., 2020). Additionally, it is not clear that some studies have

focused on changes in the levels of pathologic products long before

the onset of Alzheimer’s disease, and have not examined changes

after the onset of the disease (Jia et al., 2024). There are also

studies that do not distinguish between studies of AD patients and

Non-AD groups (Cogswell et al., 2024).

One of the main reasons we chose Aβ and Tau proteins for

our study is that it has a very important impact in the course and

mechanisms of AD (Pang et al., 2022; Sadleir and Vassar, 2023).

Abnormal aggregation of Aβ and Tau proteins is an important

pathogenesis and pathological hallmark of AD. Questions about

how the two are produced and how their levels change during

disease progression have been an important issue affecting our

understanding of AD, as well as a focus and difficulty in research.

Previous findings suggest that δ-secretase cleaved Tau proteins

may stimulate Aβ production by upregulating STAT1-BACE1

signaling in AD patients (Zhang Z. et al., 2021). This is a rather

important finding. It not only reveals the molecular regulatory

process between the two pathologic products. More importantly,

it suggests to us that the molecular regulatory process that exists

between the two may allow the levels of these pathology products

to be dynamically regulated during the course of the disease. This
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FIGURE 6

Association between Aβ/t-Tau and age in AD and non-AD groups. The cyan dots and lines represent the samples and fitted lines for the non-AD

group, respectively. Red dots and lines represent samples and fitted lines for the AD group, respectively. Scatterplot of the association between

Aβ/t-Tau and age (A) and Fitted curves for all participants (B). Association between Aβ/t-Tau and age in the AD and non-AD groups (C) and the

p-value and R-value for each of the two groups (D).

is likely to be an important mechanism for the pathogenesis and

disease progression of AD. Not only that, Aβ pathology may induce

changes in soluble tau release and phosphorylation (Mattsson-

Carlgren et al., 2020). These findings show that the relationship

between Aβ and t-Tau and p-Tau is bi-directionally regulated

and mutually restrained. Fluctuations in the levels of the two

pathogens are influenced by each other. This also gives the ratio

of the two pathologic products more value for clinical studies.

In turn, abnormal aggregation of the two could ultimately drive

the disease progression by leading to loss of synapses, affecting

synaptic function and thus disrupting memory formation (Li et al.,

2018). While the roles of Aβ and Tau in the pathogenesis of

AD continue to be elucidated, researchers are monitoring changes

in their levels, further exploring their potential as biomarkers

of the disease, and even screening for other AD biomarkers

with good predictive ability based on them (Chiu et al., 2021;

Boza-Serrano et al., 2022). As the technology associated with

biomedical engineering continues to advance, more assays have

been developed for the detection of Aβ and Tau. In addition to

furthering our understanding of the pathologic processes of AD,

we are discovering more pathologic processes associated with the

aggregation of these pathogens. These are also one of the hotspots

and directions for future research (Pichet Binette et al., 2021).

We constructed and trained a machine learning model using

pathology products such as Aβ and Tau proteins as core features.

In terms of the model’s performance, its ability to distinguish

between AD and non-AD is excellent. Previous studies have

rarely focused only on the contribution of Tau and Aβ proteins

to constructing AD diagnostic models, often incorporating some

other biomarkers (Gaetani et al., 2021; Ficiarà et al., 2021; Franciotti

et al., 2023; Khan et al., 2024). These studies have their own

innovations and strengths, but inevitably have some shortcomings.

The shortcomings mainly lie in the lack of performance of the

diagnostic model, the small sample size, the excessive number of
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FIGURE 7

Diagnostic model of AD with pathology products as core features.

TABLE 1 Baseline demographics and clinical characteristics.

Characteristics Total
(1,255)

Non-AD
(1,022)

AD
(233)

P

value

Age (years) 73.27 72.94 74.71 <0.01

Gender

Male (%) 55.1 54.2 58.8 0.204

Female (%) 44.9 45.8 41.2 0.204

MMSE 26.96 27.88 22.94 <0.01

Aβ (pg/mL) 966.19 1,034.97 664.48 <0.01

t-Tau (pg/mL) 290.57 272.79 368.51 <0.01

p-Tau (pg/mL) 27.96 26.01 36.51 <0.01

Aβ, β-amyloid; t-Tau, total-Tau; p-Tau, phosphorylated tau; MMSE, Minimum Mental

State Examination.

incorporated features, and so on. The performance of the AD

diagnostic model constructed in our study is relatively superior.

The relative singularity of the incorporated features can highlight

more the importance of the pathology products in the model

construction. Our choice of algorithms for machine learning

that performs well in dealing with classification problems is an

important guarantee of the sophistication of our study (Li J. et al.,

2022; Yi et al., 2023; Binder et al., 2022). The Xgboost algorithm

has excellent performance in dealing with classification problems.

It is characterized by its ability to handle large volumes of data

while maintaining accuracy and predictive performance over other

classification algorithms (Yue et al., 2022; Li Q. et al., 2022).

Compared to XGBoost, the SVM algorithm is slightly less accurate

and less predictive. However, in some special problems, SVM

has advantages that other algorithms do not have, such as when

dealing with nonlinearly differentiable data and when dealing with

high-dimensional data (Huang et al., 2018; Ding et al., 2022).

Undeniably, biomarker-based machine learning diagnostic

models for AD are still the most dominant research (Shah et al.,

2023; Kononikhin et al., 2022). The biomarkers involved in

these studies include not only the pathology products that we

generally recognize, but also some lipids, proteins and so on that

are closely related to the pathogenesis of AD as screened by

new research methods (Wang et al., 2022). The great progress

in molecular biology research has also led to the expansion of

the scope of clinical biomarkers (Krokidis et al., 2023). Their

potential for clinical application will be enhanced if the cost of the

assay can be reduced. In addition to the traditional work related

to the construction of biomarker-based AD diagnostic models,

more AD-related ancillary test results have been included in the

study. Common neurological examinations in the clinic, such

as electroencephalography, are used to construct AD diagnostic

models, which also have good diagnostic performance (Parreño

Torres et al., 2023). In addition to common examination means,

more and more medical devices provide more dimensional

examination results. As a new type of model, AD diagnostic model

based on eye movement and language has a good prospect for

clinical application due to its noninvasive and easy-to-operate

characteristics (Jang et al., 2021). Overall, research efforts in AD

machine learning diagnostic modeling have produced a large

number of models with very good performance and potential for

clinical applications. However, unfortunately, more comprehensive

ADdiagnosticmodels coveringmultidimensionalmarkers have not

yet been developed.

Inevitably, there are shortcomings in our study. In the section

examining the question of the association between pathologic

products and age, we had planned to compare all preclinical stages

of AD separately. However, upon attempting this, we found that

this would make the presentation and interpretation of the results

extraordinarily difficult, and the selection of a control group of AD

patients presented considerable difficulties. In terms of AD model

construction and training, we were hampered by the fact that public

databases do not categorize the Aβ and Tau protein families in great

detail. Other than that, we mainly chose the Xgboost algorithm

and SVM algorithm, which have excellent performance in solving

classification problems. We have also tried other algorithms and

will try to use more algorithms to try to build AD diagnostic

models in the future (Zhang et al., 2023). In addition to this, our

model construction has not been externally validated due to lack

of data from other database sources. However, because the data

provided by the ADNI database is collected from multiple centers

and has a large sample size, its accuracy and reliability for real-

world application will be guaranteed. In the meantime, we are

currently in the process of clinically collecting additional data to

complete external validation.
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