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Introduction: Previous research has suggested a link between the onset of

Alzheimer’s disease (AD) and metabolic disorder; however, the findings have

been inconsistent. To date, the majority of metabolomics studies have focused

on AD, resulting in a relative paucity of research on early-stage conditions such

as mild cognitive impairment (MCI) underexplored. In this study, we employed

a comprehensive platform for the early screening of individuals with MCI using

high-throughput targeted metabolomics.

Method: We included 171 participants including 124 individuals with MCI and 47

healthy subjects. Univariate statistical analysis was conducted using t-tests or

Wilcoxon rank-sum tests, with p-values corrected by the Benjamini-Hochberg

method. The screening criteria were set at FDR < 0.05 and fold change (FC) >

1.5 or < 0.67. Multivariate analysis was performed using orthogonal partial least

squares discriminant analysis (OPLS-DA), where differential metabolites were

identified based on variable influence on projection (VIP) scores (VIP > 1 and

FDR < 0.05). Random forest analysis was used to further evaluate the ability of

the metabolic data to distinguish effectively between the two groups.

Results: A total of 14 differential metabolites were identified, leading to the

discovery of a biomarker panel consisting of three plasma metabolites including

uric acid, pyruvic acid and isolithocholic acid that effectively distinguished MCI

patients from healthy subjects.

Discussion: These findings have provided a comprehensive metabolic profile,

offering valuable insights into the early prediction and understanding of the

pathogenic processes underlying MCI. This study holds the potential for

advancing early detection and intervention strategies for MCI.
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1 Introduction

As the global population ages and the pace of aging accelerates, health issues among
the elderly are drawing increasing attention. Age-related memory impairment (AAMI)
is prevalent among older adults and frequently advances to mild cognitive impairment
(MCI) or Alzheimer’s disease (AD). According to a recent national cross-sectional study
of China, there are 15.07 million dementia patients aged 60 years and older, including
9.83 million with AD, 3.92 million with vascular dementia, and 1.32 million with other
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forms of dementia (Ren et al., 2022). In addition, the prevalence of
MCI in people over 60 years of age was 15.5%, translating to 38.77
million people suffering from MCI (Jia et al., 2020). Currently, there
is no effective treatment for AD, and cognitive decline remains
an irreversible process. Therefore, early detection of biomarkers
and timely intervention are crucial in delaying or preventing the
progression of the disease to MCI or AD, ultimately enhancing the
quality of life for the elderly.

Metabolomics, as a key branch of systems biology, has
significantly contributions to the identification of biomarkers
and the early prediction of diseases (Johnson et al., 2016; Patti
et al., 2012). This field primarily focuses on the investigation
of endogenous small-molecule metabolites (with a molecular
weight less than 1,000) through both qualitative and quantitative
approaches, shedding light on the dynamic changes in the body’s
metabolite profiles in response to endogenous and exogenous
factors and seek to identify metabolic pathways involved in
disease progression. In recent years, the metabolomics studies
on AD have provided valuable insights into its pathogenesis,
and have led to the discovery of potential biomarkers for early
diagnosis (Johnson et al., 2016; Xu et al., 2012; Wang et al.,
2023a; Wang et al., 2023b). Many studies have reported metabolic
profile differences between AD patients and healthy subjects
(Graham et al., 2013; Liu et al., 2014). For instance, Graham
et al. (2013) analyzed over 800 metabolite changes in postmortem
brain tissue from 15 AD patients and 15 healthy controls, and
identified five potential biomarkers for AD. Similarly, Li et al.
(2023) performed metabolomics analysis and found significant
metabolic differences in nine biomarkers, including lipids, amino
acids, and sphingosine, in plasma samples from individuals with
AD, MCI, and healthy subjects (Liu et al., 2014). Furthermore,
(Wang et al., 2023b) conducted a metabolomic analysis using
LC-MS/MS on 57 AD patients, 43 patients with MCI, and 62
cognitively healthy subjects. Their study identified a diagnostic
panel for AD consisting of 30 metabolites, age, and APOE genotype,
while the diagnostic panel for MCI included 45 metabolites, age,
and APOE (Wang et al., 2023a). Similarly, Huo et al. (2020)
analyzed 597 plasma samples and 111 postmortem brain samples,
revealing that differential metabolites could effectively distinguish
AD patients from individuals with normal cognitive function with
high accuracy. While these findings support a strong link between
metabolic alterations and AD, the results have shown inconsistency.
In addition, the outcomes variables in the majority of previous
metabolomics studies have concentrated on AD (Graham et al.,
2013; Liu et al., 2014; Huo et al., 2020, Sato et al., 2012).

To date, few studies have specifically targeted MCI patients
or developed a predictive model for early screening. Therefore,
our purpose is to conduct plasma metabolomics studies in older
adults using high-throughput targeted metabolomics with the aim
of identifying different metabolic profiles and specific plasma
biomarkers for early prediction of MCI.

2 Materials and methods

2.1 Study subjects

The study participants were recruited from 17 villages in the
Jimo District of Qingdao City. Based on inclusion and exclusion

criteria, 650 individuals participated in the survey, with only 3
failing to complete it, and the response rate was 99.54% (mean age:
73 years, female: 53.7%). Each respondent underwent a face-to-
face interview using a questionnaire to gather demographic data,
cognitive function information, and other environmental factors.
Additionally, blood samples were collected from each participant
simultaneously. The sample used in this study was the same as in
our previously published research. The study was conducted by the
Declaration of Helsinki and approved by the Ethical Committee of
Qingdao University Medical College (ID: QDU-HEC-2023184). All
patients in this study gave informed and written consent.

2.2 Cognitive function test

Cognitive function was evaluated using the Beijing version of
the Montreal Cognitive Assessment (MoCA) (Nasreddine et al.,
2005). MoCA is an assessment tool developed by Nasreddine in
2004 for rapid screening for MCI. The cognitive areas assessed
by the MoCA scale include seven parts: visuospatial ability with a
score of 0–5, naming ability with a score of 0–3, attention ability
with a score of 0–6, language ability with a score of 0–3, abstract
ability with a score of 0–2, delayed recall ability with a score of 0–5
and orientation ability with a score of 0–6. The total score of the
scale is 30 points, and the test results show that the normal value
is ≥ 26 points and < 26 points are defined as the optimum cutoff
point for a definition of MCI (Kang et al., 2018). If the number of
years of education is less than 12, 1 point can be added. Individuals
with scores ≥ 26 were categorized as the control group. The scale
provides a comprehensive assessment of respondents’ cognitive
function across various dimensions, with higher scores indicating
superior cognitive function.

Our study comprised a total of 647 participants, including 411
individuals were diagnosed with MCI and 236 healthy controls.
Blood samples were collected from each participant. However,
due to quality control issues, such as hemolysis, only 271 plasma
samples met the quality criteria. From this subset, 171 samples were
randomly selected for metabolomic analysis, comprising 47 healthy
individuals and 124 patients. The Cronbach’s α coefficient of MoCA
Beijing is 0.74 in the survey population.

2.3 High throughput targeted
metabolomics procedures

The H650 Medical high-throughput targeted metabolomics
approach was adopted in this study (Lv et al., 2023; Luo et al.,
2023; Qin et al., 2022). In comparison with commonly targeted
metabolomics, this method employs complete standards and
enables the detection of a wide variety and a large number
of metabolites. Absolute qualitative and quantitative analyses of
approximately 650 functional metabolites in medical research
can be conducted. The high-throughput targeted metabolomics
approach can simultaneously detect multiple sample types and
substances, and obtain accurate qualitative and quantitative
results without the need for re-verification. The H650 medical
high-throughput targeted metabolomics approach, utilizing full
standards for method development, enables absolute qualitative
and quantitative analysis of approximately 650 types of functional
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metabolites in medical research. In this study, the quantitative
gold standard multiple reaction monitoring (MRM) method was
employed. MRM is a mass spectrum signal acquisition technique
based on known or assumed information. MRM can be quantified
through the internal standard method. The internal standard
method is extensively applied in the quantitative analysis of
UPLC-MS/MS. The metabolites encompass amino acids, organic
acids, carbohydrates, fatty acids, lipids, nucleotides, vitamins,
coenzymes, neurotransmitters, bile acids, polyamines, and related
metabolites. It can precisely qualitative and quantitative, and
extensively cover the relevant pathways of medical research.
Specific analysis methods for the H650 Medical high-throughput
targeted metabolomics approach can be found on this website.1

2.3.1 Sample collection and extraction
During the questionnaire period, fresh blood samples were

collected from all participants. Blood samples were obtained
following a 12-h fasting period. The blood samples were
immediately separated at 3,000 rpm for 10 min, and plasma
samples (1 mL each) were obtained. The plasma samples were
rapidly frozen with dry ice and stored at −80◦C within 4 h post-
collection. Ultra-high-performance liquid chromatography-mass
spectrometry (LC/MS) was employed for further analysis.

Before the experiment, all plasma samples were thawed at 4◦C.
The pre-cooled methanol, acetonitrile, and water solution were
then added in a 2:2:1 ratio and vortexed uniformly. Subsequently,
the samples were stored at −20◦C for 10 min, followed by
centrifugation at 14,000 × g for 20 min at 4◦C. The supernatant
was collected from the sample and dried under a vacuum. A 100 µL
aqueous acetonitrile was added and vortexed homogeneously for
mass spectrometry analysis. Finally, the samples were centrifuged
at 14,000 × g for 15 min at 4◦C and the supernatant was
injected for analysis.

2.3.2 UHPLC–MS/MS analysis
The analytes were separated on HILIC (Waters UPLC BEH

Amide column, 2.1 mm, 100 mm, 1.7 µm) and C18 columns
(Waters UPLC BEH C18-2.1 100 mm, 1.7 µm). The C18 column
serves as a nonpolar stationary phase that can retain nonpolar
compounds in reversed-phase chromatography, for example, lipids
and lipid-like molecules, phenylpropanoids and polyketides. The
HILIC column is a polar stationary phase that can retain
polar compounds in hydrophilic interaction chromatography, for
example, sugars, amino acids, organic acids and nucleotides.

The column temperature was 35◦C, the flow rate was
0.3 mL/min, and the sample size was 2 µL. The mobile phases
comprised of solvent A (2 mM ammonium formate + 10%
acetonitrile + 90% water + 40% isopropanol) and solvent B
(acetonitrile +0.4% formic acid). The gradient elution conditions
were described as follows: 0–1 min, 85% solvent B; 1–3 min,
85–80% solvent B; 3–4 min, 80% solvent B; 4–6 min, 80–70%
solvent B; 6–10 min, 70–50% solvent B; 10–15.5 min, 50%
solvent B; 15.5–15.6 min, 50–85% solvent B, 15.6–23 min, 85%
solvent B. The C18 column temperature was 40◦C, the flow
rate was 0.4 mL/min, and the sample size was 2 µL. The
mobile phases comprised of solvent A (water +5 mM ammonium

1 https://www.aptbiotech.com/asg/1062

acetate) and solvent B (99.5% acetonitrile). The gradient elution
conditions were described as follows: 0–5 min, 5–60% solvent
B; 5–11 min, 60–100% solvent B; 11–13 min, 100% solvent B;
13–13.1 min, 100–5% solvent B; 13.1–16 min, 5% solvent B.
To minimize the impact of fluctuations in instrument detection
signals, the samples are analyzed continuously and in a random
order. Quality control (QC) samples were incorporated into the
sample queue to assess the stability of the system and ensure the
reliability of experimental data. In this study, a high-throughput
metabolome-targeting approach was utilized to qualitatively and
quantitatively analyze over 600 common metabolites relevant to
medical research including metabolites such as carbohydrates,
organic acids, amino acids, bile acids, indoles, purine nucleotides,
lipids, and other compounds. The aim was to facilitate the
understanding of disease development in the medical field, identify
potential disease biomarkers, and predict disease prognosis.
Analyses were performed using a UHPLC (1,290 Infinity LC,
Agilent Technologies) coupled to a QTRAP MS (AB 6500+, AB
Sciex) at Shanghai Applied Protein Technology Co., Ltd.

2.4 Covariates

Covariates include age, gender (male/female), education
(≤ 12 years/> 12 years), occupation status (farmers/others), marital
status (married/unmarried or widowed), hypertension (yes/no),
diabetes (yes/no), stroke (yes/no), coronary heart disease (yes/no),
body mass index (BMI). Participants with prevalent hypertension,
diabetes, stroke and coronary heart disease were identified if they
had a previous self-reported physician diagnosis and/or treatment
for the respective condition.

2.5 Data processing and statistical
analysis

The MultiQuant or Analyst software was utilized for extracting
peaks from the raw data of targeted MRM, calculating the ratio
of each substance’s peak area to that of the internal standard.
Concentrations were then determined based on standard curves.
Metabolites with more than 80% missing values were removed,
the remaining missing values were imputed using the k-nearest
neighbor (KNN) method. Subsequently, the data were then
normalized by the sum method and analyzed using R (4.3.1), Stata
(version 15.0), and MetaboAnalyst 6.0.2

For data that followed a normal distribution, continuous
variables were presented as mean ± standard deviation, and
those that did not follow a normal distribution were expressed as
median (interquartile range). While categorical data were displayed
as counts and percentages. Comparisons of continuous variables
between the two groups were performed using independent t-tests
or Wilcoxon rank-sum tests, depending on the data distribution.
Categorical variables were compared using Chi-square or Fisher’s
exact tests. To account for multiple comparisons, the Benjamini-
Hochberg false discovery rate (FDR) method was applied, with an

2 https://www.metaboanalyst.ca/
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FDR q-value threshold set at 0.05 (Hochberg and Benjamini, 1990).
Additionally, the fold change was calculated based on the mean
metabolite levels in the MCI group relative to the control group.

The principal component analysis (PCA), partial least squares
discriminant analysis (PLS-DA) and orthogonal partial least
squares discriminant analysis (OPLS-DA) models were internally
validated using 7-fold cross-validation. To prevent overfitting,
model validation was conducted using 200 random permutations
of the sample group labels. The explanatory and predictive power
of the models was assessed using R2Y and Q2Y, respectively.
Metabolites were considered differentially abundant if they met
the following criteria: VIP (variable importance in the projection)
score > 1 with FDR < 0.05.

Metabolic pathway analysis was conducted using
MetaboAnalyst 6.0. The Pearson correlation coefficient was
calculated to assess the relationships between the differential
metabolites, and a correlation heatmap was generated for visual
representation of these associations. Hierarchical cluster analysis
(HCA) and clustering heat map were performed on the differential
metabolites using R (“pheatmap” package). Logistic regression and
the receiver operating characteristic (ROC) analysis were used
to identify a biomarker panel for diagnosing MCI, adjusting for
other covariates such as age, gender, education and occupation.
The area under the curve (AUC) was used to assess the predictive
performance of the identified metabolic biomarkers for MCI.
Additionally, the Delong test was applied to compare the predictive
values of different prediction models.

3 Results

3.1 Participant characteristics

Table 1 presents the basic characteristics of 171 participants
in targeted metabolomics, and the sample was categorized by
their baseline cognitive status. In comparison to the control
group, individuals with MCI were found to be significantly older,
have lower levels of education, and the proportion of farmers
is higher. In addition, participants in the MCI group presented
lower cognitive scores (p < 0.05). Compared to the control group,
individuals with cognitive impairment have a higher proportion
of being married. No statistically significant differences were
observed between the two groups in terms of the distribution
of gender, marital status, hypertension, diabetes, stroke, coronary
heart disease, or mean BMI.

3.2 Metabolic profiles of MCI patients

To compare the metabolic profiles between individuals with
MCI and those in the healthy subjects, we conducted targeted
quantitative validation using UHPLC-qTRAP MS methods. Green
dots indicate the center clustering of QC samples, indicating
that the mass accuracy of the mass spectrometry data meets the
requirements (Figure 2A).

404 metabolites were detected by the targeted metabolomics
method. After removing metabolites with more than 80% missing
data, the KNN method was used to interpolate the remaining

metabolites, resulting in a total of 248 metabolites left (Shahjaman
et al., 2021). The detected metabolites were categorized into 9
classes, with lipids and lipid-like molecules constituting the largest
proportion. Based on the criteria of FC > 1.5 or FC < 0.67
and FDR value < 0.05, a total of 11 differential metabolites were
identified in the univariate statistical analysis, compared with the
control group, 6 metabolites were significantly increased and 5
metabolites were significantly decreased in MCI group (Table 2).
The volcano plot was presented in Figure 1. In addition, we used
logistic regression to adjust for gender as a covariate to analyze
the relationship between univariate differential metabolites and
cognition (Supplementary Table 1). After adjusting for gender, all
variables, except for 3-Indolepropionic acid, remained significantly
associated with cognition.

To further visualize and classify metabolic profiles between
individuals with MCI and healthy controls, various multivariate
analyses such as PCA, PLS-DA and OPLS-DA were employed
to simplify the target metabolomics data and compare metabolic
differences. The PCA showed no significant difference between the
MCI group and the control group (Figure 2A). Our results from the
PLS-DA and OPLS-DA revealed a proper separation of all patients
with MCI from healthy controls (Figures 2B, C). These results
demonstrate a reliable distinction of metabolic changes between
participants with MCI and controls. As the permutation retention
gradually declined, both R2 and Q2 of the random model declined,
indicating that the original model did not overfit and possessed
good robustness.

3.3 Differential metabolite identification
and analysis

For the multivariate statistical analysis, 14 metabolites were
screened based on the criteria of VIP > 1 and FDR < 0.05
(Table 3). These metabolites were further categorized into 7
subclasses, with amino acids representing the largest proportion,
including aspartic acid, leucine, valine, etc. Four metabolites
were found to be significantly increased and 10 metabolites
were significantly decreased in the MCI group. Except for
cystine and argininosuccinic acid, the remaining amino acids
were significantly decreased. The results showed that common
differential metabolites meeting the univariate and multivariate
criteria (FC > 1.5 or < 0.67, FDR < 0.05, VIP > 1) included
arginine succinic acid and uric acid. Specifically, the hierarchical
cluster heatmap indicated that five essential amino acids, namely
valine, phenylalanine, leucine, isoleucine, and methionine, along
with two free amino acids, alloisoleucine and norvaline, were
significantly increased in the MCI group in Figure 3.

3.4 Correlation and functional pathway
analysis of differentially abundant
metabolites

Correlation analysis can assist in measuring the metabolic
proximities of significantly different metabolites, thereby
enhancing our understanding of the mutual regulatory
relationships between metabolites during biological state changes.
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TABLE 1 Baseline characteristics of two groups of people by cognitive function.

Characteristics MCI group (N = 124) Control group (N = 47) P-value

Age (years)a 74.58±5.79 70.53±5.32 0.000

Gender [n (%)]b 0.210

Male 45 (36.3%) 22 (46.8%)

Female 79 (63.7%) 25 (53.2%)

Education [n (%)]b 0.002

≤ 12 years 122 (98.3%) 41 (87.2%)

> 12 years 2 (1.7%) 6 (12.8%)

Occupation status [n (%)]b 0.028

Farmers 101 (83.5%) 32 (68.1%)

Others 20 (16.5%) 15 (31.9%)

Marital status [n (%)]b 0.349

Married 91 (74.0%) 38 (80.9%)

Unmarried or widowed 32 (26.0%) 9 (19.1%)

Hypertension [n (%)]b 0.493

Yes 52 (41.9%) 17 (36.2%)

No 72 (58.1%) 30 (63.8%)

Diabetes [n (%)]b 0.425

Yes 16 (12.9%) 4 (8.5%)

No 108 (87.1%) 43 (91.5%)

Stroke [n (%)]b 0.585

Yes 8 (6.5%) 2 (4.3%)

No 116 (93.5%) 45 (95.7%)

Coronary heart disease [n (%)]b 0.295

Yes 18 (14.5%) 4 (8.5%)

No 106 (85.5%) 43 (91.5%)

BMIa 25.93± 0.38 25.27± 0.64 0.670

Visuospatial abilitya 1.91± 1.40 3.74± 1.11 0.000

Naming abilitya 2.86± 0.48 3.00± 0.00 0.028

Attention abilitya 3.94± 1.62 5.80± 0.50 0.000

Language abilitya 2.52± 0.81 2.97± 0.15 0.000

Abstract abilitya 0.81± 0.77 1.51± 0.66 0.000

Delayed recall abilitya 2.00± 1.70 4.34± 0.84 0.000

Orientation abilitya 4.84± 1.30 5.61± 0.64 0.000

MoCA total scoresa 18.9± 4.30 27.02± 1.73 0.000

aMean± standard deviation was used for statistical description, and t-test was used to calculate P-value for inter-group comparison. bn (%) was used for description, and Fisher’s precision test
or Chi-square test were used to calculate P-values for inter-group comparison.

This facilitates further insight into the intricate dynamics of
metabolic processes. We conducted correlation analysis for 14
differential metabolites, and the results of the correlation analysis
were shown in Supplementary Figure 1, with blue representing
positive correlation and red representing negative correlation.

Notably, isoleucine and alloisoleucine which both belong
to the branched-chain amino acid (BCAAs) were positively
correlated with valine (correlation coefficient = 0.87, P < 0.001;
correlation coefficient = 0.88, P < 0.001). We observed a significant
positive correlation between changes in the levels of valine

and norvaline (correlation coefficient = 0.98; P < 0.001).
leucine and alloisoleucine were positively correlated with
isoleucine (correlation coefficient = 0.99, P < 0.001; correlation
coefficient = 0.99, P < 0.001).

To investigate the differential metabolite pathways associated
with MCI, pathway enrichment analyses were performed. The
bubble diagram and bar diagram of metabolic pathways were
depicted in Figures 4, 5. It was evident that 14 metabolites were
enriched across 18 metabolic pathways, including the biosynthesis
of valine, leucine and isoleucine biosynthesis; the metabolism of
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TABLE 2 Univariate statistical analysis screened for differential metabolites between participants with MCI with and control group.

Metabolites m/z RT (min) MCI/CON

FCa VIPb Statec

Alpha-hydroxyisobutyric acid 103.0/57.0 2.90 0.56 0.24 ↓**

Uric acid 167.1/124.1 6.65 0.59 1.11 ↓**

2-Aminoisobutyric acid 104.0/58.0 5.90 0.62 0.24 ↓**

Aspartic acid 132.0/88.0 8.10 0.65 0.25 ↓**

Alpha-aminobutyric acid 104.0/58.1 5.80 0.66 0.19 ↓**

3-Indolepropionic acid 187.9/59.1 5.43 1.57 0.22 ↑*

Argininosuccinic acid 291.1/70.2 9.13 1.64 1.11 ↑**

N-Acetylphenylalanine 206.0/164.0 4.23 1.69 0.02 ↑**

N-Methylalanine 104.0/58.0 5.38 1.72 0.38 ↑**

Indole-3-methyl acetate 190.0/130.0 5.77 2.03 0.11 ↑**

Apocholic acid 389.4/389.4 9.35 2.08 0.37 ↑**

CON, control; FC, fold change; VIP, variable influence on projection; RT, retention time. aFC value was calculated as the ratio of the average mass response (area) between the two groups (FC
value = MCI/control). bOnly metabolites with FC > 1.5 or FC < 0.67 and FDR less than 0.05 were deemed statistically significant in univariate statistical analysis. c

↑ Represented a significant
increase in metabolite levels in MCI group compared with the control group, ↓ represented a significant decrease in metabolite levels in MCI group compared with the control group; *FDR <
0.05, **FDR< 0.01.

FIGURE 1

Volcano plot. Red circles represented increased metabolites and blue circles represented decreased metabolites.
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TABLE 3 Key differential expressed metabolites between participants with MCI with and control group.

Metabolites m/z RT (min) MCI/CON

FCa VIPb Statec

Pyruvic acid 87.1/43.1 1.02 1.24 6.93 ↑**

Cystine 241.1/151.9 8.45 1.15 4.16 ↑**

Tryptophan 205.2/188.1 3.53 0.92 2.59 ↓**

ADP-ribose 560.0/348.0 8.38 0.69 2.52 ↓**

Leucine 132.1/86.2 3.68 0.87 2.42 ↓**

IsoLCA 375.5/375.5 9.93 1.41 2.35 ↑**

Valine 118.1/55.1 4.79 0.90 2.34 ↓**

Phenylalanine 166.1/120.1 3.47 0.90 2.30 ↓**

Isoleucine 132.1/86.2 4.01 0.87 2.28 ↓**

Alloisoleucine 132.1/86.1 4.00 0.85 1.69 ↓**

Methionine 150.1/133.0 4.19 0.86 1.56 ↓**

Norvaline 118.1/72.2 4.51 0.91 1.19 ↓**

Argininosuccinic acid 291.1/70.2 9.13 1.64 1.11 ↑**

Uric acid 167.1/124.1 6.65 0.59 1.11 ↓**

CON, control; FC, fold change; VIP, variable influence on projection; RT, retention time. aFC value was calculated as the ratio of the average mass response (area) between the two groups
(FC value = MCI/control). bOnly metabolites with VIP values greater than 1.0 and FDR less than 0.05 were deemed statistically significant in multivariate statistical analysis. c

↑ Represented
a significant increase in metabolite levels in MCI group compared with the control group, ↓ represented a significant decrease in metabolite levels in MCI group compared with the control
group; **FDR < 0.01.

FIGURE 2

Results of multivariate statistical analysis for targeted metabolomics profiling. (A) Score plot of PCA. The respective model interpretability for the X
variable datasets was R2X = 0.48, model predictability Q2 = 0.18. (B) Score plot of PLS-DA. The respective model interpretability for the X and Y
variable datasets was R2X = 0.13 and R2Y = 0.73, model predictability Q2 = 0.55. (C) Score plot of OPLS-DA. The respective model interpretability for
the X and Y variable datasets was R2X = 0.13 and R2Y = 0.73, model predictability Q2 = 0.59.

cysteine and methionine; the degradation of valine, leucine and
isoleucine; the metabolism of alanine, aspartate and glutamate
and the biosynthesis of phenylalanine, tyrosine and tryptophan
(p < 0.05). Among the 14 metabolites, there were nine amino
acids, which were implicated in eight metabolic pathways. They
are significantly involved in the biosynthesis of valine, leucine, and
isoleucine; the degradation of valine, leucine, and isoleucine; the
metabolism of cysteine and methionine and the metabolism of
phenylalanine (p < 0.05).

3.5 Potential biomarker panel for
predicting of MCI

The 14 differential metabolites were further screened to identify
key metabolites that could predict cognitive decline for model

development. In order to explore a biomarker panel for diagnosis
of MCI, logistic regression and ROC analysis were used to disclose
the most qualified metabolic candidate. As a result, three key
metabolites (uric acid, pyruvic acid and isolithocholic acid) were
identified as biomarkers. Box plots for the three biomarkers showed
that uric acid levels were significantly lower, while pyruvic acid and
isolithocholic acid levels were significantly higher in individuals
with MCI compared to the control group.

Three logistic regression models were constructed to assess
the best combination of demographic factors for predicting MCI.
Compared to Model 2 and Model 3, Model 1, including age, sex,
education, and occupation, exhibited the best predictive ability for
MCI, with an AUC of 0.71 (95% CI: 0.52–0.91). When the three
metabolites were added to Model 1, the performance significantly
improved, yielding an AUC of 0.99 (95% CI: 0.96–1.00) as shown
in Figure 6. The results of the DeLong test indicated a significant
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FIGURE 3

The hierarchical clustering heat map of the metabolites. The rows represent the 14 metabolites, and the columns represent samples in the control
and participants with low cognitive function; Red and blue indicate increased and decreased, respectively.

FIGURE 4

Metabolic pathway enrichment analysis bar chart; The enrichment ratio is the ratio of metabolites enriched in the pathway to all metabolites in the
pathway.
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FIGURE 5

Metabolic pathway enrichment analysis bubble diagram. The node color is based on its p-value, and the node radius is based on their pathway
impact values.

difference in the AUC between the two models (p < 0.01). These
findings demonstrated that the combination of uric acid, pyruvic
acid, and isolithocholic acid had a strong predictive potential
for cognitive decline in MCI progression. Graphical abstract was
shown in the Supplementary Figure 2.

4 Discussion

In this study, targeted metabolomics was conducted to analyze
the changes in plasma metabolite levels in 124 participants
with MCI and 47 controls. The results demonstrated that the
metabolic levels in participants with MCI differ from those of
controls. Specifically, univariate and multivariate statistical analyses
revealed 11 and 14 different metabolites, respectively. Further
pathway analysis indicated that these altered metabolites were
primarily involved in several key metabolic pathways, including
the biosynthesis of valine, leucine and isoleucine biosynthesis; the
metabolism of cysteine and methionine; the degradation of valine,
leucine and isoleucine; the metabolism of alanine, aspartate and
glutamate and the biosynthesis of phenylalanine, tyrosine and
tryptophan (p < 0.05).

Additionally, we found that a subset of metabolites with
differential abundance could potentially serve as biomarkers
for MCI. The integration of three metabolites including uric
acid, pyruvic acid and isolithocholic acid significantly improved
the performance of predicting MCI progression compared to
models that relied solely on demographic characteristics. In
the absence of gold-standard diagnostic procedures, diagnostic

accuracy can be greatly improved by utilizing a collaborative panel
of diagnostic markers with multiple components, based on clinical
manifestations and auxiliary examinations (Yang et al., 2013).

In this study, we observed significant differences in the
metabolic profile of peripheral blood between subjects with MCI
and healthy controls. Specifically, our findings revealed notable
changes in amino acid levels, with six essential amino acids (leucine,
tryptophan, methionine, isoleucine, phenylalanine and valine)
showing a significant decline in the MCI group. These results
were consistent with previous research indicating that cognitive
decline was associated with decreased levels of nine essential amino
acids (Ikeuchi et al., 2022; Aquilani et al., 2023). Furthermore,
three BCAAs -leucine, isoleucine and valine-were also found to be
significantly decreased in the MCI group consistent with earlier
findings (Ikeuchi et al., 2022). A metabolomics study based on eight
prospective cohorts revealed that lower serum concentrations of
BCAAs were linked to an increased risk of all types of dementia
(Tynkkynen et al., 2018). Similarly, a study utilizing circulating
plasma metabolomics data from the UK Biobank reported lower
plasma levels of BCAAs associated with the development of
dementia (Zhang et al., 2022).

This association may be due to the potential of BCAA
concentrations in the blood to reflect AD pathology, such as
brain inflammation or oxidative stress (Ikeuchi et al., 2022).
Previous research has shown that the protein among individuals
with dementia was significantly lower than that of healthy elderly
individuals (Nes et al., 1988; Sanders et al., 2018; Thomas et al.,
1986). Moreover, higher protein intake in older adults has been
linked to a reduced risk of MCI (Goodwin et al., 1983; La Rue et al.,
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FIGURE 6

(A) Box plots of three normalized potential biomarkers. Samples were compared using the Wilcoxon rank sum test. (B) ROC curves of the predictive
models. The logistic regression models were adjusted for various covariates as follows: Model 1 included adjustments for age, gender, education,
and occupation; Model 2 incorporated additional adjustments for marital status and body mass index (BMI); Model 3 further included hypertension,
diabetes, stroke, and coronary heart disease; and Model 4 was adjusted for age, gender, education, occupation, as well as biochemical markers such
as uric acid, pyruvic acid, and isolithocholic acid.

1997), and to decrease accumulation of Aβ accumulation in the
brain (Fernando et al., 2018). In the MCI group, plasma levels of
other free amino acids were also significantly reduced, including
alpha-aminobutyric acid, aspartic acid and 2-aminoisobutyric acid.
Research has shown that alpha-aminobutyric acid, a non-protein
amino acid derived from methionine, threonine, serine, and
glycine, may play a role in regulating macrophage polarization and
function through metabolic and epigenetic pathways, suggesting
potential for treating inflammatory diseases (Li et al., 2023).
Tryptophan, an essential amino acid necessary for protein synthesis
in humans, is also the sole precursor of the neurotransmitter
serotonin, which regulates various physiological processes related
to emotion, memory, and learning. Furthermore, evidence from
major drug treatments that delay the progression of AD suggested
a legitimate role of gut microbes and tryptophan metabolites in the
development of this condition (Roth et al., 2021).

A study on the gut microbiome has revealed an association
between bile acid metabolism and cognitive dysfunction
(MahmoudianDehkordi et al., 2019). Consistent with our
plasma-targeted metabolomics findings, we observed significantly

elevated levels of apocholic acid and isolithocholic acid in the
MCI group. Research has shown that bile acid cytotoxicity is
linked to membrane damage, oxidative stress, and apoptosis
(Amaral et al., 2009). Another study also suggested that bile
acid metabolism disorders were associated with AD, as they can
contribute to cholestatic liver disease, dyslipidemia, fatty liver
disease, cardiovascular disease, and diabetes, conditions that were
directly or indirectly associated with the risk of cognitive decline
(Kim et al., 2016; Sims et al., 2017; Hall et al., 2017).

Abnormal pyruvate metabolism has been implicated in several
conditions, including cancer, heart failure, and neurodegeneration
(Gray et al., 2014). Pyruvic acid, the end product of anaerobic
glycolysis, was found to be significantly upregulated in the MCI
group, indicating that cognitive decline may be associated with an
anoxic state. Uric acid has long been associated with a negative
reputation (Tana et al., 2018; Huang et al., 2022). However,
recent studies have demonstrated that uric acid may play an
active role in neurotoxicity or neuroprotection. These effects
were thought to be linked to oxidative stress or inflammatory
processes within the central nervous system, as well as other
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somatic or systemic diseases (Mijailovic et al., 2022). In line with
this, our findings showed that uric acid levels were lower in
the MCI group compared to the control group. This difference
may reflect the antioxidant properties of uric acid, which could
potentially play a neuroprotective role in AD (Tana et al., 2018;
Mijailovic et al., 2022).

There were some advantages in this research. First, it focused
on the early screening of individuals with MCI, allowing for the
potential identification of biomarkers for early detection. Second,
the sample size was sufficiently large and the use of plasma
samples for analysis was less invasive and more cost-effective
for patients. Additionally, targeted metabolomics offered several
advantages, including high specificity, excellent sensitivity, and
precise quantification.

However, there were also some limitations in this study.
Firstly, the study utilized cross-sectional data, which limited
the assessment of the temporal stability of biomarkers in MCI;
future research will incorporate longitudinal data to examine the
temporal dynamics of these metabolites. Secondly, other factors
that may influence MCI, such as diet information and genetic
variables, and clinical biomarker NfL were not investigated in this
study. Furthermore, the present study comprised only 47 controls
compared to 124 MCI patients, the imbalance sample size between
groups might introduce bias, limiting the representativeness and
reliability of control comparisons. Lastly, the majority of differential
metabolites identified in this research lacked specificity, and our
comprehension of these altered metabolites and their underlying
mechanisms was still in its early stages.

5 Conclusion

In conclusion, we have identified significant changes in
the metabolic profiles of both the MCI and control groups.
These alterations involve key metabolic pathways, including the
biosynthesis of valine, leucine and isoleucine biosynthesis; the
metabolism of cysteine and methionine; the degradation of valine,
leucine and isoleucine; the metabolism of alanine, aspartate
and glutamate and the biosynthesis of phenylalanine, tyrosine
and tryptophan (p < 0.05). Our findings confirmed that the
prediction of MCI involves multiple biomarkers rather than a single
biomarker. Specifically, we identified three metabolites, including
uric acid, pyruvic acid and isolithocholic acid that may play a key
role in the early prediction of MCI.
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