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Sunlight exposure is recognized as a risk factor for the development of age-related 
macular degeneration (AMD), a common neurodegenerative retinal disease in 
the elderly. Specifically, the blue light wavelengths within sunlight can negatively 
impact the physiology of light-sensitive retinal cells, including retinal pigmented 
epithelium (RPE) and photoreceptors. This review explores blue light-induced 
retinal degeneration, emphasizing the structural and functional impairments 
in RPE. The initial section provides a brief overview of blue light’s effects on 
photoreceptors, followed by a comprehensive analysis of its detrimental impact 
on RPE. In vitro studies reveal that blue light exposure induces morphological 
alterations and functional impairments in RPE, including reduced phagocytic 
activity, disrupted secretion of neurotrophic factors, and compromised barrier 
function. Mechanisms of retinal damage, including oxidative stress, inflammation, 
lipofuscin accumulation, mitochondrial dysfunction and ER stress in RPE, are also 
explored. The strengths and limitations of in vitro, animal and ex vivo models for 
studying blue light exposure are discussed, with recommendations for improving 
reproducibility in future studies.
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Introduction

Age-related macular degeneration (AMD) is a degenerative retinal disease affecting the 
macula, leading to progressive central vision loss and is the leading cause of irreversible 
blindness in people aged 50 and older (Steinmetz et al., 2021). The pathogenesis of AMD is 
multifactorial, involving environmental and genetic factors. Several early changes are 
associated with aging, a major risk factor for AMD. Environmental risk factors include 
sunlight exposure, cigarette smoke and oxidative stress linked to age and diet (Evans, 2005; 
Jonasson et al., 2014; Lambert et al., 2016; Schick et al., 2016).

Sunlight, specifically the wavelengths associated with ultraviolet (UV) and blue light, 
impacts the physiology of retinal cells and is, to some extent, comparable to the photo-aging 
of the skin (Parkinson et al., 2015). An important distinction is that retinal cells may be affected 
by certain wavelengths of sunlight, such as blue light (400–500 nm), since most of the radiation 
in the UV range is absorbed by the cornea (100–315 nm) and lens (315–400 nm), thereby 
helping to protect the retina from UV-induced photo-oxidative damage (Behar-Cohen et al., 
2011; Mallet and Rochette, 2011, 2013).
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In recent years, there have been growing concerns about the long-
term effects of artificial light exposure from light emitting diodes 
(LEDs) and modern electronic devices which emit a high proportion of 
their light in the blue wavelength (Behar-Cohen et al., 2011; Wong and 
Bahmani, 2022). Research in the field indicates that chronic exposure 
to blue light in the range of 400–490 nm may affect the function of 
photoreceptor and RPE due to its high energy, and contribute to the 
pathogenesis of AMD (Roehlecke et al., 2009; Lin et al., 2017; Gea et al., 
2018; Baker et al., 2022; Françon et al., 2024). Nevertheless, evidence 
from clinical studies remains inconclusive and a definitive link between 
blue light and retinal damage has yet to be established.

Blue light: a risk factor for AMD?

Estimating the link between sunlight or blue light exposure and 
AMD risk is challenging due to inconsistent results from population-
based studies and meta-analyses of the epidemiological literature 
(Cruickshanks et al., 2001; Tomany, 2004; Sui et al., 2013; Schick et al., 
2016; Zhou et al., 2018; Achiron et al., 2021). The Beaver Dam Eye Study 
found a possible association between sunlight exposure and increased 
risk of retinal pigmented epithelium (RPE) abnormalities and early 
AMD (Cruickshanks et al., 2001; Tomany, 2004). The Chesapeake Bay 
study reported that AMD patients with extensive geographic atrophy 
had significantly higher exposure to blue light over the preceding 
20 years, compared to age-matched controls (Taylor et al., 1990). The 
authors combined personal exposure histories with laboratory 
investigations and field measurements to determine ocular exposure to 
sunlight. Published ambient data on intensity and spectral distribution 
of visible light was used to calculate the yearly ocular exposure to blue 
light for each individual. In the European Eye Study (EUREYE), blue 
light exposure was estimated by combining meteorologic and 
questionnaire data regarding outdoor exposure. No link was found 
between blue light exposure and neovascular or early AMD. However, 
significant associations were found between blue light exposure and wet 
AMD in participants with low levels of antioxidants, specifically dietary 
zinc and zeaxanthin, vitamins C and E in blood. These nutrients are 
known to work synergistically to protect the retina from light-induced 
oxidative damage (Thomson et al., 2002; Wrona et al., 2003, 2004). This 
study emphasizes the complexity of these associations, and the need for 
further research in this direction (Fletcher, 2008).

Unlike sunlight, artificial lighting contains a fixed spectral 
distribution that peaks in the blue portion of the electromagnetic 
spectrum, and the long-term impact of chronic exposure to artificial 
light on retinal health is unclear (Contín et al., 2016; Wong and Bahmani, 
2022). A recent case–control study conducted using nationwide 
population-based data in South Korea found that artificial light exposure 
at night significantly increased the risk of developing exudative AMD 
(Kim et al., 2024). Excessive blue light exposure consistently damages 
photoreceptors and RPE in culture and animal models, as detailed in the 
following two sections. However, this correlation has not yet been fully 
validated in human studies and remains an area of active research.

Effect of blue light on photoreceptors

Photoreceptors are specialized sensory cells in the retina and 
interact with the RPE to convert incoming light into neural signals, 

a process known as phototransduction (Molday and Moritz, 2015). 
Photoreceptor health is crucial for vision. Light-induced damage is 
classified into two types based on total dose, which includes 
irradiance (mW/cm2) and exposure duration: Class I, or Noell 
damage, predominantly studied in rats but also observed in 
primates and other species, occurs with longer exposures (>1.5 h) 
and lower irradiance (<1 mW/cm2), and primarily affects 
photoreceptors, although RPE damage can occur with extended 
exposure (>8 days) (Noell et al., 1966; Noell, 1980; Hunter et al., 
2012). Class II, or Ham damage, predominantly studied in primates 
but also observed in rats and other species, results from shorter 
exposures (<5 h) at much higher irradiances (>10 mW/cm2), and 
mainly affects the RPE (Ham et al., 1979; Ham, 1983; Hunter et al., 
2012; Cougnard-Gregoire et al., 2023; Youssef et al., 2024; Zhang 
et al., 2024).

In rats, blue light damages photoreceptors through several cellular 
mechanisms, including reactive oxygen species (ROS) production, 
mitochondrial damage, and apoptosis (Busch et al., 1999; Theruveethi 
et al., 2022). In primates, blue light caused significantly more damage 
to the RPE and cone outer segments compared to longer wavelengths 
(Zhang et  al., 2024). In rats,12 h/day of blue light for 28 days 
significantly disrupted the outer retinal structure, notably reducing 
photoreceptor nuclei, damaging their outer segments, and disrupting 
the outer plexiform layers (Theruveethi et al., 2022). Photoreceptor 
transcriptome profiling by RNA-seq after blue light exposure in 
Drosophila demonstrated an upregulation of a broad range of genes 
involved in oxidative stress response and neuroprotective pathways, 
with concomitant downregulation of genes required for light response 
including voltage-gated calcium, potassium and chloride ion channels. 
Interestingly, mature flies were more susceptible to these blue light-
induced transcriptomic changes compared to very young flies (Hall 
et al., 2018).

In cultured murine photoreceptor-derived cells, blue light 
increased production of ROS, altered protein expression, and caused 
photoreceptor damage (Kuse et al., 2014). Photoreceptor cell death 
from blue light exposure was mainly caused by inducing mitochondrial 
dysfunction and apoptosis through Bax and caspase-3 activation (Xu 
et  al., 2023). Similarly, mouse retinal explant cultures showed 
increased ROS production, morphological changes including the 
disorganization of the outer segments, cell membrane disruption, and 
cell death with prolonged blue light exposure (Figure 1) (Roehlecke 
et al., 2011).

Effect of blue light exposure on retinal 
pigmented epithelium

The RPE forms a crucial interface between the neural retina and 
choroid, the vascular supply of the outer retina. The RPE controls the 
transportation of nutrients, ions, and water to photoreceptors, absorbs 
light and safeguards against photooxidation, converts all-trans-retinal 
to 11-cis-retinal to support the visual cycle, engulfs and discards 
photoreceptor membranes through phagocytosis, and secretes vital 
factors contributing to the structural integrity of the retina. The RPE 
is also important in combating lipid photooxidation and the 
generation of ROS, both of which are toxic to the retina, serving as the 
main defense system to counterbalance the high oxidative stress in the 
retina (Simó et al., 2010).
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The outer blood-retinal barrier (oBRB), consisting of RPE 
monolayer and their tight junctions with Bruch’s membrane, 
controls nutrient and metabolite exchange vital for photoreceptor 
survival. Blue light exposure disrupts RPE tight junctions, resulting 
in loss of barrier function in rodents, rabbits and cultured human 
RPE cells. The decline in barrier function is associated with 
alterations in RPE tight junction proteins, specifically zonula 
occludens-1 (ZO-1) (Putting et al., 1992; Ozkaya et al., 2019; Xie 
et al., 2021). Blue light (400–520 nm) at 50 J/cm2energy (0.014 W/
cm2 for 1 h) causes oBRB dysfunction in rabbits, 30 times more 
effectively than yellow light (510–740 nm) at the same energy 
(Putting et  al., 1992, 1994). In human RPE cells, this effect is 
attributed to the dysfunction of Protein Kinase C-ζ (PKC-ζ), a 
component of a protein scaffold complex that regulates the polarity 
of RPE tight junctions (Ozkaya et al., 2019).

Morphological changes observed in cultured human RPE cells 
exposed to blue light include the presence of cracked nuclei, swollen 
mitochondria, disappearance of the inner limiting membrane of the 
mitochondria, vacuole formation, and dilation of the rough 
endoplasmic reticulum (Busch et al., 1999; Zhang, 2005; Roehlecke 
et al., 2009; Song et al., 2022; Françon et al., 2024). Blue light also 

impairs the secretion of retinal neurotrophic factors important for the 
maintenance of retinal cells such as hepatocyte growth factor and 
angiogenin by human RPE cells and vascular endothelial growth 
factor-A (VEGF-A) by porcine RPE cells (Chu et al., 2006; Vila et al., 
2017; Marie et  al., 2019). Transcriptome profiling by RNA-seq 
following blue light exposure of cultured human RPE cells 
demonstrated an upregulation of a broad range of genes involved not 
only in cell survival and cell cycle regulation, but also cell–cell 
interactions, cell morphology, inflammation and oxidative stress 
(Cheng et al., 2021).

Blue light can also cause a reversible inhibition of phagocytic 
activity and reduce receptor proteins, likely arising from oxidative 
modifications of phagocytic machinery in human RPE (Olchawa 
et al., 2022). The build-up of lipofuscin (a fluorophore that increases 
with age in RPE and results in increased oxidative stress) contributes 
to this reduced ability of cultured rabbit RPE cells to phagocytose 
the photoreceptor outer segments (Brunk et  al., 1995; Sundelin 
et  al., 1998). Loss of this critical function of RPE leads to 
photoreceptor dysfunction (Olchawa et al., 2017) (Figure 1). A more 
recent study in Japanese quail demonstrates that blue light exposure-
induced photo-oxidative stress contributes to lipofuscin 

FIGURE 1

Structural and functional impairments in photoreceptors and RPE cells due to blue light exposure. In healthy photoreceptors and RPE cells: 1. 
secreted neurotropic factors such as HGF, VEGF and angiogenin help maintain homeostasis of the neural retina and RPE. 2. Phagocytosis of 
photoreceptor outer segments by RPE into lysosomes helps preserve photoreceptor function. 3. Nutrient uptake is controlled by RPE. 4. Metabolite 
exchange from retina to choroid is controlled by RPE. 5. Outer blood-retinal barrier is maintained due to RPE tight junctions. 6. Healthy 
mitochondria help manage oxidative stress in RPE. Blue light exposure of RPE causes: 7. Dysfunctional neurotrophic factors secretion between 
neural retina and RPE. 8. Dysfunction in phagocytosis of photoreceptor outer segments 9. Metabolite accumulation in the retina due to lack of 
uptake by RPE. 10. Breakdown of tight junctions due to blue light-induced dysfunction of PKC-ζ. 11. Secretion of cytokines/chemokines causes 
inflammation and exacerbates the recruitment of immune cells which further damage RPE. 12. Increase in oxidative stress from lipofuscin granules 
and ROS resulting in mitochondrial damage. 13. Lipid peroxidation from ROS resulting in cellular toxicity and reduced viability. Created in 
BioRender. BioRender.com/e21v624.
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accumulation in RPE cells in the form of melanolipofuscin-like 
granules, which is suggested to impair RPE function (Serejnikova 
et al., 2024).

Potential mechanisms of blue 
light-induced retinal damage

Activation of inflammatory pathways

It is well established that blue light induces RPE to secrete 
cytokines and chemokines and growth factors. Specifically, blue 
light exposure results in an increased release of IL-6, IL-8, IL-17a 
and basic fibroblast growth factor (bFGF) in human RPE cells 
compared to other wavelengths (Sato et al., 2021). Additionally, 
chemokines involved in recruiting immune cells such as monocyte 
chemotactic protein-1(MCP-1) were also shown to be elevated in 
RPE-choroid complexes of mice exposed to blue light compared to 
other wavelengths (Narimatsu et al., 2015). This increase in cytokine 
secretion from blue light exposure has been shown to induce local 
proliferation and migration of activated immune cells such as 
microglia and macrophages in mice, which can contribute to 
further damage to the RPE (Figure  1) (Nakamura et  al., 2018). 
Activation of these innate immune cells is not seen with white light 
(400–700 nm) exposure in mice, further highlighting the 
heightened effects of blue light on immune activation (Ebert 
et al., 2012).

Oxidative stress

A key mechanism of blue light-induced RPE injury is the 
generation of ROS, resulting in oxidative damage and reduced viability 
through increased lipid peroxidation in cultured human and bovine 
RPE cells (Nakanishi-Ueda et al., 2013; Abdouh et al., 2022). The 
major source of ROS in human RPE is the mitochondria, particularly 
the endogenous fluorophores in the inner mitochondrial membrane 
(King et al., 2004). By making RPE more vulnerable to oxidative stress, 
blue light exposure can thus promote necroptosis, a form of 
programmed cell death that has features of both necrosis and 
apoptosis, and is independent of caspase activity in human RPE cells 
(Song et al., 2022). Antioxidant compounds such as lipoxins reduce 
RPE oxidative stress injury in cultured human RPE and in mice 
exposed to blue light (Xie et al., 2021).

RPE photoreactivity increases with age due to lipofuscin 
accumulation, which arises from incomplete degradation of 
photoreceptor outer segments, as observed in primary porcine, bovine 
and human RPE cells (Rozanowska et al., 1996; Marie et al., 2018). 
Lipofuscin toxicity is driven by bisretinoid fluorophores, which 
oxidize in response to oxygen and blue light, forming toxic aldehydes 
and ketones (Feldman et  al., 2022). The main fluorophore, 
N-retinylidene-N-retinylethanolamine (A2E), accumulates with age 
in humans and acts as a photosensitizer, increasing ROS levels and 
RPE damage (Sparrow et al., 2000). A2E can also disrupt lysosomal 
membrane permeability, leading to mitochondrial damage, DNA 
damage, and apoptotic signaling (Xu et al., 2022) It triggers apoptosis 
by increasing calcium leakage from mitochondria and lysosomes into 
the cytosol (Brini et al., 2013), ultimately activating the mitochondrial 
apoptotic pathway.

Mitochondrial dysfunction

Mitochondria play a crucial role in RPE damage from blue light 
exposure. At lower levels of blue light (1–3 mW/cm2), mitochondrial 
respiratory chain activity increases in RPE cells in Japanese quails 
(Serezhnikova et al., 2017). Human in vitro RPE models show a rise in 
mitochondria numbers and morphological changes, with larger, ring-
shaped mitochondria forming, increasing membrane surface area. 
These adaptations likely enhance cellular resistance to ROS by 
boosting energy transfer efficiency and metabolic activity (Roehlecke 
et al., 2009).

At higher blue light intensities (>4 mW/cm2), the balance of 
mitochondrial fusion and fission is disrupted in mice and in cultured 
human RPE cells, leading to increased fragmentation (Anitua et al., 
2023; Wang et  al., 2023). This effect occurs in human RPE even 
without A2E loading (Alaimo et al., 2019). The fusion-fission balance 
is crucial for maintaining a healthy mitochondrial network, and its 
dysregulation marks an early step in apoptosis (McBride and Scorrano, 
2013). Mitochondrial pathways, rather than purely ROS signaling, 
play a significant role in blue light-induced cell death in human RPE 
(Moon et al., 2017).

Overactivation of autophagy

Autophagy is a protective mechanism in RPE that maintains cellular 
homeostasis by the degradation of harmful material from the ER, 
mitochondria or lysosomes (Intartaglia et  al., 2022). However, 
autophagy competes with LC3-associated phagocytosis (LAP), a form 
of non-canonical autophagy that combines components of autophagy 
with phagocytosis to facilitate clearance of cellular debris. LAP is the 
primary process utilized by RPE to degrade the shed photoreceptor 
outer segments (POS), produce 11-cis retinal for the visual cycle and 
recycle essential components for photoreceptor disc renewal (Kim et al., 
2013). Therefore, autophagy must be tightly regulated to ensure LAP 
occurs efficiently, prevent accelerated lipofuscin buildup, maintain POS 
clearance, and support the visual cycle (Kim et al., 2013; Ferguson and 
Green, 2014). Excessive autophagy activation has been observed in 
human and rodent RPE exposed to blue light, potentially due to the 
increased ROS and lysosomes and mitochondria permeability, 
disrupting the balance of autophagy and LAP. This imbalance reduces 
RPE viability and promotes lipofuscin buildup (Figure 1) (Fujita et al., 
2007; Shen et al., 2013; Lee et al., 2015; Galluzzi et al., 2018).

Experimental models of blue light 
stimulation

Experimental models are used to mimic environmental stressors 
associated with blue light stimulation through a variety of methods 
which are summarized below:

In vitro models

The ARPE-19 cell line is the most commonly used cell model, 
along with primary RPE cell cultures. Study parameters such as 
exposure duration and irradiance intensity vary extensively in the 
literature (Table 1). In vitro experiments range from low intensity 
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TABLE 1 Blue light wavelengths, irradiance and times of exposure from in vitro experimental studies reviewed here are compiled to compare and 
highlight the variability in the methodologies used.

Blue light 
wavelength 
(nm)

Irradiance 
(mW/cm2 or 

lux)

Time of 
exposure (hours 

or minutes)

Summary of methods and 
reference

Effects of blue light stimulation

455 0.185 J/cm2 0.305 h Model used: Human induced pluripotent stem 

cells (hiPSC)-derived retinal pigment 

epithelial (iRPE) cells

Light source: LED lamp blue (455 nm), white 

(3,300 K), or red (630 nm) light below 

phototoxicity thresholds (3.6 J/cm2 for white, 

0.185 J/cm2 for blue, 0.276 J/cm2 for red).

Reference: Françon et al. (2024)

Light below 22 J/cm2 induces structural changes, 

DNA damage, cellular stress, and alters autophagy in 

iRPE cells with blue light exposure.

White light induces inflammation, while red light 

exhibits anti-inflammatory effects.

The entire light spectrum significantly impacts RPE 

cell phototoxicity.

450 2.3 mW/cm2 6–24 h Model used: ARPE-19

Light source: LED lamp

Reference: Wang et al. (2023)

Prolonged blue light caused mitochondrial damage 

and dysfunction in RPE cells, disrupting 

mitochondrial dynamics with fusion-related 

blockage.

470 500 lux 24, 48 h Model used: ARPE-19 cells

Light source: LED lights

Reference: Anitua et al. (2023)

Plasma rich in growth factors (PRGF) membrane 

with tailored optical properties provided protection 

against blue light-induced oxidative stress 

comparable to that of natural PRGF collected from 

healthy donors.

400–500 100 mW/cm2 0.5 h Model used: Primary human RPE and ARPE-

19

Light source: Solar simulator

Reference: Abdouh et al. (2022)

Filtering blue light using yellow-tinted IOLs reduces 

oxidative stress and cell death caused by blue light 

exposure.

Additionally, the antioxidant NAC protects RPE cells 

from blue light-induced ROS production, 

highlighting oxidative stress as a key factor in RPE 

damage.

390–510 18.1 mW/cm2 0.5, 1.0, 1.5 h Model used: ARPE-19 cells lacking 

photoreactive pigments

Light source: Solar simulator with band-pass 

(400–700 nm) and blue-light (410–500 nm) 

filters

Reference: Olchawa et al. (2022)

Sublethal blue light hinders phagocytic activity in 

RPE cells.

Blue light causes dose-dependent oxidation of 

cellular proteins and lipids, indicating vulnerability 

of RPE cells to phototoxic stress.

Not listed 2000 lux 6 h Model used: Primary human RPE cells

Light source: Not listed

Reference: Luo et al. (2022)

Blue light elevates PKC activity, leading to RPE cell 

apoptosis through increased intracellular calcium.

Chloroquine’s action on Bcl-2 proteins highlights 

their role in apoptosis inhibition in blue light-

exposed RPE cells.

440 3.7 ± 0.75 mW/

cm2, 0–639 J/cm2

0–48 h Model used: ARPE-19 cells

Light source: Blue-light-emitting diodes

Reference: Cheng et al. (2021)

Blue light exposure causes damage to RPE via 

increase in apoptosis in a time-dependent manner.

Oxidative stress at 2 h, DNA damage after 8 h and 

autophagy activation at 24-48 h of exposure.

RNAseq data reveals that genes associated with tissue 

maturation, cell–cell intractions, movement, 

morphology and inflammation are altered.

450 2000, 1,000, 500, 

250 lux

24 h Model used: ARPE-19 cells

Light source: 6500 K daylight-colored 

fluorescent lamp with blue filter

Reference: Sato et al. (2021)

Continuous visible light exposure suppresses most 

cytokines but sustains VEGF-A levels and increases 

IL-17A and bFGF under blue light, correlating with 

light intensity.

Anti-VEGF antibodies increase cytokine secretion of 

IL-6, IL-8, bFGF and MCP-1, potentially in response 

to VEGF suppression in irradiated RPE cells.

(Continued)
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TABLE 1 (Continued)

Blue light 
wavelength 
(nm)

Irradiance 
(mW/cm2 or 

lux)

Time of 
exposure (hours 

or minutes)

Summary of methods and 
reference

Effects of blue light stimulation

Not listed 2000 ± 500 lux 6 h Model used: A2E-laden primary human RPE 

cells

Light source: Not listed

Reference: Luo et al. (2021)

Blue light exposure increased calcium levels in RPE 

cell cytoplasm, lysosomes, and mitochondria.

A2E damaged lysosomal and mitochondrial 

membranes, releasing calcium into the cytoplasm.

Both blue light and A2E reduced mitochondrial 

membrane potential, raising cytosolic calcium levels 

and promoting RPE cell death.

430 1,000 lux 15 h Model used: A2E-laden ARPE-19 cells

Light source: Not listed

Reference: Xie et al. (2021)

Lipoxin A4, an endogenous lipid mediator mitigated 

oxidative stress and cell death in A2E-laden RPE cells 

exposed to blue light, and enhanced antioxidant 

enzyme expression (HO1, NQO1) via NRF2-Keap1 

pathway modulation.

445 ± 18 4.43 mW/cm2 1–60 min Model used: ARPE-19 cells and A2E-loaded 

ARPE-19 cells

Light source: LED-based device

Reference: Alaimo et al. (2019)

Blue light induced mitochondrial fragmentation by 

altering fusion/fission balance in both A2E-loaded 

and non-loaded cells.

This imbalance correlated with changes in 

mitochondrial-shaping proteins (OPA1, DRP1, OMA1), 

indicating blue light exposure deregulates mitochondrial 

dynamics in RPE cells, contributing to cell death.

468 2.67 mW/cm2

4.705 W/cm2

7.465 W/cm2

11.81 W/cm2

90 h Model used: ARPE-19 and hTERT-RPE1 cell 

lines

Light source: LED array circuit with 12 LEDs 

(Cree 5 mm Blue)

Reference: Ozkaya et al. (2019)

Blue light reduces RPE barrier function and leads to 

cell death by over-activating PKC-ζ and causing 

oxidative stress.

Inhibiting PKC-ζ may protect against blood-retinal 

barrier breakdown in AMD.

Not listed Not listed 1 and 4 h Model used: ARPE-19 and BEAS-2B cells

Light source: Commercial light bulbs 

(incandescent, halogen, and LEDs of different 

color temperatures)

Reference Gea et al. (2018)

Cold LED bulbs exhibited the most harmful effects, 

suggesting warmer LED options may be safer for 

retinal cells despite LED technology generally being 

safer than older lighting types.

390–520 1.5 mW/cm2 15 h Model used: Porcine primary RPE cells 

cultured with A2E

Light source: LED-based device with narrow 

light bands spanning 390 to 520 nm and a 

630 nm band, mimicking solar spectrum 

conditions reaching the retina, focusing on 

harmful blue spectrum regions using precise 

10 nm light bands.

Reference: Marie et al. (2018)

415–455 nm blue–violet light is the solar spectrum 

wavelengths that triggers significant oxidative stress 

and mitochondrial dysfunction in A2E-exposed RPE 

cells.

449

458

470

0.04 W/

(m2srnm)−1

24, 48 h Model used: A2E-loaded ARPE-19 cells

Light source: Display devices that emit blue 

light at specific wavelengths.

Reference: Moon et al. (2017)

Even at the low intensity used in display devices, blue 

light can trigger ROS production and apoptosis in 

retinal cells.

460 80 lux 0–48 h Model used: ARPE-19 and ATCC CRL-2302 

RPE cells exposed to synthetic A2E

Light source: LED plates

Reference: Lin et al. (2017)

Low-luminance blue light, but not red light increases 

RPE apoptosis.

Periodic blue light exposure induces Bax/Bcl-2, Fas/

FasL pathways and caspase cascades in RPE cells.

470 1, 10, 50 J/cm2 

(source is 

4.8 mW/cm2)

3.5, 34.7, 173.6 min Model used: Cultured bovine RPE cells

Light source: custom LED system

Reference: Nakanishi-Ueda et al. (2013)

Blue light exposure induces oxidative stress and 

cellular damage in RPE cells, even at relatively low 

doses (1–10 J/cm2), as evidenced by intracellular 

ROS generation, lipid peroxidation and loss of cell 

viability.

(Continued)
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TABLE 1 (Continued)

Blue light 
wavelength 
(nm)

Irradiance 
(mW/cm2 or 

lux)

Time of 
exposure (hours 

or minutes)

Summary of methods and 
reference

Effects of blue light stimulation

468 5 mW/cm2 3 cycles of 12 h Model used: HRPEpiC human RPE cells

Light source: LED-based system

Reference: Eva Chamorro (2013)

Blue light filter reduced apoptosis by 56–89% and 

DNA damage by 57–81% in LED-exposed cells.

It also lowered ROS production and increased cell 

viability in RPE cells exposed to LED light, indicating 

its photoprotective benefits against blue light-

induced RPE damage.

430 ± 30 1 mW/cm2

8 mW/cm2

7, 12, 20 min Model used: ARPE-19 cells loaded with A2E

Light source: 100 W mercury lamp

Reference: Westlund et al. (2009)

c-Abl and p53 are essential for cell death in A2E-

laden RPE cells under blue light exposure. The MAP 

kinase, JNK potentially acts protectively against 

apoptosis.

Blocking c-Abl or p53 individually did not 

completely prevent cell death, suggesting multiple 

pathways are involved in phototoxicity.

405 0.3 mW/cm2

1 mW/cm2

3, 24, 72 h Model used: ARPE-19 cells

Light source: LED-based system

Reference: Roehlecke et al. (2009)

ARPE-19 cells activate stress response proteins (HO-

1, Hsp-27, SOD-Mn etc.) and modify mitochondrial 

function to enhance resilience against low-dose 

non-lethal blue light irradiation.

488

514

500 mW/cm2 10 min Model used: hTERT-RPE cells

Light source: Argon-ion laser

Reference: Glickman et al. (2005)

The study demonstrated that irradiation induces 

oxidative stress primarily due to melanin granules in 

RPE cells.

It suggests that photooxidative stress in RPE cells 

leads to activation of NF-kB in RPE cells, which is 

alleviated by ascorbic acid treatment.

425 ± 20 1,000 mW/cm2 1 min Model used: ARPE-19 cells

Light source: 100 W mercury lamp

Reference: King et al. (2004)

Mitochondria-derived ROS significantly contribute 

to RPE cell death from short-wavelength blue light.

Targeting the mitochondrial electron transport chain 

or using mitochondria-specific antioxidants could 

potentially treat AMD by mitigating ROS and cell 

death.

430 19 mW/cm2 5–60 min Model used: A2E-laden ARPE-19 cells

Light source: Tungsten halogen source

Reference Sparrow et al. (2003)

This study concludes that ROS generated from A2E 

interaction damages DNA, primarily through 

oxidative base modifications.

Blue light exposure reduces DNA repair capacity 

proportional to exposure duration, impacting cellular 

repair processes.

480 ± 20

470 ± 20

3,500 mW/cm2 for 

60 s

40 mW/cm2 for 

20 min

1 min,

20 min

Model used: A2E-laden ARPE-19 cells

Light source: 100 W mercury lamp or 

tungsten halogen source

Reference: Sparrow and Cai (2001)

This study shows that blue light exposure to RPE cells 

containing intracellular A2E triggers a cell death 

pathway mediated by a proteolytic caspase cascade.

Bcl-2 suppresses this pathway and thus suppresses 

apoptosis in RPE cells.

408–495 220 mW/cm2 Not listed Model used: Primary human and bovine RPE 

cells

Light source: High pressure xenon lamp

Reference: Rozanowska et al. (1996)

Oxygen uptake in RPE cells varied by wavelength, 

peaking at 290 nm and decreasing significantly at 

578 nm.

Human RPE cells exhibited higher oxygen uptake 

than bovine cells, attributed to chromophore or 

melanin-related differences.

Oxygen uptake increased with donor age in human 

RPE cells, while hydrogen peroxide formation 

showed modest changes under light exposure.

(Continued)
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(0.04–3.7 mW/cm2) and long duration (3–48 h) (Roehlecke et al., 
2009; Moon et al., 2017; Marie et al., 2018; Cheng et al., 2021; 
Anitua et  al., 2023; Françon et  al., 2024) to high intensity 
(4.4–100 mW/cm2) and short duration (1–90 min) (Pautler and 
BIOPHYSICS, 1990; Rozanowska et al., 1996; Sparrow and Cai, 
2001; King et al., 2004; Alaimo et al., 2019; Abdouh et al., 2022; 
Olchawa et al., 2022). Despite these variations, similar effects on 
RPE have been observed. For example, Jeong et  al exposed 
A2E-laden ARPE-19 to 6,000 lux blue light for 5 min/day for 
120 days, while Burght et al used a single 15 h exposure of 1 mW/
cm2 of blue light, yet both found similar changes in apoptosis and 
inflammation and complement-related gene expression (Van Der 
Burght et al., 2013; Jin and Jeong, 2022).

The wavelength of blue light also varies between studies. Blue 
light typically refers to wavelengths around 445 nm, the “Blue 
Light Hazard” (BLH) wavelength which causes photochemical 
damage (Van Norren and Gorgels, 2011). BLH refers to the 
damage caused by light with a polychromatic profile containing 
peaks at 445 nm, often leading to visible morphological damage 
(Françon et al., 2024). Wavelength variations affect results, and 
using LED light sources with known peaks at 445 nm is 
recommended to prevent inconsistencies in experimental studies. 
Some studies use white fluorescent lamps or solar simulators, but 
their peak wavelengths are often unknown, complicating accurate 
irradiance calculations. Although less common in in vitro models 
compared to in vivo, white fluorescent lamps with a blue-light 
filter or solar light simulators may be used (Gea et al., 2018; Sato 
et al., 2021; Olchawa et al., 2022). Narrow-band interference filters 
or blue film filters allow for light exposure in the range of 
400-490 nm, broad-band pass filters provide a range of 
400-520 nm or 400-700 nm, and UV and infrared (IR) blocking 
filters remove wavelengths below 400 nm and above 740 nm, 
respectively (Putting et al., 1994; Olchawa et al., 2022). Neutral-
density filters are used to standardize the intensity of light without 
altering its spectral composition (Ozkaya et al., 2019; Sato et al., 
2021). However, the peak wavelength of these light sources is 
often unknown, leading to difficulties in accurate calculation of 
their irradiance intensities. Therefore, light sources with more 
uniform peak wavelengths such as LED devices should be utilized 
to prevent variance of wavelengths in blue light studies.

A common baseline for irradiance intensity is the phototoxic 
threshold, which is the threshold of irradiance intensity at which 
microscopic phototoxic damage occurs. The phototoxic threshold 
for blue light at 445 nm in humans was initially determined to 
be  22 J/cm2 (Van Norren and Gorgels, 2011). However, this 

threshold of the BLH may have been overestimated, as phototoxic 
damage has been observed in animal models at intensities lower 
than the estimated threshold by a factor of 20 (Hunter et al., 2012; 
Jaadane et al., 2020). Sub-threshold exposure in human in vitro 
RPE models also shows phototoxic changes in RPE morphology 
and immunological responses, suggesting that lower irradiance 
levels should be further explored (Françon et al., 2024).

A majority of studies measure blue light intensity in mW/cm2, which 
measures the intensity per unit area, but not the total amount of light 
energy received by the cells. This is problematic since exposure duration 
varies between studies, making it challenging to compare results. 
Measuring the total energy (J/cm2) would better reflect the cumulative 
light exposure, enabling easier comparisons across studies (Van Norren 
and Gorgels, 2011). Furthermore, the use of lux, a measure of 
illuminance, instead of mW/cm2, adds another layer of complexity, as lux 
measures light emitted rather than received. Therefore, providing mW/
cm2, duration and total energy (J/cm2) in studies will allow for more 
consistent comparisons across studies.

In vivo and ex vivo models

While cell-based blue light experiments are easier to design and 
provide more reliable, reproducible results, in  vivo models offer 
significant advantages over cultured RPE cells: (1) Animal studies offer 
more physiologically relevant insights into the complex structural and 
functional interactions between different cell types in retinal tissue which 
are often lacking in cultured systems, since these model systems preserve 
systemic responses such as neuronal activity, blood circulation and 
immune activation. (2) Cells in the neural retina such as photoreceptors 
lose their morphological integrity in vitro. This issue can be addressed 
by using in vivo or ex vivo models to study blue light-mediated effects on 
the retina and its interactions with the RPE/choroid in a more complex 
physiologic environment. (3) In vivo models also allow longitudinal 
studies for studying the effects of low intensity, long-term blue light 
exposure and tracking changes over time in the same animal.

Ex vivo models containing neural retina, RPE-Bruch’s 
membrane-choroid complexes or whole eyes can be used to assess 
chronic or intermittent blue light effects on ocular tissue under 
controlled conditions. One study utilized whole eyeball cultures to 
examine the impact of blue light exposure on mouse photoreceptors 
(Roehlecke et al., 2011). Eyeballs were punctured with a needle to 
enable fluid exchange and maintained in serum-containing medium 
at 37°C and 5%CO2. The eyes were positioned with corneas facing 
the blue light diodes and were irradiated from 0.5–24 h. In another 

TABLE 1 (Continued)

Blue light 
wavelength 
(nm)

Irradiance 
(mW/cm2 or 

lux)

Time of 
exposure (hours 

or minutes)

Summary of methods and 
reference

Effects of blue light stimulation

430 20 mW/cm2 1 h Model used: Isolated bovine RPE

Light source: Not listed

Reference: Pautler and Colorado State Univ 

Fort Collins Department of Physiology and 

Biophysics (1990)

Blue light inhibits leucine, glutamate, and chloride 

flux from retina to choroid. Lower radiation levels 

show no effect. Neural retina-derived factors help 

maintain RPE. Blue light disrupts these transport 

systems, potentially contributing to AMD.

Antioxidants (ascorbate, morin, melatonin, and 

vitamin E) do not alleviate blue light’s transport 

inhibition.
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TABLE 2 Blue light wavelengths, irradiance and times of exposure from in vivo experimental studies reviewed here are compiled to compare and 
highlight the variability in the methodologies used.

Blue light 
wavelength 
(nm)

Irradiance 
(mW/cm2 or 

lux)

Time of exposure 
(hours or 
minutes)

Summary of methods 
and reference

Effects of blue light stimulation

450 4 J/ cm2 40 min Model used: Japanese quail

Light source: Blue LED

Reference: Serejnikova et al. 

(2024)

Photo-oxidative stress due to blue light leads to active fusion 

of melanosomes and lipofuscin granules, forming 

melanolipofuscin-like granules in RPE cells.

450 800 lux 336 h Model used: 6-month-old 

C57BL/6 mice

Light source: LED lamp

Reference: Wang et al. (2023)

Prolonged blue light damaged the outer nuclear layer and 

RPE cells in mice.

It also caused mitochondrial damage and dysfunction in RPE 

cells, disrupting mitochondrial dynamics with fusion-related 

blockage.

430 10,000 lux 1 h each day for 14 days Model used: Male Balb-c mice

Light source: Not listed

Reference: Xie et al. (2021)

Lipoxin A4, an endogenous lipid mediator preserved retinal 

health by shielding RPE cells from structural and functional 

damage in a mouse model of blue light-induced retinal 

degeneration.

440 3.7 ± 0.75 mW/cm2, 

0–639 J/cm2

24, 30 h Model used: zebrafish larvae

Light source: Blue-light-

emitting diodes

Reference: Cheng et al. (2021)

Blue light exposure appears to have an unfavorable effect on 

retinal tissue development.

Blue light reduced thickness of all retinal layers, induced 

cytotoxicity (increased TUNEL and caspase-3 staining) in 

retinal cells including RPE cells.

455–470 5.03 lux; 

0.0123 mW/cm2

3, 6, 12 h Model used: Sprague–Dawley 

rats

Light source: custom-built blue 

light illuminator from analog 

cell phone array

Reference: Li et al. (2021)

Long term exposure to low-illuminance blue light causes 

retinal tissue structure and functional damage.

Photoreceptor amplitude decreased, peak times delayed, RPE 

layer thinned, photoreceptor membrane discs damaged.

456 1,100 lux 3, 9 h Model used: Male C57BL/6 J 

mice

Light source: LED lamp

Reference: Nakamura et al. 

(2018)

Three days of blue LED exposure caused macrophage 

buildup, drusen-like material at the photoreceptor junction, 

initial RPE cell enlargement, and subsequent photoreceptor 

degeneration.

This damage differed from effects seen with white light.

460 150 lux 0, 0.5, 1, 3 h Model used: Brown Norway 

(BN) rats with intravitreal A2E 

injections

Light source: LED plates

Reference: Lin et al. (2017)

Low-luminance blue light worsens A2E-induced 

phototoxicity, damaging the retina. Blue light exposure 

reduces fundus integrity, retinal thickness, and disrupts 

retinal neuron function in rats.

Combined A2E and periodic blue light exposure markedly 

decrease retinal thickness and photoreceptor layers, 

exacerbating toxicity to RPE.

440–460 2 mW/cm2 15 h Model used: Japanese quails

Light source: LED lights

Reference: Serezhnikova et al. 

(2017)

Young birds exposed to daily blue light exhibited increased 

total and altered mitochondria in RPE cells.

Adult birds showed enhanced metabolic activity in RPE cells 

after blue light exposure, indicating a mitochondria-driven 

response to mitigate blue light-induced damage and 

lipofuscin accumulation in the RPE.

420, 446 3,000 lux 20 min Model used: 7–8 weeks old male 

BALB/c mice light-adapted with 

12 h of darkness

Light source: White fluorescent 

lamp within a mirrored light-

exposure chamber

Reference: Narimatsu et al. 

(2015)

Yellow intraocular lens effectively suppresses light-induced 

ROS levels, inflammatory cytokine expression, and 

macrophage recruitment in RPE-choroid complexes of mice.

Blocking blue light can mitigate ROS accumulation and 

potentially lower the risk of choroidal neovascularization 

(CNV) in vivo.

(Continued)
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study, whole porcine eyes were irradiated with blue light for 3 h and 
incubated for further 6 h in PBS. Isolated neural retina was also 
exposed to blue light for 1–2 h and maintained on cell culture inserts 
for 24–48 h (Fietz et al., 2023). Standardization of ex vivo models 
would greatly benefit the field of blue light study. Additionally, 
ex  vivo models used for studying choroidal microvascular 
angiogenesis could be adapted for blue light research. Rodent or 
human RPE/choroid/scleral tissue can be  readily isolated and 
cultured for up to 6 days, allowing for reproducible evaluation of 
specific pathways involved in blue light-induced responses (Shao 
et al., 2013; Tomita et al., 2020). Such explants can also be used to 
compare differences between genetically modified mouse tissue and 
wild type following blue light stimulation.

One limitation of rodent models for AMD and blue light research is 
the absence of a macula, an area critical to high-resolution vision in 
humans. Another challenge with using animal models is the inherent 
variability in irradiance intensities on the ocular tissue (Table  2) 
(Narimatsu et al., 2015; Lin et al., 2017; Xie et al., 2021; Wang et al., 2023). 
Ex vivo models allow a more precise manipulation of illumination 
conditions, compared to animal models, thereby improving 
reproducibility and reducing complexity due to systemic influences. 
Despite some limitations, both in vivo and ex vivo model systems provide 
significant advantages.

Conclusion and future perspectives

In conclusion, while some evidence suggests a potential 
association between prolonged blue light exposure and increased 
AMD risk, more epidemiological studies are needed to establish a 
definitive link. Blue light induces oxidative stress, disrupts cell 
structures, and impairs essential RPE functions, leading to apoptosis 
and the AMD progression. Further research could also focus on 
protective strategies, including therapeutic interventions targeting 
pathways activated by blue light and improving blue-filtering 
technology to prevent retinal damage. Moreover, refining blue light 
exposure experiments—through standardized protocols, precise light 

irradiance measurements, and the development of novel in vivo and 
ex  vivo models—will improve the consistency and relevance of 
findings across studies and enhance our understanding of blue light’s 
effects on the retina and ocular tissues.
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TABLE 2 (Continued)

Blue light 
wavelength 
(nm)

Irradiance 
(mW/cm2 or 

lux)

Time of exposure 
(hours or 
minutes)

Summary of methods 
and reference

Effects of blue light stimulation

410 8.7 mW/cm2 2 min Model used: MacGreen mice, 

expressing eGFP under the 

Csf1r promoter

Light source: Xenon arc reflector 

lamp

Reference: Ebert et al. (2012)

Blue light exposure led to microglial proliferation and 

migration towards retinal lesions, adopting activated 

amoeboid morphology.

Transcriptomic changes seen in microglial activation, 

apoptosis and cell survival genes.

400–520 62 to 832 J/cm2 12 h Model used: New Zealand 

albino rabbits and pigmented 

chinchilla rabbits

Light source: 1000 W xenon arc 

lamp

Reference Putting et al. (1994)

Blue light at 439 ± 6 nm was more effective than other 

wavelengths in inducing blood-retinal barrier dysfunction in 

albino rabbits.

Melanin in RPE cells does not have an effect on blue light-

induced phototoxicity.

400–520 14 mW/cm2 1 h Model used: Rabbit retinas

Light source: 1000 W xenon arc 

lamp

Reference: Putting et al. (1992)

The results demonstrate that the blue component of white 

light causes dysfunction of the blood-retinal barrier at the 

RPE 30 times more effectively than the longer wavelength 

fraction of white light.
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