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Purpose: It is crucial to identify biomarkers that influence the aging process

and associated health risks, given the growing severity of the global population

aging issue. The objectives of our research were to evaluate cardiac metabolic

index (CMI) as a novel biomarker for identifying individuals at increased risk of

accelerated biological aging and to assess its use in guiding preventive strategies

for aging-related health risks.

Methods: The National Health and Nutrition Examination Survey (NHANES)

provided cross-sectional data on participants with complete information on

CMI, phenotypic age (PA), and other variables. Analyses of variance and

weighted χ2 tests were conducted to assess differences between groups.

The relationship between CMI and biological aging was investigated using a

weighted multivariate logistic regression model, restricted cubic spline (RCS)

regression analysis, subgroup analysis, and interaction testing.

Results: A positive correlation between CMI and biological aging was observed

in 6,272 participants. RCS regression analysis confirmed the non-linear

relationship, identifying significant inflection point at 1.10. In the crude or

adjusted models, the OR (95% CI), for the highest group versus the reference

were 3.608 (3.108, 4.188), 3.397 (2.920, 3.952), and 1.550 (1.299, 1.850),

respectively, when categorizing CMI into different groups. Subgroup analyses

and interaction tests indicate that the association between CMI and biological

aging remained consistent across different subgroups. Gender, race, education

level, marital status, poverty income ratio (PIR), drinking status and diabetes had

an interaction with CMI in relation to biological aging.

Conclusion: An elevated CMI is linked to increased risk for biological aging. This

relationship may inform more effective prevention and treatment strategies for

biological aging in the future. CMI be integrated into routine health screenings

or aging assessments by healthcare professionals.
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1 Introduction

With one-fifth of the world’s population predicted to be 65 or
older by 2030, population aging is a global problem (Rudnicka
et al., 2020). A steady decrease of physiological function is a
hallmark of aging. It is believed to result from a build-up of
molecular alterations or “hallmarks” that impair tissues’ and organs’
ability to function and recovery (Chakravarti et al., 2021; López-
Otín et al., 2023). This, in turn, is thought to cause chronic
morbidities, such as metabolic, cardiovascular, neoplastic, and
neurodegenerative disorders, as well as geriatric symptoms like
frailty and immobility (Abbasi et al., 2023; Wagner et al., 2023;
Zhou et al., 2023; Iskusnykh et al., 2024; Montégut et al., 2024).
An innate biological process that is adaptable and responsive to
therapeutic interventions coexists with aging. Using of various
genetic, nutritional, and pharmaceutical interventions, scientists
have made impressive strides in the last few decades in extending
the lifespan (Mkrtchyan et al., 2020; Sourada and Kuglík, 2020;
Wang et al., 2022). Therefore, it is crucial to identify biomarkers
that influence the aging process and associated health risks, given
the growing severity of the global population aging issue. To
uncover new insights into the management and delay of the aging
process, this study intends to investigate possible associations
between PA, a crucial marker of biological aging, and CMI.

PA is a crucial idea connected to biological aging (Liu et al.,
2018; Kuo et al., 2021). Generally, chronological age (CA) and
clinical biomarkers, and blood cell parameters are utilized to
evaluate PA. Given that PA provides a more accurate representation
of how the body ages than CA, studies have indicated that PA is
a good predictor of death, chronic morbidities, and a decline in
physical function (Kuo et al., 2022). Genetic predispositions and
poor lifestyle choices, like heavy smoking, excessive alcohol use,
chronic illnesses, and cancer, all contribute to an increased PA. On
the other hand, living a healthy lifestyle that includes eating fruits
and vegetables and engaging in moderate exercise might reduce PA
(Noren Hooten et al., 2022; Li et al., 2024a; Wu et al., 2024).

CMI was introduced as a novel metric by Wakabayashi and
Daimon (2015) to evaluate visceral obesity using blood lipid
markers and the weight-to-height ratio (WHtR). WHtR, a measure
of abdominal obesity that makes more sense than just measuring
waist circumference (WC). It has been shown that WC or body
mass index (BMI) as cardiovascular disease risk factors are less
reliable discriminators than WHtR. Because BMI measurements
do not distinguish between trunk and visceral obesity, whereas
anatomical fat distribution is considered important because
it produces different metabolic effects (Chen R. et al., 2022;
Tao et al., 2024). However, CMI simultaneously takes into account
triglyceride (TG) and high-density lipoprotein cholesterol (HDL-
C), which are crucial indicators of cardiovascular risk and obesity
(Liu C. et al., 2022; Baratta et al., 2023; Nussbaumerova and
Rosolova, 2023). Survies indicate that the CMI is connected to
cardiovascular illnesses, metabolic syndrome, and other conditions,
implying the importance of it for linked disease screening (Lazzer
et al., 2023; Miao et al., 2023; Sun et al., 2023; Ye et al., 2024).
According to recent studies, people with high CMI may have more
systemic inflammation (Carvalho et al., 2024; Xu B. et al., 2024).
Conversely, regular exercise is linked to a large reduction in CMI
(Xue et al., 2024). Moreover, elevated CMI is significantly correlated

with insulin resistance (Feng et al., 2024; Song et al., 2024; Wu
and Xu, 2024). However, physical activity, insulin resistance and
inflammation are intimately associated with aging (Kurauti et al.,
2021; Abbasi et al., 2023; Butt et al., 2024; Singh et al., 2024).
Additionally, aging is significantly impacted by BMI (Etzel et al.,
2022; Lundgren et al., 2022).

To our knowledge, no previous research has examined the
relationship between biological aging and CMI. Thus, the objectives
of our research were to assess the correlation between biological
aging and CMI, to offer guidance on the prevention and
management of aging.

2 Materials and methods

2.1 Data source

The database employed in this analysis, a longitudinal cohort
study, was provided by the NHANES database, a nationally
representative database that collects significant data on the health
of the American public. By using a multistage, stratified random
sampling approach, NHANES guarantees that a national sample is
represented. A total of 34,785 participants’ data were discovered
after we screened and analyzed data from 2015 to 2020. The
National Center for Health Statistics’ Research Ethics Review Board
thoroughly examined and approved the study involving human
subjects, and each participant gave signed agreements indicating
their informed consent.

2.2 Study participants

Using the following exclusion criteria, the analytical sample was
reduced to 6,272 subjects: (1) individuals under the age of 20 years;
(2) individuals lacking a complete CMI value; (3) individuals
lacking a phenotypic age value; (4) individuals lacking records of
necessary covariates, such as gender, age, race, education level,
marital status, PIR, smoking, drinking, physical activity, BMI, the
history of diabetes, hypertension, heart failure, stroke, and cancer.
Figure 1 illustrates the inclusion and exclusion standards.

2.3 Assessment of CMI

As previously mentioned, anthropometric and biochemical
data, such as height, WC, TG and HDL-C were used to compute
CMI. The units used were milligrams per deciliter (mg/dl) for
HDL-C and TG, and centimeters (cm) for height and WC. The CMI
was calculated using the following formula (Liu et al., 2021):

CMI =
TG

HDL− C
×

WC
height

For the purposes of our study, CMI was regarded as a continuous
exposure variable, and all recruited participants were stratified
into quartiles with cut-off values for subsequent analyses: Q1
group (CMI ≤ 0.59), Q2 group (0.60 ≤ CMI ≤ 1.06), Q3 group
(1.07 ≤ CMI ≤ 1.92), and Q4 group (CMI ≥ 1.93).
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FIGURE 1

The flow chart of participant selection.

2.4 Assessment of PA

CA and nine biomarkers—albumin, creatinine, glucose,
C-reactive protein (CRP), lymphocyte percentage, mean cell
volume, erythrocyte distribution width, alkaline phosphatase, and
white blood cell count—were used to calculate the PA. This is a
metric for the expected age in a population that is correlated with
the predicted risk of death for an individual. This indicator is widely
used in the literature to identify risk factors for morbidity and
mortality, to assess the effectiveness of treatments, and to elucidate
the aging process (Levine et al., 2018; Chen L. et al., 2022). PA was
determined using the formula (Liu W. et al., 2024):

Phenotypic age =

141.50+
Ln[−0.00553 × Ln(exp (

−1.51714 × exp (xb)
0.0076927 ))]

0.09165

xb = −19.907−0.0336 × Albumin+0.0095 × Creatinine

+0.1953× Glucose+0.0954 × LnCRP−0.00120 ×

Lymphocyte Percent+0.0268 × Mean Cell Volume

+0.3306 × Red Cell Distribution Width+0.00188

× Alkaline Phosphatase+0.0554 × White Blood Cell

Count+0.0804 × Chronological age

2.5 Assessment of biological aging

The residual of PA, which was corrected for CA using
linear regression, was used to compute phenotypic accelerated
age. Individuals classified as having phenotypic accelerated aging
(PhenoAgeAccel) if their accelerated age was greater than 0, and
as having phenotypic decelerated aging (PhenoAgeDecel) if their
accelerated age was less than 015.

2.6 Assessment of covariates

The current study collected critical demographic data, such as
age, gender, race (Mexican American, non-Hispanic white, non-
Hispanic black, other races), education (below high school, high
school or equivalent, high school above), marital status (married
or living with a partner, living alone), PIR [PIR: < 1.3 (low),
1.3≤ to≤ 3.5 (medium), > 3.5 (high)], BMI [BMI: < 25 (normal),
25 ≤ to ≤ 30 (overweight), > 30 (obesity)], smoking status
was split into three categories: former smokers (those who had
smoked at least 100 cigarettes in their lifetime and were currently
giving up smoking); never smokers (those who had less than
100 cigarettes in their lifetime); and current smokers (those who
had at least 100 cigarettes in their lifetime and were currently
smoking), fewer than 12 alcohol-based drinks in the previous
year (yes, no), physical activity was split into two categories:
activity partners (those who had a minimum of 150 min per week
of moderate-intensity or 75 min per week of vigorous-intensity
physical activity), while others were classified as inactivity partners,
the history of hypertension, diabetes, stroke, heart failure, cancer
also were extracted from the database (Liu H. et al., 2022; Liu H.
et al., 2024).

2.7 Statistical analysis

R software (version 4.2.2) was used for all statistical studies.
Sampling weights were utilized in all analyses to interpret the
complex NHANES survey design, in accordance with the NHANES
analytical standards. Mean ± standard deviation (SD) was used
to express continuous variables. Frequencies and percentages were
used to express the data for categorical variables. For categorical
variables, a χ2 test was performed to compare the baseline
characteristics between groups, whereas analysis of variance was
employed for continuous data. The relationship between biological
aging and CMI level was examined using multivariable logistic
regression models. OR (Odds Ratio) values and 95% confidence
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interval (95% CI) were obtained from logistic regression models,
which were calculated to measure the strength of association
between each independent variable and the outcome. Age, gender,
ethnicity, PIR, education level, marital status, BMI, smoking,
alcohol status, and history of hypertension, diabetes, heart failure,
stroke, and cancer were all taken into account while adjusting
the multivariable logistic regression models. Three criteria were
used to choose confounding variables: clinical relevance, a P-value
in univariate analysis of less than 0.05, and the availability
of enough event data to build a strong regression model. To
address concerns about over-adjustment for models, we conducted
sensitivity analyses to assess the robustness of Model II and
examined the consistency of our main findings across different
model specifications. This approach confirmed that the addition
of these covariates did not significantly impact the stability or
interpretability of the key associations, supporting the robustness
of Model II. The nonlinear correlations between CMI and
biological aging (4 nodes, with the 25th percentile serving as
a reference point) were evaluated using the RCS approach. For
all analyses, a significance threshold < 0.05 was considered
statistically significant.

3 Results

3.1 Baseline characteristics

In total, 6,272 participants were taken into account for
this investigation. The CA was 50.28 ± 17.22 years, PA was
50.84 ± 20.03 years, and 50.4% of the individuals were male.
PhenoAgeDecel and PhenoAgeAccel participants showed different
characteristics. Overall, older participants, males, non-Hispanic
Black individuals, lower education levels, living alone, lower PIR,
higher BMI, higher likelihood of smoking, greater probability of not
drinking, more likely to have hypertension, diabetes, heart failure,
stroke, or cancer, and those with higher CMI levels were more likely
to experience PhenoAgeAccel (p < 0.05). The baseline features of
participants were summarized in Table 1.

3.2 Association of CMI levels and
biological aging

The relationship between CMI level and biological aging
was examined using weighted multivariable logistic regression
models. The participants were categorized into quartiles of CMI
for stratification purposes. The OR (95% CIs) for the highest group
versus the reference (the lowest group) were 3.608 (3.108, 4.188),
3.397 (2.920, 3.952), and 1.550 (1.299, 1.850) for the unadjusted
model, model I (adjusting for gender, year), and model II (adjusting
for gender, age, race, education level, marital status, PIR, smoke,
alcohol, physical activity, BMI, diagnosis of hypertension, diabetes,
heart failure, stroke, and cancer), respectively, when categorizing
CMI into different groups. Both the unadjusted and adjusted
models showed a significant rise in the incidence of biological
aging as the CMI increased. P-values for the trend were P < 0.001
(Table 2). Furthermore, we examined the dose response connection
between the CMI and biological aging using limited Cubic Splines.

The associations between CMI and biological aging with inflection
points at 1.10 was discovered after multivariable adjustment.
P-values for non-linear were P < 0.001 (Figure 2).

3.3 Stratified analyses

The following variables were analyzed using stratified
analyses: gender, age, race, education level, marital status, PIR,
smoking, drinking status, physical activity, BMI, and diagnoses
of hypertension, diabetes, heart failure, stroke and cancer. As
shown in Table 3, except for those with borderline diabetes and
heart failure, a higher CMI level was linked to an increased risk
of biological aging in most subgroups. Notably, gender, race,
education level, marital status, PIR, drinking status and diabetes
had an interaction with CMI in relation to biological aging. The
correlation between CMI and biological aging was more significant
in female (OR: 1.51; 95% CI: 1.41–1.62), other race (OR: 1.51;
95% CI: 1.39–1.64), high education (OR: 1.39; 95% CI: 1.31–1.47),
living alone (OR: 1.41; 95% CI: 1.32–1.52), high PIR (OR: 1.37;
95% CI: 1.28–1.48), non-drinkers (OR: 1.40; 95% CI: 1.31–1.50),
and diabetes groups (OR: 1.53; 95% CI: 1.34–1.76).

4 Discussion

According to our research, there is a positive correlation
between biological aging and CMI. Furthermore, the link persisted
even after controlling for other variables, suggesting that CMI was
a detrimental element in the biological aging process. A non-linear
relationship was identified through dose-response analysis. The
inflection points was 1.10 according to threshold effect analysis.
This finding can inform more accurate and effective prevention and
treatment strategies for biological aging.

CMI is a novel anthropometric measure that shows a strong
relationship to metabolic syndrome (Wakabayashi, 2022; Tamini
et al., 2024). Numerous studies have shown that CMI is associated
with various systemic diseases, highlighting its correlation with
worse prognoses. Our results were in alignment with the previous
research, which has demonstrated a positive association between
biological aging and CMI. Metabolic syndrome is known as a
group of risk factors for diabetes and cardiovascular diseases
with a pathophysiology closely related to aging (Roddy, 2021; Li
et al., 2024b; Oya et al., 2024). Nevertheless, no previous research
has examined the relationships between CMI and biological
aging. Numerous other anthropometric and metabolic markers,
including BMI, triglyceride glucose (TyG) index, WHtR, and
visceral adiposity index (VAI), have all been shown to be positively
correlated with biological aging. According to a meta-analysis,
the epigenetic age of the heavier twins in a BMI-discordant
monozygotic twin pair (1BMI > 3 kg/m2) was 5.2 months
older than that of their lighter cotwin (Lundgren et al., 2022).
A higher BMI z-score was substantially linked to a faster speed
of aging as measured by DunedinPoAm (b = 0.0017 adjusting
for all covariates). In the relationship between obesity and aging
has grown as higher BMI across the lifespan has been linked
to early onset of age-related illnesses and mortality (Etzel et al.,
2022). In middle-aged and older populations, Qiu et al. (2024)
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TABLE 1 Baseline characteristics of the study participants.

Total
(n = 6,272)

PhenoAge deceleration
(n = 3,492)

PhenoAge acceleration
(n = 2,780)

P-value

Chronological age, mean± SD 50.28± 17.22 48.70± 17.01 52.26± 17.29 < 0.001

Phenotypic age, mean± SD 50.84± 20.03 44.04± 17.32 59.39± 19.93 < 0.001

Gender, n (%) < 0.001

Male 3,162 (50.4) 1,662 (47.6) 1,500 (54.0)

Female 3,110 (49.6) 1,830 (52.4) 1,280 (46.0)

Race, n (%) < 0.001

Mexican American 886 (14.1) 520 (14.9) 366 (13.2)

No-Hispanic White 2,335 (37.2) 1,336 (38.3) 999 (35.9)

No-Hispanic Black 1,409 (22.5) 582 (16.7) 827 (29.7)

Other Race/Ethnicity 1,642 (26.2) 1,054 (30.1) 588 (21.2)

Education level, n (%) < 0.001

Less than high school 1,131 (18.0) 583 (16.7) 548 (19.7)

High school grade or equivalent 1,477 (23.5) 721 (20.6) 756 (27.2)

College or above 3,664 (58.5) 2,188 (62.7) 1,476 (53.1)

Marital status, n (%) < 0.001

Married or living with a partner 3,769 (60.1) 2,186 (62.6) 1,583 (56.9)

Living alone 2,503 (39.9) 1,306 (37.4) 1,197 (43.1)

PIR, n (%) < 0.001

Low 1,721 (27.4) 832 (23.8) 889 (32.0)

Medium 2,558 (40.8) 1,351 (38.7) 1,207 (43.4)

High 1,993 (31.8) 1,309 (37.5) 684 (24.6)

Smoker status, n (%) < 0.001

Former 2,018 (32.2) 1,040 (29.8) 978 (35.2)

Never 3,358 (53.5) 2,109 (60.4) 1,249 (44.9)

Current 896 (14.3) 343 (9.8) 553 (19.9)

Alcohol status, n (%) < 0.001

Non-drinkers 2,745 (43.8) 1,409 (40.3) 1,336 (48.1)

Drinkers 3,527 (56.2) 2,083 (59.7) 1,444 (51.9)

Physical activity, n (%) < 0.001

Inactivity 3,310 (52.8) 1,753 (50.2) 1,557 (56.0)

Activity 2,962 (47.2) 1,739 (49.8) 1,223 (44.0)

BMI, n (%) < 0.001

Normal 1,628 (26.0) 1,213 (34.7) 415 (14.9)

Overweight 1,997 (31.8) 1,263 (36.2) 734 (26.4)

Obese 2,647 (42.2) 1,016 (29.1) 1,631 (58.7)

Hypertension, n (%) < 0.001

No 3,926 (62.6) 2,494 (71.4) 1,432 (51.5)

Yes 2,346 (37.4) 998 (28.6) 1,348 (48.5)

Diabetes, n (%) < 0.001

No 5,117 (81.6) 3,180 (91.1) 1,937 (69.7)

Borderline 168 (2.7) 71 (2.0) 97 (3.5)

Yes 987 (15.7) 241 (6.9) 746 (26.8)

(Continued)
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TABLE 1 (Continued)

Total
(n = 6,272)

PhenoAge deceleration
(n = 3,492)

PhenoAge acceleration
(n = 2,780)

P-value

Heart failure, n (%) < 0.001

No 6,046 (96.4) 3,442 (98.6) 2,604 (93.7)

Yes 226 (3.6) 50 (1.4) 176 (6.3)

Stroke, n (%) < 0.001

No 6,002 (95.7) 3,400 (97.4) 2,602 (93.6)

Yes 270 (4.3) 92 (2.6) 178 (6.4)

Cancer, n (%) 0.002

No 5,642 (90.0) 3,178 (91.0) 2,464 (88.6)

Yes 630 (10.0) 314 (9.0) 316 (11.4)

CMI, mean± SD 1.56± 1.91 1.27± 1.33 1.93± 2.39 < 0.001

PIR, poverty income ratio; BMI, body mass index; CMI, cardiometabolic index.

TABLE 2 Association between CMI and PhenoAgeAccel in multiple logistic regression analyses model.

CMI categorical Crude model Model I Model II

OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) P-value

Q1 (≤ 0.59) Ref Ref Ref

Q2 (0.60–1.06) 1.804 (1.554, 2.094) < 0.001 1.736 (1.493, 2.018) < 0.001 1.197 (1.014, 1.413) 0.034

Q3 (1.07–1.92) 2.601 (2.243, 3.017) < 0.001 2.480 (2.135, 2.880) < 0.001 1.359 (1.145, 1.612) < 0.001

Q4 (≥ 1.93) 3.608 (3.108, 4.188) < 0.001 3.397 (2.920, 3.952) < 0.001 1.550 (1.299, 1.850) < 0.001

P for trend < 0.001 < 0.001 < 0.001

CMI, cardiometabolic index; OR, odds ratio; CI, confidence interval; Ref, reference; Crude model adjust for: None; Model I adjust for: Gender; Age; Model II adjust for: Gender; Age; Race;
Education level; Marital status; Poverty income ratio; Smoke; Alcohol; Physical activity; Body mass index; Hypertension; Diabetes; Heart failure; Stroke; Cancer.

FIGURE 2

The RCS curve of the association between CMI and PhenoAgeAccel odds ratio among all the study participants. The associations between CMI and
biological aging with inflection point at 1.10 was discovered after multivariable adjustment. P-values for non-linear were P < 0.001. RCS, restricted
cubic spline; CMI, cardiometabolic index; OR, odds ratio.

clarified a non-linear connection between the TyG index and
the α-Klotho protein (the serum anti-aging protein). When
the TyG indices were less than 9.7, no discernible association
was seen. Nonetheless, for every unit rise in TyG index over
9.738 there was a corresponding increase in klotho levels of
106.44 pg/ml (Qiu et al., 2024). Additionally, every 0.1 unit rise
in WHtR was inversely correlated with the Successful Aging

Index (SAI), lowering SAI by nearly 0.5 units (Koloverou et al.,
2020). Every additional unit increase in VAI was correlated
with a 0.312-year increase in PhenoAgeAccel. Among cancer
patients, this positive correlation was more statistically significant.
Furthermore, a segmented correlation was observed between VAI
and PhenoAgeAccel, with a turning point identified at 10.543 (Xu
C. et al., 2024). Additionally, a saturation effect was demonstrated
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TABLE 3 Subgroup analysis by CMI.

Subgroup No. of PhenoAge
acceleration

OR (95% CI) P-value P for
interaction

Gender < 0.001

Male 1,500 1.22 (1.16, 1.28) < 0.001

Female 1,280 1.51 (1.41, 1.62) < 0.001

Age, year 0.266

≤ 40 790 1.36 (1.27, 1.46) < 0.001

> 40 1,990 1.29 (1.23, 1.36) < 0.001

Race 0.0283

Mexican American 366 1.19 (1.11, 1.30) < 0.001

No-Hispanic White 999 1.47 (1.37, 1.58) < 0.001

No-Hispanic Black 827 1.46 (1.28, 1.68) < 0.001

Other 588 1.51 (1.39, 1.64) < 0.001

Education level < 0.001

Less than high school 548 1.19 (1.10, 1.28) < 0.001

High school grade or
equivalent

756 1.30 (1.19, 1.42) < 0.001

College or above 1,476 1.39 (1.31, 1.47) < 0.001

Marital status 0.0426

Married or living with a
partner

1,583 1.29 (1.23, 1.36) < 0.001

Living alone 1,197 1.41 (1.32, 1.52) < 0.001

PIR 0.0101

Low 889 1.21 (1.13, 1.30) < 0.001

Medium 1,207 1.35 (1.27, 1.44) < 0.001

High 684 1.37 (1.28, 1.48) < 0.001

Smoker status 0.624

Former 978 1.31 (1.23, 1.40) < 0.001

Never 1,249 1.31 (1.24, 1.39) < 0.001

Current 553 1.30 (1.16, 1.47) < 0.001

Alcohol status 0.0165

Drinkers 1,444 1.27 (1.21, 1.33) < 0.001

Non-drinkers 1,336 1.40 (1.31, 1.50) < 0.001

Physical activity 0.127

Inactivity 1,557 1.28 (1.22, 1.35) < 0.001

activity 1,223 1.36 (1.29, 1.45) < 0.001

BMI 0.655

Normal 415 1.33 (1.16, 1.52) < 0.001

Overweight 734 1.17 (1.09, 1.25) < 0.001

Obese 1,631 1.14 (1.08, 1.20) < 0.001

Hypertension 0.191

Yes 1,348 1.34 (1.25, 1.44) < 0.001

No 1,432 1.27 (1.21, 1.33) < 0.001

Diabetes < 0.001

Yes 746 1.53 (1.34, 1.76) < 0.001

No 1,937 1.22 (1.17, 1.27) < 0.001

(Continued)
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TABLE 3 (Continued)

Subgroup No. of PhenoAge
acceleration

OR (95% CI) P-value P for
interaction

Borderline 97 1.36 (0.998, 1.93) 0.0639

Heart failure 0.105

Yes 176 1.12 (0.934, 1.39) 0.267

No 2,604 1.32 (1.27, 1.38) < 0.001

Stroke 0.445

Yes 178 1.45 (1.16, 1.89) 0.00245

No 2,602 1.32 (1.27, 1.38) < 0.001

Cancer 0.253

Yes 316 1.42 (1.25, 1.64) < 0.001

No 2,464 1.31 (1.26, 1.37) < 0.001

PIR, poverty income ratio; BMI, body mass index; CMI, cardiometabolic index.

by a nonlinear association between the serum anti-aging protein
klotho concentrations and the VAI score. It showed no discernible
link when VAI was larger than 3.21, but they were negatively
connected when VAI was less than 3.21 (Cui et al., 2023). In the
current study, we introduced CMI as a novel predictor of biological
aging. To date, this is the first study to evaluate the prognostic
value of CMI as a metabolism-related index that is easy to obtain
in the context of biological aging. However, additional research is
necessary to validate the use of CMI in public health assessments of
various specialized populations.

Although CMI is highly related to biological aging as
elucidated by our study, the underlying biological mechanisms
driving these associations are not fully deciphered. Chronic
inflammation and reactive oxygen species (ROS) are thought
to be significant factors in the progression of biological aging,
which may explain the positive association between CMI and
biological aging. The activation of the cyclic GMP-AMP synthase
(cGAS)/stimulator of interferon genes (STING) pathway by
mitochondria-derived cytosolic DNA (mt-DNA) has been found
to produce inflammation factors. Previous studies highlight the
crucial role that cytosolic mtDNA-induced cGAS-STING activation
plays in the pathophysiology of obesity (Elzinga et al., 2023; Kim
et al., 2023; Ma et al., 2023). Microglias exhibit cGAS activity in
response to cytosolic DNA released from disrupted mitochondria,
indicating a method by which cGAS-STING signaling is activated
in the aging brain. Single-nucleus RNA-sequencing analysis of
microglia in a cGAS gain-of-function mouse model demonstrates
that engagement of cGAS in microglia is sufficient to direct
aging-associated transcriptional states leading to bystander cell
inflammation (Paul et al., 2021; Gulen et al., 2023; Jiménez-
Loygorri et al., 2024). Furthermore, the positive energy balance
typical of obesity worsens the excess deposition of ectopic fat
with aging. Increased inflammatory cell infiltration and altered
chemokine expression, including increased TNF-α and IL-6, are
seen in visceral adipose tissue (Colleluori and Villareal, 2021).
The increased adipose tissue inflammation with obesity and
aging establishes the typical low-grade chronic inflammation
observed in older adults (Villareal, 2023). These demonstrate
the role of the inflammation in the aging and obesity. ROS as
a physiologically significant cause of ribotoxic stress response

activation and translational abnormalities (Lennicke and Cochemé,
2021). A significant fraction of the metabolic stress signals
responsible for undesirable metabolic maladaptation in obesity
and aging stem from damaged ribosomes (Shields et al., 2021;
Hajam et al., 2022). ROS-induced ribosome impairment underlies
ZAKα-mediated metabolic decline in obesity and aging (Snieckute
et al., 2023). Excess calories raise the production of ROS, which
harms the mitochondria, endoplasmic reticulum, and nucleus.
ROS-induced DNA damage upregulates the cell cycle arrest-related
proteins p16 and p21, which causes chromatin rearrangement,
cellular senescence, and the release of proinflammatory mediators
(Tam et al., 2020). As mentioned, the persistence of DNA damage
is a common biological process linking aging and obesity. It is
hypothesized that excess leptin synthesis, inflammation, and ROS
cause adipose tissue to accumulate DNA damage, which then
accumulates mutations in DNA repair genes. Senescence is further
induced by the inadequate ability of DNA repair proteins to repair
damaged DNA. Therefore, obesity speeds up the aging process
by adding to the damage to DNA that comes with aging (Kasper
et al., 2022; Kudabayeva et al., 2022; Chowdhury et al., 2023). More
investigation is necessary because the precise molecular pathways
are not fully understood.

There are various useful implications for this study. It has been
discovered that a higher CMI significantly speeds up biological
aging. Because the NHANES dataset, on which this study was
based, used a fully random sampling procedure, our findings are
guaranteed to be representative of the total population. People with
high CMI may require additional interventions, such as nutrition,
physical activity, and potentially medication-assisted dyslipidemia
treatment, to slow down the aging process.

5 Study limitations

Firstly, despite adjusting for several confounders, unmeasured
or residual confounding cannot be fully excluded. Secondly,
treatment factors such oral antidiabetic drugs that could affect CMI
were not taken into account. Thirdly, it should be mentioned that
participant questionnaires were used to diagnose the study’s cases of
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hypertension, diabetes, heart failure, cancer, and stroke. This could
introduce recollection bias and compromise the study’s ability to
make accurate diagnoses. Finally, a number of blood biomarkers
were used to determine PA. However, these biomarkers may not
correctly reflect other measures of biological aging, such as DNA
methylation, telomere length.

6 Conclusion

After adjusting for potential confounders, our research
demonstrated a positive correlation between CMI and biological
aging. CMI be integrated into routine health screenings or aging
assessments by healthcare professionals. Further cohort studies or
randomized controlled trials are desperately needed to validate this
result to provide more effective prevention and treatment strategies
for biological aging in the future.
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