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Background: Alzheimer’s disease and mild cognitive impairment are often 
difficult to differentiate due to their progressive nature and overlapping 
symptoms. The lack of reliable biomarkers further complicates early diagnosis. 
As the global population ages, the incidence of cognitive disorders increases, 
making the need for accurate diagnosis critical. Timely and precise diagnosis 
is essential for the effective treatment and intervention of these conditions. 
However, existing diagnostic methods frequently lead to a significant rate of 
misdiagnosis. This issue underscores the necessity for improved diagnostic 
techniques to better identify cognitive disorders in the aging population.

Methods: We used Graph Neural Networks, Multi-Layer Perceptrons, and 
Graph Attention Networks. GNNs map patient data into a graph structure, with 
nodes representing patients and edges shared clinical features, capturing key 
relationships. MLPs and GATs are used to analyse discrete data points for tasks 
such as classification and regression. Each model was evaluated on accuracy, 
precision, and recall.

Results: The AI models provide an objective basis for comparing patient data 
with reference populations. This approach enhances the ability to accurately 
distinguish between AD and MCI, offering more precise risk stratification and 
aiding in the development of personalized treatment strategies.

Conclusion: The incorporation of AI methodologies such as GNNs and MLPs into 
clinical settings holds promise for enhancing the diagnosis and management of 
Alzheimer’s disease and mild cognitive impairment. By deploying these advanced 
computational techniques, clinicians could see a reduction in diagnostic errors, 
facilitating earlier, more precise interventions, and likely to lead to significantly 
improved outcomes for patients.

KEYWORDS

artificial intelligence, graph convolutional networks, machine learning, deep learning, 
dementia, neural networks

OPEN ACCESS

EDITED BY

Daniele Magistro,  
Nottingham Trent University, United Kingdom

REVIEWED BY

Enrico Matteoni,  
University of Turin, Italy
Roberto Vagnetti,  
University of L’Aquila, Italy

*CORRESPONDENCE

Johanna M. C. Blom  
 joan.blom@unimore.it

†These authors have contributed equally to 
this work and share first authorship

RECEIVED 29 August 2024
ACCEPTED 14 November 2024
PUBLISHED 29 November 2024

CITATION

Tascedda S, Sarti P, Rivi V, Guerrera CS, 
Platania GA, Santagati M, Caraci F and 
Blom JMC (2024) Advanced AI techniques for 
classifying Alzheimer’s disease and mild 
cognitive impairment.
Front. Aging Neurosci. 16:1488050.
doi: 10.3389/fnagi.2024.1488050

COPYRIGHT

© 2024 Tascedda, Sarti, Rivi, Guerrera, 
Platania, Santagati, Caraci and Blom. This is 
an open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Brief Research Report
PUBLISHED 29 November 2024
DOI 10.3389/fnagi.2024.1488050

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2024.1488050&domain=pdf&date_stamp=2024-11-29
https://www.frontiersin.org/articles/10.3389/fnagi.2024.1488050/full
https://www.frontiersin.org/articles/10.3389/fnagi.2024.1488050/full
https://www.frontiersin.org/articles/10.3389/fnagi.2024.1488050/full
mailto:joan.blom@unimore.it
https://doi.org/10.3389/fnagi.2024.1488050
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2024.1488050


Tascedda et al. 10.3389/fnagi.2024.1488050

Frontiers in Aging Neuroscience 02 frontiersin.org

1 Introduction

In clinical neurology and geriatrics, diagnosing and treating 
neurodegenerative conditions such as Alzheimer’s disease (AD) and 
mild cognitive impairment (MCI) is particularly challenging due to 
the physical and cognitive vulnerabilities of elderly patients. These 
challenges are exacerbated by the diseases’ complexity, their 
phenotypic similarities, and frequent comorbidities, often leaving 
patients in a diagnostic limbo without access to specific therapies 
(Wen et  al., 2020). Differentiating between MCI, considered a 
transitional phase between normal cognitive aging and dementia, and 
mild AD is especially difficult due to their overlapping symptoms 
(Sperling, 2011; Jack et al., 2018).

Several diagnostic criteria, such as prodromal AD and MCI due to 
AD, have been proposed based on biomarkers that reflect brain changes 
typical of AD. These biomarkers include episodic memory decline, 
hippocampal atrophy on MRI, abnormal cerebrospinal fluid (CSF) 
biomarkers (e.g., low amyloid-β42, increased tau), and abnormal PET 
scan results showing amyloid and tau deposits or reduced glucose 
metabolism in temporoparietal regions (Armananzas et al., 2013; Sarraf 
et al., 2016; Schirrmeister et al., 2017; Leandrou et al., 2018). While 
these biomarkers are used in specialised centres, their integration into 
routine clinical practice has been slow (Albert et al., 2011; McKhann 
et  al., 2011; Dubois, 2014). There are still uncertainties about the 
benefits and potential drawbacks of diagnosing prodromal AD or MCI 
due to AD, particularly regarding the emotional impact on patients and 
the unpredictability of disease progression (Khan et  al., 2020). 
Predicting the progression from MCI to dementia with accuracy 
remains a challenge (Ding et  al., 2023; Korolev et  al., 2016). 
Traditionally, diagnosing AD relied on clinical assessment and cognitive 
testing, such as the Mini-Mental State Examination (MMSE) and 
Montreal Cognitive Assessment (MoCA) (Li et al., 2015; Wang et al., 
2022). Advances in technology have introduced tools like MRI, PET, 
DTI, biomarkers, and CSF analysis to detect AD more objectively 
(Sørensen et al., 2016; Wang et al., 2018; Li, 2020; Rodríguez-Santiago 
et al., 2024). New criteria for diagnosing and staging Alzheimer’s disease 
have recently been proposed that also consider advances in biological 
markers and brain analysis techniques (Jack et al., 2024). However, 
these methods have limitations: clinical assessments can be subjective, 
and early-stage AD may not be detectable with sufficient sensitivity 
using brain imaging techniques like MRI (Bron et al., 2015; Rathore 
et al., 2017; Parisot, 2018; Spasov et al., 2019; Zhao and He, 2019).

Recently, machine learning (ML) models have been applied to AD 
research to identify patterns associated with the disease, which may 
allow for earlier interventions and the possibility of slowing disease 
progression (Ju et al., 2017; Wang et al., 2018; Lian et al., 2020; Li, 
2020). Beyond AD and MCI, Artificial Intelligence (AI) applications 
are beginning to revolutionize the diagnosis and management of other 

types of dementia and neurodegenerative disorders. For example, deep 
learning models and convolutional neural networks (CNNs) have 
shown potential in distinguishing Parkinson’s Disease Dementia and 
Lewy Body Dementia (Faragó et  al., 2023; Altham et  al., 2024). 
Additionally, natural language processing (NLP) tools are emerging as 
promising methods for early detection of language impairments in 
Frontotemporal Dementia (Panahi et al., 2024; Vonk et al., 2024), 
allowing for more accurate differentiation from other forms of 
dementia and psychiatric conditions. In cases of Vascular Dementia, 
machine learning models applied to MRI and CT scan analysis have 
improved diagnostic accuracy by identifying brain changes specific to 
ischemic processes (Castellazzi et al., 2020). Even in conditions such 
as Amyotrophic Lateral Sclerosis and Primary Progressive Aphasia, 
where cognitive symptoms are secondary, AI-based image analysis has 
proven useful for tracking disease progression (Rezaii et al., 2024). 
These AI-driven approaches not only enhance diagnostic precision but 
also support personalized intervention strategies, thereby improving 
clinical practice and care for diverse types of neurodegenerative patients.

Despite their effectiveness, ML models often lack transparency in 
real-world healthcare settings, limiting their clinical acceptance. In 
this complex scenario, AI and advanced imaging techniques are 
emerging as promising tools to improve AD diagnosis and prediction 
(Pinto-Coelho, 2023). AI can analyse complex patterns in biomarkers, 
imaging, and clinical data, potentially enabling more precise and early 
detection of AD. Such approaches that seek to combine machine 
learning techniques and medical research are already in place to 
enhance the discovery of new drug targets and provide more accurate 
risk stratifications; especially in degenerative diseases (Geraci 
et al., 2024).

In this study, we  explore the potential of AI to enhance the 
diagnosis and understanding of AD and MCI. We specifically focus 
on the use of Multi-Layer Perceptron (MLP), Graph Convolution 
Network (GCN), and Graph Attention Network (GAT) models to 
analyse and interpret clinical data (Nia et al., 2023).

Our primary objective is to accurately classify patients into three 
categories: control group, MCI group, or AD group. For this purpose, 
we applied these three classification models (MLP, GCN, GAT) to a 
population of patients with MCI and AD, along with a control group. 
This allowed us to evaluate the performance of these models in 
correctly classifying patients and healthy subjects, integrating data 
from demographic variables, neuropsychological tests, and treatment 
and rehabilitation indicators.

To our knowledge, there are still few studies using AI algorithms 
in Cognitive Decline classification based on psychological variables, 
representing a critical area for further research.

2 Methods

2.1 Participants

The study sample consisted of 214 adults, divided into three 
groups: the amnesic Mild Cognitive Impairment group with 77 
participants (54 females and 23 males, mean age 75.53 ± 7.3), the 
probable mild Alzheimer’s Disease group with 30 participants (19 
females and 11 males, mean age 76.33 ± 6.4), and a Control group 
comprising 107 participants (78 females and 29 males, mean age 
74.06 ± 6.8). The MCI and mild AD groups were recruited from a 

Abbreviations: AD, Alzheimer’s Disease; MCI, Mild Cognitive Impairment; AI, Artificial 
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ML, machine learning; FAB, Frontal Assessment Battery; HDRS, Hamilton Depression 
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specialised cognitive impairment service, the “U.O.S. Centro 
Alzheimer e Psicogeriatria” at ASP3 in Catania, Italy. Specific inclusion 
and exclusion criteria were applied according to the protocols of the 
National Institute of Aging (NIA) and the Alzheimer’s Association 
Work Group for amnesic MCI and AD.

The criteria for MCI due to AD included cognitive concerns 
reported by the patient, an informant, or a clinician; objective evidence 
of impairment in one or more cognitive domains, typically memory; 
preservation of independence in functional abilities; and the absence 
of dementia. For probable AD, the criteria were cognitive or 
behavioural symptoms that interfere with daily activities and represent 
a decline from previous functioning levels, cognitive impairment 
confirmed through patient history and objective assessment, 
impairment in at least two cognitive or behavioural domains, insidious 
onset, clear evidence of worsening cognition, and specific cognitive 
deficits (either amnestic or non-amnestic). Patients with cognitive 
impairment due to cerebrovascular disease, dementia with Lewy 
bodies, or other neurological or non-neurological conditions that 
could affect cognitive function were excluded. Participants with an 
age-and education-adjusted MMSE score between 18 and 28 were 
included, while those with a recent history of cerebral ischemia or 
psychotic episodes were excluded. Consequently, 107 amnesic MCI 
and probable mild AD subjects were included in the study. The term 
“probable” AD is used here because the diagnosis was based solely on 
clinical signs and symptoms, without genetic or biomarker analyses. 
The Control group consisted of 107 healthy volunteers with an MMSE 
score of 28 or higher. Their clinical history, cognitive performance, 
and daily functioning were assessed to confirm their healthy status 
and exclude mild neurocognitive disorder, in line with DSM-5-TR and 
ICD-11 guidelines.

Patients were assessed during their scheduled appointments using 
the Italian standardised version of the Mini-Mental State Examination, 
which is recommended by the Italian AIFA (Agenzia Italiana del 
Farmaco) guidelines for staging cognitive deterioration. The MMSE 
was initially used to screen participants and divide them into the 
Control, MCI, and mild AD groups. This division was confirmed by 
clinical history and performance on other neuropsychological tests, 
consistent with the aforementioned guidelines.

Information about participants’ usual autonomy was gathered 
from both the participant and a knowledgeable informant. 
Additionally, MoCA score above 26 was considered as further 
assurance of the absence of preclinical cognitive decline, as this 
threshold was more conservative than other cut-offs proposed for the 
Italian population in distinguishing healthy individuals from those 
with MCI.

All participants provided informed consent for the processing of 
their data and for their publication and were individually tested in a 
single session by clinical psychologists experienced in dementia. After 
the screening process, the study sample included more women than 
men, reflecting the sex prevalence of cognitive impairment in both 
Italy and globally.

2.2 Data preparation and representation

To ensure the networks would receive clean and standardised 
input, a series of processing steps was performed. Numerical features 

such as Age, Education, Mini-Mental State Examination, Montreal 
Cognitive Assessment (MoCA), Frontal Assessment Battery (FAB), 
and Hamilton Depression Rating Scale (HDRS) scores were 
standardised to achieve zero mean and unit variance. Categorical 
features, including Sex, Comorbidity, Treatment, and Rehabilitation, 
were one-hot encoded to facilitate their incorporation into the models. 
This preprocessing step scaled numerical features and encoded 
categorical ones, ensuring all input data was uniformly formatted for 
the models.

A crucial aspect of our approach is the representation of patient 
data as a graph to leverage the relational information among 
patients. This graph-based approach allows us to model the 
complex interactions between different patients based on their 
clinical features, facilitating more nuanced and accurate predictions 
(Parisot, 2018). We  first computed a distance matrix using the 
Euclidean distance between each pair of patients based on their 
scaled features. The Euclidean distance is a commonly used metric 
that measures the straight-line distance between points in multi-
dimensional space, effectively capturing differences in clinical 
profiles. Next, we transformed it into a similarity matrix using a 
Gaussian (RBF) kernel, which is particularly suitable for converting 
distances into similarities because it ensures that patients with 
similar clinical features (i.e., closer in the feature space) have 
higher similarity scores. Since connecting every pair of patients 
would make the graph too dense and potentially noisy, to create 
edges between nodes (patients) in the graph we needed a way to 
select only the most meaningful connections. We  applied a 
percentile-based thresholding method: instead of choosing a fixed 
similarity value as the cutoff, we calculated the 80th percentile of 
similarity scores in the matrix. This means we  only kept the 
top  20% of similarity scores to define edges, connecting each 
patient only with those with the highest similarity. This approach 
allowed us to retain the most significant connections while 
discarding weaker, less relevant ones, resulting in a sparse graph. 
After thresholding, we  generated an edge index for the graph, 
representing pairs of patients (nodes) with similarity scores above 
this threshold. This index list is essential for feeding the graph 
structure into GNN models. The edge index acts as a roadmap for 
the GNN, guiding it in learning from the structured connections 
between patients. The visualization of the obtained graph is 
reported in Figure  1. The resulting graph has 214 nodes 
(representing individual patients) and 4,472 edges, giving an 
average degree of 20.9 connections per patient. The graph is 
undirected, meaning connections are mutual, with no self-loops, 
and contains 9 isolated nodes (patients with no connections to 
others due to dissimilarity), which are omitted from the visual 
representation for clarity.

Finally, we divided the data into training, validation, and test 
sets. Given the class imbalance (77 MCI, 30 AD, and 107 Control), 
the split was performed with class awareness to ensure 
proportional representation of each category. Additionally, the 
dataset has a gender imbalance, with 151 females (70.56%) and 63 
males (29.44%). We  confirmed that these proportions were 
maintained across the subsets: the training set consists of 71.43% 
females and 28.57% males, the validation set has 76.67% females 
and 23.33% males, and the test set includes 66.15% females and 
33.85% males.
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2.3 Model selection and architecture

The classification was carried out using 3 different models: MLP, 
GCN, and GAT. Each model was chosen for its specific strengths and 
suitability for the task and the data. The models and architectures are 
explained extensively below, and a summary of their characteristics 
has been included in Table 1.

The MLP is a type of feedforward artificial neural network that 
consists of multiple layers of nodes, or neurons, each of which uses 
a nonlinear activation function such as ReLU (Rectified Linear 
Unit). The MLP was fed the node features extracted from the 

graph, capturing complex nonlinear relationships within the data. 
Although MLPs do not inherently exploit the graph structure, they 
provide a robust baseline for comparison with graph-based models 
by focusing on individual node features.

In this study, an input layer receives the node features 
extracted from the graph, consisting of 11 input features per node. 
Then two hidden layers with 16 and 8 neurons, respectively. The 
ReLU activation function introduces non-linearity, allowing the 
model to learn complex patterns in the data. A dropout rate of 0.1 
is used to prevent overfitting by randomly dropping neurons 
during training. The final output layer consists of 3 neurons, 

FIGURE 1

Graph representation of patient data. This figure illustrates the graph-based representation of the data, where each node represents a patient, and 
edges represent the similarity between patients based on their features. The similarity between two patients (nodes) was computed using a Gaussian 
Radial Basis Function (RBF) kernel applied to the Euclidean distance between their feature vectors. This transformation ensures that patients with 
similar clinical profiles are more strongly connected. Nodes are linked by edges when their similarity exceeds a predefined threshold (here set to keep 
top 20% similarities), resulting in a graph structure that preserves meaningful relationships critical for classification tasks.

TABLE 1 Summary table of the three models used with their characteristics and architectures.

Feature MLP GCN GAT

Input features Node Features (11) Node Features (11) Node Features (11)

Exploits graph structure No Yes (nodes & edges) Yes (nodes & edges)

Hidden layers 2 Dense layers 2 Graph convolutional layers 2 Graph attention layers

Neurons/units per layer 16, 8 16 (layer 1) 16 per attention head (layer 1), 8 attention heads

Activation function ReLU ReLU ELU

Dropout rate 0.1 0.1 0.2

Output layer 3 Neurons 3 units (final convolutional layer) 3 units (final attention layer)

Additional features – Graph structure aggregation Graph structure aggregation & attention mechanism
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corresponding to the three classification classes (control, MCI, 
Alzheimer’s). No activation function is applied at this layer, as it 
is followed by the CrossEntropyLoss (Mao et  al., 2023) 
during training.

GCNs are specialised neural networks designed to operate 
directly on graph structures. They apply convolutional operations 
on the graph, allowing the model to capture the intricate 
interactions between nodes (patients) and edges (shared clinical 
features). GCNs work by combining information from 
neighbouring nodes, helping the model learn patterns that 
traditional models might miss. This makes them particularly 
effective for tasks where relational information is key to 
understanding the data’s complexities. In clinical settings, GCNs 
have been used for various applications, such as predicting and 
interpreting cancer survival outcomes (Ramirez et al., 2021) and 
revealing network-level functional dysconnectivity in conditions 
like schizophrenia (Lei et al., 2022).

As in the previous method, the input layer processes the node 
features extracted from the graph. The first convolution layer 
applies a graph convolution operation to the input features, 
outputting 16 hidden units per node. The ReLU activation 
function introduces non-linearity, enabling the model to learn 
from the graph’s structure and a dropout rate of 0.1 is used to 
prevent overfitting. The second convolution layer further 
processes the output from the first layer, reducing the 
dimensionality to 3 output units per node, corresponding to the 
classification labels. After aggregation, the output layer directly 
maps these features to class probabilities. The model applies a 
SoftMax function (implicitly through loss functions like cross-
entropy loss) to convert the raw scores into probabilities for 
each class.

GATs are an extension of GCNs that incorporate attention 
mechanisms. Attention mechanisms enable the model to 
dynamically weigh the importance of different edges in the graph, 
allowing it to focus more on the most relevant connections while 
potentially ignoring less important ones and leading to a deeper 
understanding of how different patients are connected (Vaswani 
et al., 2023). In healthcare, GATs enhance diagnostic predictions 
by leveraging relational data. For example, they have been tested 
for diagnosing autism spectrum disorder by analysing brain 
networks to identify key connections (Yang et al., 2021), or applied 
to COVID-19 diagnosis task, using chest X-ray images to highlight 
critical regions indicative of the disease.

The input layer processes the node features, like the other 
models. The first attention layer uses a multi-head attention 
mechanism with 8 attention heads, each outputting 16 hidden 
units. The ELU activation function is employed to introduce 
non-linearity and is here chosen instead of ReLU as it provides 
better gradient flow and faster convergence in deep networks with 
attention mechanisms. This layer computes attention coefficients 
for each edge, allowing the model to focus on the most relevant 
connections. The second attention layer processes the outputs 
from the first and produces final scores for each class, which are 
used to compute probabilities via a SoftMax function in the loss 
layer (like for GCN). For the GAT a higher dropout rate of 0.2 
compensates for the increased model complexity due to attention 
mechanisms, reducing the risk of overfitting and enhancing 
model generalisation.

Each network consists of an input layer, hidden layers, and an 
output layer, tailored to capture different aspects of the data for 
effective classification of control, MCI, and Alzheimer’s patients. The 
MLP serves as a baseline model, focusing solely on node features to 
capture non-linear relationships. In contrast, GCN and GAT exploit 
both node and edge information, leveraging the graph structure to 
understand interactions between patients.

2.4 Training and evaluation-

The training process for each model involved:

 1. Hyperparameter tuning: the goal was to find the optimal 
combination of parameters that maximise model performance.
• Parameters Tuned: we  experimented with various 

combinations of learning rates and weight decays. Learning 
rates control how much the model’s weights are adjusted 
during training, while weight decay helps prevent overfitting 
by adding a regularisation term.

• Approach: each model was trained for 100 epochs using a 
grid search approach to explore different hyperparameter 
settings. This systematic exploration allowed us to identify 
the most effective configuration for each model.

 2. Train/validation split: To evaluate model performance and 
prevent overfitting, we split the training data into a training 
set and a validation set. This split ensures that the model is 
tested on unseen data during training. The validation set was 
used to track key performance metrics such as accuracy, 
positive predictive value (PPV) (Safari et al., 2015), recall, 
and loss throughout the training process. This monitoring 
enabled early detection of overfitting and informed decisions 
about model adjustments. Accuracy provides a general 
measure of the model’s overall correctness across all classes. 
Precision PPV, commonly referred to as precision in machine 
learning literature, is used in clinical practice to understand 
how useful and reliable a diagnostic test is in everyday 
practice, particularly in correctly identifying patients who 
actually have a disease or condition, as it indicates the 
proportion of positive identifications that were actually 
correct. It reflects the proportion of positive identifications 
that were actually correct, crucial for minimising false 
positives in clinical diagnoses, and Recall (or sensitivity) 
indicates the proportion of actual positives that were 
correctly identified, ensuring that true cases of the disease 
are not missed. To provide a balanced assessment across all 
classes, we used weighted recall in our analysis.

 3. Training process:
• Optimizer: We used the Adam optimizer (Kingma and Ba, 

2017), a popular choice for training neural networks due to 
its adaptive learning rate and ability to handle 
sparse gradients.

• Loss function: cross-entropy loss was employed for the 
classification task. This loss function is well-suited for multi-
class classification problems, as it calculates the difference 
between predicted and true class probabilities.
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• Epochs: Each model was trained for 100 epochs, allowing 
sufficient time for learning while preventing excessive 
training that could lead to overfitting.

• Recording metrics: Throughout the training process, 
we recorded training losses for each epoch to monitor the 
model’s learning progress. This information was used to plot 
training curves and assess convergence.

• Validation checks: After each epoch, the model’s 
performance on the validation set was evaluated. This step 
was crucial for determining whether the model’s 
performance was improving.

 4. Post-Training evaluation: After training, the best-performing 
model for each architecture was selected based on validation 
metrics, including accuracy, precision, and recall.
• Testing: The final evaluation was performed on the test set, 

using the model configuration that achieved the best validation 
results. This test ensures that the model’s performance is robust 
and generalises well to new, unseen data.

All analyses and model implementations were built and executed 
using Python 3.10.12.

3 Results

In our study, we evaluated the performance of three models—
MLP, GCN and GAT—with the primary goal of accurately classifying 
patients into control, MCI, or AD categories. The evaluation was based 
on key metrics that are highly relevant in a clinical setting: accuracy, 
PPV, and recall. The resulting models are reported below:

3.1 MLP

The MLP model was trained with the best performing parameters 
being a learning rate of 0.01 and a weight decay of 0.0001. The model 

achieved an overall test accuracy of 86.15%. The weighted PPV and 
recall were 85.92 and 86.15%, respectively. The classification 
performance across different categories, for which the confusion 
matrix is reported in Figure 2A, was the following:

 • Control: PPV of 97%, Recall of 100%.
 • MCI: PPV of 82%, Recall of 78%.
 • Alzheimer’s: PPV of 56%, Recall of 56%.

While the MLP showed high performance in the control group, 
its recall for the AD’s group, with only 56% of true cases being 
correctly identified, was less performant. This limitation suggests that 
while the MLP is capable of capturing nonlinear relationships within 
the data, its lack of integration with the graph structure limits its 
effectiveness in fully exploiting the relational information inherent in 
the patient data. The model’s classification report highlights this, 
showing a high precision but a relatively low recall for the Alzheimer’s 
class, which could lead to missed diagnoses in a real-world setting.

3.2 GCN

The GCN model was trained with optimal hyperparameters being 
a learning rate of 0.01 and a weight decay of 0.0005. The model 
reached an overall accuracy of 89.23%, with a weighted PPV of 88.65% 
and a weighted recall of 89.23%. The per-class results, reported 
visually with the confusion matrix in Figure 2B, were as follows:

 • Control: PPV of 97%, Recall of 100%.
 • MCI: PPV of 83%, Recall of 87%.
 • Alzheimer’s: PPV of 71%, Recall of 56%.

The GCN demonstrated a more balanced performance across all 
classes, particularly improving the recall for Alzheimer’s patients to 
71%. This improvement indicates that the GCN effectively captures the 
underlying structure and interactions between patients, which are 
critical in the context of complex clinical data. The per-class values were:

FIGURE 2

Confusion matrices for MLP, GCN, and GAT models. This figure presents the confusion matrices for the three models evaluated in our study: (A) Multi-
Layer Perceptron (MLP), (B) Graph Convolutional Network (GCN), and (C) Graph Attention Network (GAT). The confusion matrices illustrate the 
performance of each model in classifying patients into control, mild cognitive impairment (MCI), and Alzheimer’s disease (AD) categories. The diagonal 
elements represent the number of correctly classified instances for each class, while the off-diagonal elements indicate misclassifications.
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3.3 GAT

The GAT model further extended the capabilities of the GCN by 
incorporating attention mechanisms, allowing the model to 
dynamically weigh the importance of different edges within the graph. 
The model was trained with the best-performing hyperparameters 
being a learning rate of 0.01 and weight decay of 0.0005. The GAT 
achieved the highest test PPV at 89.65% and matched the GCN’s 
weighted recall of 89.23%, with an overall accuracy of 89.23%. The 
per-class performance, also reported in the form of confusion matrix 
in Figure 2C, was the following:

 • Control: PPV of 100%, Recall of 97%.
 • MCI: PPV of 79%, Recall of 96%.
 • Alzheimer’s: PPV of 80%, Recall of 44%.

While the GAT model excelled in precision, particularly in the 
Alzheimer’s group, its recall in this category was lower, indicating that 
the model may prioritize precision over recall, which could be  a 
concern in clinical settings where identifying all cases is critical.

4 Discussion

Differentiating between MCI and AD remains a challenging task 
in clinical practice. MCI, often considered a transitional phase 
between normal cognitive aging and dementia, shares many 
overlapping symptoms with early-stage AD, making the two 
conditions difficult to distinguish (He, 2016; Lee, 2023). Traditional 
diagnostic methods are generally effective for detecting advanced AD 
(Dubois, 2014; Jack et  al., 2018; McKhann et  al., 2011), but they 
struggle in early stages, where symptoms are subtle and biomarkers 
may not yet reveal clear pathological distinctions (Sperling, 2011; 
Parisot, 2018). Early detection is essential to enable timely 
interventions, as this could improve outcomes for individuals in the 
MCI phase by delaying or even preventing progression to AD.

To address these challenges, we employed advanced AI models—
MLP, GCN, and GAT—to classify patients into control, MCI, and AD 
categories (Albert et al., 2011; Kipf and Welling, 2017). This study is 
among the first to apply these sophisticated models specifically to 
differentiate MCI from AD, shedding light on unique diagnostic 
challenges associated with each condition. Our findings highlight the 
potential of AI for early diagnosis, especially in capturing subtle 
cognitive changes indicative of MCI or AD, and emphasize AI’s role 
in tackling complexities that traditional approaches might miss 
(Bertozzi, 2019; Zhang et al., 2019; Jiang, 2020; Kumar and Min, 2020; 
Veličković, 2018; Yao, 2020).

Each model demonstrated strengths and limitations in achieving 
accurate classifications. All models performed well in distinguishing 
control patients, with both precision and recall rates approaching 100%. 
However, separating MCI from AD proved significantly more challenging, 
particularly for the AD group, which displayed consistently lower recall 
rates across all models. The GCN model exhibited a more balanced 
performance, improving recall for AD to 71% compared to MLP’s recall 
of 56%. This suggests that GCN’s capacity to leverage the graph structure, 
capturing patient relationships, offers an advantage in neurodegenerative 
contexts where such interdependencies may reflect disease dynamics. The 
GAT model achieved the highest overall precision but at the cost of a 
lower recall rate for AD (44%), indicating a trade-off: while GAT 

effectively reduces false positives, it may miss true AD cases—a critical 
consideration in clinical settings where missed diagnoses could have 
serious consequences.

All three methods used perform optimally in distinguishing the 
control group from the other two groups. However, they show higher 
accuracy in classifying MCI compared to AD. This discrepancy can 
be attributed to two main factors.

First, the choice of neuropsychological tests plays a crucial role. 
Assessments such as the MoCA and MMSE are particularly effective 
in detecting mild cognitive decline, which is characteristic of 
MCI. Designed to identify early cognitive impairments, these tests are 
sensitive to the initial stages of decline, providing a clearer distinction 
from AD as symptoms become more pronounced. Additionally, the 
Beck Depression Scale and Apathy Evaluation Scale further aid 
differentiation: MCI patients often display more depressive symptoms, 
while apathy is more common in AD. Second, the smaller sample size 
of the AD group likely influenced the algorithms’ learning processes, 
potentially limiting accuracy during testing and validation. Increasing 
the sample size could enhance the model’s capacity to differentiate AD 
from MCI and improve generalizability.

The accuracy levels achieved in our study are consistent with 
similar research relying solely on neuropsychological data for AD and 
MCI diagnosis. For example, the Chinese Neuropsychological 
Consensus Battery achieved approximately 80% accuracy in 
identifying individuals at risk based on neuropsychological data alone 
(Gu et al., 2023). Additionally, studies employing natural language 
processing to analyse semantic variations and predict progression 
from MCI to AD report comparable accuracy (Amini et al., 2024), 
underscoring the value of neuropsychological and language-based 
data in early diagnosis. Studies that incorporate additional data types, 
such as MRI or PET imaging through CNNs and hybrid models, 
report even higher accuracy, underscoring the added value of detailed 
structural and functional brain data (Arya et al., 2023; Baskar et al., 
2023). However, in clinical practice, neuroimaging is often reserved as 
a confirmatory tool due to its cost and limited accessibility. 
Consequently, neuropsychological assessments remain primary tools 
in initial diagnostic impressions, and AI models developed exclusively 
on such data hold practical relevance for clinical use.

Our findings highlight the complexity of accurately diagnosing 
AD using AI models, particularly when distinguishing it from MCI 
(Wang, 2020; Amin, 2021; Hsu, 2021; Liu, 2021; Ma, 2021; Zhang, 
2021). The lower recall rates for AD suggest that, despite advancements 
in AI, the subtle and overlapping symptoms of AD and MCI remain a 
significant challenge. This complexity underscores the necessity of 
continuous refinement in AI algorithms and the integration of more 
diverse and comprehensive data sets.

The application of AI in neurological diagnostics represents a 
promising advancement, potentially improving diagnostic accuracy 
and consistency, especially in cases where traditional methods might 
fall short. Yet, the challenges encountered in our study emphasize that 
AI models, while valuable, must still be complemented by clinical 
expertise. Our approach using GNN and GAT is well-suited for 
clinical scenarios where neuropsychological and demographic data 
are primary indicators. Such methodology could be implemented in 
primary care settings or memory clinics, where access to advanced 
diagnostic tools like MRI or PET scans is limited. By leveraging GNNs 
and GATs, clinicians can examine relationships among patients with 
similar clinical characteristics, supporting more tailored diagnostic 
pathways and treatment plans that optimize available resources.
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Looking ahead, research should prioritize refining AI algorithms 
by integrating comprehensive datasets and exploring hybrid 
methodologies. Achieving a balance between precision and recall is 
critical to reduce false negatives, which can be particularly costly in 
early-stage diagnoses. Integrating diverse data sources will deepen our 
understanding of symptom networks, ultimately leading to more 
effective tools for early and accurate diagnosis. With continued 
improvements, AI has the potential to transform the approach to 
neurodegenerative disease diagnosis, marking a shift toward more 
proactive and personalized care in neurology.
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