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The early detection of cognitive decline in older adults is crucial for preventing 
dementia. This mini-review focuses on electroencephalography (EEG) markers 
of early dementia-related precursors, including subjective cognitive decline, 
subjective memory complaints, and cognitive frailty. We present recent findings 
from EEG analyses identifying high dementia risk in older adults, with an emphasis 
on conditions that precede mild cognitive impairment. We also cover event-related 
potentials, quantitative EEG markers, microstate analysis, and functional connectivity 
approaches. Moreover, we  discuss the potential of these neurophysiological 
markers for the early detection of cognitive decline as well as their correlations 
with related biomarkers. The integration of EEG data with advanced artificial 
intelligence technologies also shows promise for predicting the trajectory of 
cognitive decline in neurodegenerative disorders. Although challenges remain 
in its standardization and clinical application, EEG-based approaches offer non-
invasive, cost-effective methods for identifying individuals at risk of dementia, 
which may enable earlier interventions and personalized treatment strategies.
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1 Introduction

Rapid aging of the global population has intensified the need to extend healthy life 
expectancy, and dementia poses an important challenge to this goal. Alzheimer’s disease (AD) 
and other types of dementia are characterized by cognitive decline that is distinct from that of 
normal aging, necessitating a deeper understanding of the underlying mechanisms. Recent 
research has revealed that AD-associated pathophysiological changes can begin more than a 
decade before the onset of clinical symptoms (Ritchie et al., 2016; Moffat et al., 2022). Although 
postmortem examination remains the definitive method for diagnosing dementia, important 
advancements in in vivo assessment techniques have emerged, including cerebrospinal fluid 
biomarkers, positron emission tomography, and magnetic resonance imaging (MRI) (Clark 
et al., 2018; Hojjati et al., 2018; Liu et al., 2024). However, these methods present various 
challenges, such as high cost, invasiveness, and limited clinical accessibility.

Electroencephalography (EEG) offers a non-invasive, cost-effective approach for detecting 
neurological markers of cognitive decline. Recent reviews have focused on EEG characteristics 
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in AD and mild cognitive impairment (MCI) (Al-Qazzaz et al., 2014; 
Sanchez-Reyes et al., 2021; Torres-Simon et al., 2022; Wijaya et al., 
2023). EEG activity correlates with cognitive decline assessed by the 
Mini-Mental State Examination (MMSE), and combining these 
measures improves dementia prediction accuracy (Doan et al., 2021). 
EEG may detect subtle early functional changes. However, research on 
EEG markers of early precursors, such as subjective cognitive decline 
(SCD), subjective memory complaints (SMC), and cognitive frailty 
(CF), remains scarce.

This mini-review summarizes recent EEG findings used to 
identify a high risk of dementia in older adults, emphasizing 
conditions such as SCD, SMC, and CF. We  explore EEG-based 
approaches, including event-related potentials (ERPs), quantitative 
EEG (qEEG) markers, microstate analysis, and functional connectivity 
measures. Additionally, we  discuss the integration of EEG with 
artificial intelligence technologies for early diagnosis and prediction 
of dementia progression.

By focusing on pre-MCI states, we aim to increase knowledge of 
the early detection of cognitive decline, thus enabling earlier 
interventions and more effective prevention strategies. Additionally, 
we  highlight the challenges and future directions in this field, 
emphasizing the need for standardized approaches and larger-scale 
studies to validate the clinical utility of EEG-based markers in 
dementia risk assessments.

2 Early cognitive decline: from normal 
aging to pre-MCI states

The risk of dementia in older adults is influenced by 12 modifiable 
risk factors (Livingston et al., 2020). Previous studies have pointed out 
the association between preclinical stages of AD (i.e., SMC and SCD) 
and these lifestyle risk factors, such as low education and hypertension 
(Chen et al., 2014), and depression and cigarette smoking (Ahn et al., 
2021). The importance of treating these factors before cognitive 
decline onset or at the subjective complaint stage is increasingly 
emphasized (Van Der Flier et al., 2023).

The spectrum of cognitive decline ranges from normal aging to 
dementia, encompassing crucial intermediate stages for early 
detection and intervention. MCI is a high-risk state for progression to 
dementia, particularly AD (Arnáiz and Almkvist, 2003), and is 
characterized by clinical symptoms, minimal assistance needs with 
daily activities, and potentially reversible cognitive decline (García 
et al., 2021).

Recent studies have focused on earlier stages of cognitive decline. 
In SCD and SMC, individuals experience self-perceived cognitive 
decline but perform within the normal range on objective tests, and 
exhibit an increased risk of progressing to MCI and dementia (Kryscio 
et al., 2014; Bessi et al., 2018). CF represents coexisting physical frailty 
and MCI, and encompasses mild cognitive decline even without a 
diagnosed neurological disorder (Kelaiditi et al., 2013; Shimada et al., 
2018; Facal et al., 2021). Kocagoncu et al. (2022) defined CF as mild 
cognitive decline without subjective awareness, indicating that the 
concept of CF is not fully established. CF is linked to increased risks 
of dementia, care needs, hospitalization, disability, and mortality 
compared with healthy aging (Lee et al., 2018; Panza et al., 2018).

Distinguishing these early stages from normal aging is challenging 
because differences can be  subtle and not always apparent using 

standard cognitive assessments. EEG primarily reflects postsynaptic 
potentials, offering promising avenues for identifying early markers of 
cognitive decline. EEG may detect subtle changes in postsynaptic 
fields that potentially underlie cognitive dysfunction in AD and MCI 
(Arendt, 2009; Targa Dias Anastacio et al., 2022).

3 Contemporary ERP methodologies 
and their application

While EEG may reflect postsynaptic potentials and neuronal 
population activity, ERPs are derived from averaging electrical 
responses to specific stimuli or tasks, enabling identification of 
components related to perception and cognition. Goodin et al. (1978) 
first identified the P300 component as a biomarker for dementia, 
characterized by a positive waveform occurring 200–300 ms after an 
oddball task event. AD typically results in attenuated P300 amplitude 
and increased latency compared with normal aging (Pedroso et al., 
2012; Hedges et al., 2016; Fruehwirt et al., 2019). The P300 is also 
sensitive to MCI; reduced P300 amplitude indicates cognitive 
deterioration in at-risk older adults (Newsome et al., 2013), and its 
latency may predict MCI progression to AD (Jiang et al., 2015).

Table 1 summarizes recent ERP studies on early cognitive decline 
in older adults. Evidence regarding the P300  in SCD and SMC is 
limited but promising. People with SMC progressing to AD show a 
prolonged P300 latency before AD onset (Gironell et al., 2005) and in 
response to stimulus–response incongruence (Cespón et al., 2018). 
Ulbl and Rakusa (2023) reviewed studies that demonstrated decreased 
N170 and P300 amplitudes in SCD, although the results across ERP 
components were inconsistent. The P3b is a later component of the 
P300, and has exhibited decreased amplitude in cognitively 
low-performing older adults, suggesting age-independent episodic 
memory decline (Porcaro et  al., 2019). Additionally, P300 peak 
amplitude correlates with bilateral hippocampal volume in healthy 
older adults (Devos et al., 2021).

Mismatch negativity (MMN) reflects the automatic detection of 
sensory input changes. Attenuated MMN is associated with memory 
and psychosocial deficits (Mowszowski et al., 2012) and is decreased 
in AD and MCI compared with normal aging (Kazmerski et al., 1997; 
Papadaniil et  al., 2016). The neural sources of MMN show a 
characteristic migration pattern with AD progression (Papadaniil 
et  al., 2016; Tsolaki et  al., 2017). Ruzzoli et  al. (2016) reported 
distinctive patterns of auditory MMN distribution in normal aging, 
MCI, and AD. In SCD, magnetoencephalography (MEG)-measured 
MMN revealed that attenuated responses were correlated with 
memory function (Cheng et al., 2021). Additionally, MMN-based 
neurofeedback is reportedly effective for working memory training in 
SCD (Pei et al., 2020).

The N200 component has shown utility for differentiating MCI 
from AD (Papaliagkas et  al., 2009b; Morrison et  al., 2018) and 
predicting progression risk to MCI/AD in healthy older adults 
(Papaliagkas et al., 2009a; Howe, 2014). Although similar effects in 
N400 and P600 have been reported (Grieder et al., 2013; Chou et al., 
2023), their usefulness remains unclear in the context of SCD, 
SMC, and CF.

Research on other ERP components has been limited. Tarawneh 
et al. (2023) reported prolonged P50 latency in amyloid-β-positive 
participants compared with healthy controls. Changes in ERPs during 
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cognitive tasks have been reported in SMC, including prolonged 
feedback-related negativity latencies (Garrido-Chaves et al., 2021). 
Kocagoncu et  al. (2022) proposed that CF is part of the normal 
neurocognitive spectrum, as its MMN responses resemble those of 
normal aging.

Cognitive function in the normal range, possibly resulting from 
compensatory neural mechanisms (Sala-Llonch et al., 2015; Wei et al., 
2022), may contribute to low sensitivity to ERP components in SMC 
and SCD. Thus, EEG may offer more sensitive and valuable 
information regarding early cognitive decline than ERPs in SCD, 
SMC, and CF.

4 Exploring the frontiers of EEG 
research: advanced approaches to 
elucidating early cognitive decline as a 
risk for dementia

4.1 Quantitative EEG markers during 
precursor symptoms of AD

qEEG analyzes digital EEG signals using mathematical algorithms 
(Nuwer, 1997), providing insights into potential early neurobiomarkers of 
pathological cognitive aging (Keller et al., 2023). Unlike ERPs focusing on 

TABLE 1 Summary of ERP studies of early cognitive decline in older adults.

Authors 
(Year)

Participants ERP task ERP component Amplitude 
effects

Latency 
effects

Other effects

Gironell et al. 

(2005)

SMC (n = 116) Oddball P300 – AD > NC, MCI, 

DOT

Baseline P300 latency 

predicted AD diagnosis

Cespón et al. 

(2018)

Low SMC (n = 18), High 

SMC (n = 16)

Simon task P300, MFN High SMC: larger 

MFN for incompatible 

trials

P300: longer for 

incompatible 

position

High SMC: interference 

from arrow direction at 

slow RTs

Ulbl and Rakusa 

(2023)

SCD, MCI, AD, NC 

(Review of 30 studies)

Various P300, N170 SCD: reduced P300/

N170 amplitudes in 

some studies

SCD: increased 

P300/N170 

latencies in some 

studies

EEG: SCD showed 

slowing of rhythms and 

connectivity changes

Porcaro et al. 

(2019)

Young (n = 15), HP Old 

(n = 17), LP Old (n = 14)

Visual three-

stimulus oddball

P3a, P3b P3b: Young > HP > LP

P3a: Young > HP, LP

P3a, P3b: Young< 

HP, LP

FSS improved detection 

of group differences; P3b 

amplitude distinguished 

HP from LP

Cheng et al. (2021) SCD (n = 26), NC 

(n = 29)

Not specified MMNm SCD < HC in left IPL 

and right IFG

– MMNm amplitudes in 

right IFG correlated with 

memory performance in 

SCD; No GM volume 

differences between 

groups

Pei et al. (2020) SCD (n = 17) Auditory 

oddball

MMN Increased at Pz after 

training

– Improved WM 

performance, especially 

in auditory tone 3-back 

task

Tarawneh et al. 

(2023)

SMC (n = 43), non-SMC 

(n = 19)

Auditory 

oddball

P50, N100, P200, N200, 

P300

– P50: Aβ+ > Aβ-; 

P50 latency weakly 

correlated with 

MAC-Q scores

P50 latency may identify 

individuals at higher risk 

of cognitive decline

Garrido-Chaves 

et al. (2021)

Young SMC (n = 28), 

Young noSMC (n = 37), 

Older SMC (n = 32), 

Older noSMC (n = 39)

Iowa Gambling 

Task

FRN, P3 FRN: Losses > Wins; 

Older > Young; P3: 

Young > Older

FRN, P3: Older > 

Young; FRN: Older 

SMC > Older 

noSMC for losses 

in first block

Older SMC showed 

worse behavioral 

performance in 

ambiguity phase

Kocagoncu et al. 

(2022)

CF (n = 26), NC (n = 38), 

MCI (n = 15), AD 

(n = 11)

Cross-modal 

oddball

MMN CF, NC > MCI, AD for 

novel and associative 

deviants

– CF showed similar 

neurophysiological 

profile to NC, despite 

poor cognitive 

performance

Aβ, amyloid-β; AD, Alzheimer’s disease; AERP, auditory event-related potential; CF, cognitive frailty; DOT, dementia of other type; ERP, event-related potentials; FRN, feedback-related 
negativity; FSS, functional source separation; GM, gray matter; HC, healthy control; HP, high performing; IFG, inferior frontal gyrus; IPL, inferior parietal lobule; LP, low performing; MAC-Q, 
Memory Assessment Clinics Questionnaire; MCI, mild cognitive impairment; MFN, medial frontal negativity; MMN, mismatch negativity; MMNm, magnetic mismatch negativity; NC, 
normal control; RT, reaction time; SCD, subjective cognitive decline; SMC, subjective memory complaints; WM, working memory.
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time-locked responses, qEEG examines ongoing EEG activity, offering a 
broader view of brain function. qEEG includes linear techniques, 
including power spectral analysis, and nonlinear methods, including 
entropy measurements and fractal dimension analysis (Al-Qazzaz et al., 
2014). In AD, EEG typically shows reduced alpha and beta band activity 
(Wada et  al., 1998; Knott et  al., 2000), distinct from normal aging 
(Babiloni et al., 2021).

Recent research focuses on differences between normal aging and 
prodromal AD pathophysiology, including MCI, SCD, and SMC. A key 
finding in MCI and AD is “EEG slowing,” in which increased occipital 
low-frequency power and decreased frontal high-frequency power are 
correlated with cognitive performance (Farina et al., 2020; Medici et al., 
2023). The theta/alpha ratio indicates cognitive decline, showing 
differences between AD, MCI, and healthy older adults (Meghdadi et al., 
2021), with an increased ratio in MCI associated with higher dementia 
risk (Hamilton et al., 2021).

EEG slowing parameters show promise for detecting early cognitive 
decline in SCD and SMC (Table  2). Previous studies have reported 
decreased frontal EEG slowing parameters with declining cognitive scores 
in healthy older adults (Choi et al., 2019), increased theta power and 
reduced alpha reactivity in SMC (Perez et al., 2022), and altered oscillatory 
activity in SCD (Shim et al., 2022).

Higher education levels are correlated with higher posterior alpha 
rhythm amplitudes in SMC (Babiloni et al., 2020) and enhanced neural 
coupling between posterior alpha rhythm and thalamus-visual networks 
(Lopez et al., 2024), suggesting a protective role of cognitive reserve.

Several studies have demonstrated qEEG’s potential for predicting 
progression from preclinical to AD. Engedal et  al. (2020) reported 
moderate accuracy in predicting transition to dementia in SMC and 
MCI. Associations between qEEG parameters and pathological protein 
biomarkers suggest that resting-state EEG changes might reflect increased 
brain amyloid burden in AD progression (Spinelli et al., 2022; Ulbl and 
Rakusa, 2023).

Nonlinear methods have shown promising results in distinguishing 
AD patients from healthy older individuals (Abásolo et al., 2006; Pineda 
et al., 2020), potentially capturing complex brain dynamics not evident in 
linear analyses. However, studies employing nonlinear techniques for 
SMC and SCD have been limited, mainly using MEG (e.g., 
Shumbayawonda et  al., 2020). The application of this approach to 
preclinical dementia stages faces challenges, including high computational 
costs and complex data interpretation (Vicchietti et al., 2023).

Although EEG biomarkers exist for SCD and SMC, research 
examining CF remains limited. Some studies have suggested that CF 
exhibits brain activity patterns related to physical conditions (Suárez-
Méndez et al., 2021) linked to cognitive function (Liu et al., 2024). CF 
characteristics may be discerned through changes in cognitive function-
related neural oscillations, microstate analysis, functional connectivity, 
and phase coherence analysis.

4.2 Integrating microstate and connectivity 
analyses for the early detection of 
cognitive decline

Although qEEG provides insights into frequency 
characteristics of resting-state brain activity, advanced techniques 
like microstate analysis, functional connectivity assessment, and 
graph theory approaches offer a deeper understanding of brain 

network dynamics in cognitive decline. These methods show 
promise for differentiating normal aging from pathological 
changes, including AD and prodromal AD symptoms.

Microstate analysis captures functional network dynamics 
with millisecond-level resolution, revealing distinct 
characteristics between AD and MCI. EEG microstates, brief 
periods of quasi-stable scalp electrical patterns typically classified 
into four topographies (A–D), reflect momentary global brain 
states and the basic units of cognitive processing (Michel and 
Koenig, 2018). Significant differences in microstate 
topographies—particularly A, C, and D—between healthy 
controls and AD/MCI (Britz et al., 2010; Smailovic et al., 2019; 
Lian et al., 2021) may reflect dysfunction in key brain networks 
(e.g., default mode network or frontoparietal network) associated 
with AD pathology.

Changes in microstate dynamics have been observed in MCI 
and AD. Musaeus et al. (2019, 2020) reported higher transition 
probabilities from microstates C and D to A, and increased 
occurrence frequencies and coverage of microstate A, in AD and 
MCI compared with healthy controls. Notably, Lassi et al. (2023) 
found reduced complexity of microstate transitions in MCI and 
SCD, indicating simpler brain network dynamics even at the SCD 
stage. Shi et al. (2022) reported that specific microstate transition 
probabilities (C → A − D → A) correlate with MMSE scores, 
suggesting applications for identifying potential cognitive 
impairment and brain activity patterns in the pre-dementia stage.

Functional connectivity analysis provides insights into SCD 
and MCI pathophysiology without apparent structural changes. 
López-Sanz et  al. (2017) identified anterior network hyper-
synchronization and decreased posterior network connectivity in 
SCD and MCI during the resting state. Cheng et  al. (2020) 
reported increased functional connectivity within the default 
mode network in the delta and gamma frequency bands in SCD 
using MEG, potentially representing compensatory mechanisms.

Graph theory approaches have further elucidated changes in 
brain network organization across the cognitive decline spectrum 
(Rubinov and Sporns, 2010). Vecchio et al. (2014) applied graph 
theory to EEG analysis, revealing differences in brain networks 
between healthy elderly and AD patients. EEG of normal subjects 
showed high interaction between channels, while AD patients 
exhibited more random brain network structures, particularly in 
the alpha band. These changes correlated with cognitive decline, 
suggesting that EEG-based brain network analysis may be useful 
for early diagnosis and monitoring of dementia progression.

Task-related functional connectivity analyses have provided 
additional insights into cognitive decline. During working memory 
tasks, MCI patients exhibit altered connectivity patterns, including 
decreased fronto-temporal connectivity and increased fronto-occipital 
and parieto-occipital connectivity in theta and alpha bands (Jiang et al., 
2024). Furthermore, decreased alpha band connectivity and lack of beta 
band modulation with increasing memory load were observed, resulting 
in a more centralized network structure (Fodor et al., 2021). These 
changes may reflect compensatory mechanisms in response to 
neurodegeneration in the hippocampus and surrounding regions. 
Table  2 summarizes EEG studies of microstate analysis and 
functional connectivity.

In healthy older adults, high cognitive load tasks are also 
associated with decreased alpha band connectivity and increased 
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TABLE 2 Summary of EEG studies of early cognitive decline in older adults.

Authors 
(Year)

Participants EEG 
task

Frequency 
bands

Power/
amplitude 
effects

Functional 
connectivity

Other 
features

Main findings

Choi et al. 

(2019)

496 elderly (165 

Male, 331 

Female), 

age ≥ 50 years

Resting-

state, eye 

closed

α, θ

MF, PF, TAR ↓ 

with lower 

MMSE

–

EEG from Peak 

Frequency 

(Fp1, Fp2)

(1) MDF, PF, TAR: correlated with 

MMSE

(2) EEG slowing significantly between 

MMSE T2 vs. T1

Shim et al. 

(2022)

SMC (n = 95): 26 

A+, 69 A−, 

age ≥ 65 years

Resting-

state, eye 

closed

δ, θ, α1, α2, β1, 

β2, β3, γ

A+: (1) ↑ relative 

δ in F, P, O

(2) ↓ relative 

α1 in F, C, O

↑ connections 

bilateral PCu in δ

↓ connections 

bilateral entorhinal 

areas in α1

19 scalp 

electrodes; 

sLORETA; 

DMN analysis

(1) A+: ↑δ, ↓α1

(2) ↓α1 in bilateral fusiform & inferior 

temporal area, ↑δ in posterior regions

Babiloni et al. 

(2020)

SMC (n = 172): 

118 A−, 54 A+, 

age ≥ 70 years

Resting-

state, eye 

closed

δ, θ, α1, α2, α3, 

β1, β2, γ

A+ high 

education: ↓ O 

α2, ↑ T α3

A− high 

education: ↑ P, 

O, T α2 & α3

–

19 scalp 

electrodes; 

IAF-based 

analysis

(1) A− high education: ↑ posterior α

(2) A+ high education: ↑ T α3, ↓ O α2

Lopez et al. 

(2024)

SMC (n = 161): 

105 A−, 56 A+, 

age ≥ 70 years

Resting-

state, eye 

closed

δ, θ, α1, α2, α3, 

β1, β2, γ

A− high 

education: ↑ P, 

O, T α2, ↑ O α3

A+ high 

education: ↓ F, O 

α2 & α3

+ associations 

Thal-VN 

connections & 

posterior α3 in 

A− high education

68 scalp 

electrodes; 

rs-fMRI; 

amyPET

(1) A− high education: ↑ posterior α

(2) A+ high education: ↓ posterior α

Engedal et al. 

(2020)

SMC (n = 45), 

MCI (n = 88), NC 

(n = 67), 

age ≥ 50 years

Resting-

state, eye 

closed

– – –

qEEG using 

SPR method; 

DI (0–100)

DI predicted conversion to dementia 

with moderate accuracy (AUC = 0.78)

Spinelli et al. 

(2022)

SMC (n = 318): 

230 A−, 88 A+, 

age 70–85 years

Resting-

state, eye 

closed

δ, θ, α1, α2, β1, 

β2, γ

Baseline: A+ ↑ 

MF θ

24-month 

follow-up: A+ ↑ 

PC θ, ↓ O α1

–

256 electrodes; 

source-level 

analysis; 

longitudinal

(1) A+: ↑ MF θ at baseline, ↑ PC θ at 

follow-up

(2) Suggests DMN hypoactivation in A+

Lassi et al. 

(2023)

SCD (n = 57), 

MCI (n = 46), NC 

(n = 19)

Resting-

state
δ, θ, α, β

↑ δ power in 

MCI vs. NC in 

left central ROI

SWI in δ band: 

SCD > MCI

Microstates 

analysis, LZ 

complexity, 

Hurst exponent

(1) Microstate C: ↓ duration and 

coverage in MCI vs. NC and SCD

(2) ↓ LZ complexity in MCI vs. SCD

(3) Hurst exponent: NC > SCD > MCI

(4) Microstate C topography different in 

AD-like CSF profile

Shi et al. 

(2022)

AD (n = 13), MCI 

(n = 19)

Resting-

state

2–20 Hz 

(secondary 

filter)

– –

Microstate 

parameters 

(GEV, TPs, 

TTPs)

(1) AD showed longer microstate 

durations and fewer occurrences than 

MCI.

(2) TPC → A-D → A correlated with 

MMSE scores (negatively in AD, 

positively in MCI).

(3) Using TTPs and Partial 

Accumulation strategy, LDA classifier 

achieved 93.8% accuracy in 

distinguishing AD from MCI

(Continued)
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theta band phase synchronization and connectivity (Hou et al., 
2018). These findings suggest that graph theory-based functional 
connectivity analysis during cognitively demanding tasks may 
reveal characteristic changes in brain functional networks specific 
to SCD, SMC, and potentially CF.

4.3 Novel EEG methods using machine 
learning and deep learning algorithms

Integrating artificial intelligence with EEG analysis has emerged as 
a powerful approach for predicting cognitive decline progression. 

TABLE 2 (Continued)

Authors 
(Year)

Participants EEG 
task

Frequency 
bands

Power/
amplitude 
effects

Functional 
connectivity

Other 
features

Main findings

López-Sanz 

et al. (2017)

SCD (n = 41), 

MCI (n = 51), NC 

(n = 39)

Resting-

state
α (6.9–11.4 Hz) –

Whole-brain FC 

analysis; DMN and 

DAN analysis

PLV, SWI

(1) SCD and MCI showed similar FC 

alterations: ↑ FC in anterior network, ↓ 

FC in posterior network.

(2) MCI had more pronounced posterior 

FC decrease vs. SCD.

(3) ↓ FC in DAN and posterior DMN for 

both SCD and MCI vs. HC.

(4) FC changes correlated with cognitive 

scores and hippocampal volume.

Cheng et al. 

(2020)

SCD (n = 27), NC 

(n = 26)

Resting-

state
δ, θ, α, β, γ1, γ2 –

↑ FC in DMN for 

SCD vs. NC in δ 

and γ bands

AEC, Node 

strength

(1) ↑δ band FC in SCD between LTC-

PCC and PCu-PCC.

(2) ↑γ band FC in SCD between LTC-

PCC and PCu-PCC.

(3) PCC node strength in δ and γ bands 

showed good discrimination ability for 

SCD vs. NC (AUC > 0.75).

(4) PCC γ1 node strength correlated 

with cognitive complaints in SCD.

Hou et al. 

(2018)

Young (n = 15, 

19–29 years), 

Senior (n = 10, 

58–70 tears)

Resting-

state, 

0-back, 

2-back

θ, α, β, γ – PLI

Clustering 

coefficient, 

Characteristic 

path length, 

Small-world 

coefficient

(1) Age-related alterations more 

prominent in 2-back task, especially in θ 

band.

(2) ↑θ band FC and nodal clustering 

coefficient in seniors during 2-back.

(3) ↓α band small-world coefficient in 

seniors during both n-back tasks.

(4) Young adults showed ↑β band 

clustering coefficient during 2-back vs. 

rest; absent in seniors.

(5) θ and γ band metrics correlated with 

working memory performance.

Kim et al. 

(2021)

SCD (n = 180), 

MCI (n = 63)

Resting-

state, 

eyes-

closed

δ, θ, α1, α2, β1, 

β2, β3, γ

Various power 

changes reported
–

Relative power, 

Genetic 

algorithm for 

feature 

selection, 

Multi-model 

ensemble

(1) SCD amyloid classification: 85.7% 

sensitivity, 89.3% specificity, 88.6% 

accuracy.

(2) MCI amyloid classification: 83.3% 

sensitivity, 85.7% specificity, 84.6% 

accuracy.

(3) Genetic algorithm identified optimal 

EEG features for classification.

(4) Multi-model ensemble approach 

improved classification performance.

A−, amyloid PET-negative; A+, amyloid PET-positive; AD, Alzheimer’s disease; AEC, amplitude envelope correlation; amyPET, amyloid positron emission tomography; AUC, area under the 
curve; C, central; CSF, cerebrospinal fluid; DAN, dorsal attention network; DI, dementia index; DMN, default mode network; EEG, electroencephalography; F, frontal; FC, functional 
connectivity; GEV, global explained variance; IAF, individual alpha frequency; LDA, linear discriminant analysis; LTC, lateral temporal cortex; LZ, Lempel–Ziv; MCI, mild cognitive 
impairment; MDF, median frequency; MF, midfrontal; MMSE, Mini-Mental State Examination; NC, normal control; O, occipital; P, parietal; PC, posterior cingulate; PCC, posterior cingulate 
cortex; PCu, precuneus; PF, peak frequency; PLI, phase lag index; PLV, phase locking value; qEEG, quantitative EEG; ROI, region of interest; rs-fMRI, resting-state functional magnetic 
resonance imaging; SCD, subjective cognitive decline; sLORETA, standardized low-resolution brain electromagnetic tomography; SMC, subjective memory complaints; SPR, statistical pattern 
recognition; SWI, small world index; T, temporal; TAR, theta-alpha ratio; Thal-VN, thalamus-visual network; TPs, transition probabilities; TTPs, time-factor transition probabilities.
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Machine learning algorithms applied to EEG data have high accuracy for 
classifying AD patients and predicting progression from MCI to AD. For 
instance, studies using support vector machines and gradient-boosted 
trees have achieved impressive classification accuracies, reaching 95% for 
AD detection (Rossini et  al., 2022) and 83% for MCI progression 
prediction in healthy older adults (Mazzeo et al., 2023a). Al-Hagery et al. 
(2020) improved the accuracy of AD diagnosis to 96.66% using the 
random forest algorithm as an ensemble method, representing a 
significant improvement over the single decision tree algorithm 
(73.33%). These results demonstrate the potential of machine learning 
techniques, particularly ensemble methods, in enhancing early diagnosis 
and prediction of dementia progression. The high accuracy achieved by 
these models suggests their potential clinical application, potentially 
enabling earlier interventions and more personalized treatment strategies 
for patients at risk of cognitive decline.

Multimodal approaches combining EEG with other biomarkers may 
enhance prediction accuracy. Maestú et al. (2019) demonstrated that 
integrating EEG data with other biomarkers (e.g., genotypes, cognitive 
tests, or brain imaging) may provide more accurate AD predictions. Kim 
et al. (2021) developed a model integrating EEG and apolipoprotein E 
genotypes to predict amyloid positron emission tomography positivity in 
SCD and MCI, with high accuracy in both groups (see Table 2). These 
advancements extend early intervention potential to preclinical stages. 
Mazzeo et al. (2023b) reported a protocol for a prospective cohort study 
of SCD patients, aiming to develop a model for predicting AD progression 
using machine learning by integrating multifaceted data including 
neuropsychological assessments, genetic analysis, EEG, and ERPs.

However, challenges remain in implementing these approaches for 
large-scale screening, including cost, generalizability, and invasiveness 
(Rossini et al., 2022). Many studies face limitations, including small 
sample sizes, short follow-up periods, and difficulties controlling diverse 
data in multimodal approaches. The variability and reproducibility of 
machine learning findings across facilities are also concerns. However, 
in SCD and SMC contexts, machine learning and deep learning models 
based on large-scale databases are becoming increasingly crucial for 
distinguishing between actual cognitive impairment and personal 
cognitive complaints.

5 Discussion

Herein, we reviewed the clinical implications of EEG approaches 
for the early screening of dementia risk in cognitively frail individuals.

Resting-state qEEG is a promising biomarker for SCD, SMC, and 
possibly CF. When adjusted for cognitive reserve factors, EEG slowing 
may detect frequency pattern changes and correlate with cognitive 
decline in high-risk individuals. Combining qEEG with AD pathology 
markers could enhance its predictive potential for AD progression 
(Spinelli et al., 2022).

Microstate analysis, functional connectivity analyses, and graph 
theory approaches may serve as early neural markers of dementia, 
revealing brain network alterations. These methods, especially when 
combined with cognitive tasks, can identify subtle functional changes 
before overt impairments manifest. Recent machine-learning approaches 
have shown promise in classifying amyloid status in SCD and MCI using 
EEG features (Kim et al., 2021).

ERP components, particularly P300 and MMN, may detect cognitive 
frailty in older adults when paired with cognitive tasks. However, their 
effectiveness is limited in pre-MCI states caused by subtle, multidomain 

cognitive decline. ERPs are more useful in detecting MCI and AD. As 
reviewed above, numerous studies have identified common EEG/ERP 
features in MCI and AD. Combining these with neuropsychological tests 
and AD biomarkers can improve diagnostic accuracy.

With the increase in young-onset dementia (YOD), EEG has shown 
potential for YOD diagnosis, particularly in early-onset AD and 
frontotemporal dementia. Studies highlight distinct EEG patterns, such 
as increased theta and delta activity in YOD, making EEG a valuable, cost-
effective tool for early detection and differentiation (Lin et  al., 2021; 
Brown et al., 2023).

However, clinical application of EEG faces methodological challenges. 
Evidence for EEG alone to predict dementia progression is insufficient 
compared with established AD biomarkers (Gouw et al., 2017; Jiao et al., 
2023). The absence of standardized guidelines for dementia-specific EEG 
limits the comparability and generalizability of results (Monllor et al., 
2021). Gender differences in dementia risk remain underexplored in EEG 
research on pre-dementia symptoms despite higher risk in women 
(Hayden et al., 2006; Chêne et al., 2015). Both EEG and fMRI alone show 
limited efficacy in distinguishing healthy older adults from MCI (Farina 
et  al., 2020), suggesting the need for multimodal integration (Li 
et al., 2024).

To overcome these limitations, we propose multi-center collaborative 
research, such as the “Dementia ConnEEGtome” project (Prado et al., 
2022). This approach, with 5-year follow-ups incorporating conventional 
diagnostic approaches, including AD pathology, could advance 
standardization, address methodological issues, and improve EEG’s 
reliability as an early AD biomarker.
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