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Alzheimer’s Disease (AD) is a neurodegenerative disorder marked by cognitive 
decline, for which effective treatments remain elusive due to complex pathogenesis. 
Recent advances in neuroimaging, gene therapy, and gut microbiota research offer 
new insights and potential intervention strategies. Neuroimaging enables early 
detection and staging of AD through visualization of biomarkers, aiding diagnosis 
and tracking of disease progression. Gene therapy presents a promising approach for 
modifying AD-related genetic expressions, targeting amyloid and tau pathology, and 
potentially repairing neuronal damage. Furthermore, emerging evidence suggests 
that the gut microbiota influences AD pathology through the gut-brain axis, 
impacting inflammation, immune response, and amyloid metabolism. However, 
each of these technologies faces significant challenges, including concerns about 
safety, efficacy, and ethical considerations. This article reviews the applications, 
advantages, and limitations of neuroimaging, gene therapy, and gut microbiota 
research in AD, with a particular focus on their combined potential for early 
diagnosis, mechanistic insights, and therapeutic interventions. We propose an 
integrated approach that leverages these tools to provide a multi-dimensional 
framework for advancing AD diagnosis, treatment, and prevention.
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1 Introduction

Alzheimer’s Disease (AD) represents a complex neurodegenerative disorder characterized 
by progressive cognitive decline and neurodegeneration, constituting the predominant form 
of dementia in aging populations (Scheltens et al., 2021). Marked by cognitive decline and 
neuronal damage, the disease is primarily linked to the abnormal accumulation of amyloid-
beta (Aβ) and the formation of neurofibrillary tangles (NFTs) (Yang et al., 2022; Taylor et al., 
2023; Ashrafian et al., 2021; Otero-Garcia et al., 2022). However, despite significant advances 
in neuroscience, the pathogenesis of AD remains incompletely understood.
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Currently, the diagnostic landscape for AD remains critically 
challenging. Current diagnostic practices primarily depend on clinical 
evaluations and neuropsychological assessments, which often fail to 
capture the subtle, early pathological changes associated with the 
disease (Atri, 2019; El Haj et al., 2023). This limitation highlights the 
urgent need for more effective diagnostic tools. Although symptomatic 
treatments, including cholinesterase inhibitors and N-methyl-d-
aspartate receptor antagonists, can provide temporary cognitive 
benefits, they do not halt or reverse the disease’s progression (Lista 
et al., 2023; Companys-Alemany et al., 2022). Thus, the exploration of 
novel approaches is critical.

In recent years, neuroimaging techniques, gene therapy, and gut 
microbiota have emerged as three hotspots in research, showing 
significant promise in the treatment and prevention of AD, thus 
attracting widespread attention and exploration. Neuroimaging 
techniques can visualize early biomarkers and specific imaging 
changes associated with AD, thereby enhancing diagnostic accuracy 
and sensitivity. For example, imaging modalities can detect Aβ 
deposition and NFTs distribution, allowing for the localization of 
affected brain regions and monitoring of neuronal activity and 
metabolic changes. Gene therapy could intervene in the pathogenesis 
of AD by altering the expression or function of AD-related genes. 
Strategies may include reducing Aβ production, enhancing its 
clearance, inhibiting the formation of NFTs, promoting their 
degradation, and repairing damaged neurons, as well as modulating 
immune and inflammatory responses (Bhardwaj et al., 2022; Griciuc 
et  al., 2020). Additionally, the gut microbiota may influence the 
pathogenesis of AD through the gut-brain axis, affecting Aβ 
metabolism, modulating immune responses, and influencing 
neurotransmitter and neurotrophic factor levels, which could 
contribute to the prevention of AD development (Kesika et al., 2021; 
Das and Ganesh, 2023).

This article aims to review the comprehensive applications and 
progress of neuroimaging techniques, gene therapy, and gut 
microbiota in AD research. We will analyze their respective advantages 
and limitations, exploring the potential for synergistic effects among 
these approaches. Such integration could open new pathways for AD 
research and treatment, paving the way for individualized and 
comprehensive therapeutic strategies.

2 Applications of neuroimaging 
techniques in AD research

2.1 Overview of neuroimaging techniques

Neuroimaging techniques refer to the use of various imaging 
methods, such as Magnetic Resonance Imaging (MRI), Positron 
Emission Tomography (PET), and Single Photon Emission Computed 
Tomography (SPECT), to observe and analyze structural and 
functional changes in the nervous system (Risacher and Saykin, 2021).

Among these, MRI has emerged as one of the most commonly 
used and versatile methods in neuroimaging. Specifically, there are 
several specialized MRI techniques that have revolutionized AD 
research: It leverages magnetic fields and radiofrequency pulses to 
produce high-resolution anatomical images (Chen and Steckner, 
2017). Recent advancements in MRI enable it to reveal detailed 
microstructural changes, particularly relevant to AD, through various 

specialized techniques and sequences. For example, Diffusion Tensor 
Imaging (DTI) and Diffusion Weighted Imaging (DWI) provide 
insights into white matter integrity and connectivity by measuring 
water molecule diffusion along neural pathways, helping to detect 
axonal and myelin damage associated with AD (Leandrou et al., 2018). 
Susceptibility-Weighted Imaging (SWI) enhances visualization of iron 
deposits in brain regions affected by AD (Rashid et al., 2021), while 
Arterial Spin Labeling (ASL) non-invasively measures cerebral blood 
flow (Zhang et  al., 2021). Furthermore, functional MRI (fMRI) 
monitors changes in brain oxygen levels to study brain function 
(Sheline and Raichle, 2013). Through Blood Oxygen Level Dependent 
(BOLD) imaging, fMRI evaluates functional connectivity within brain 
networks, shedding light on alterations in AD that affect cognitive 
processes and network synchrony (Arbabyazd et al., 2023).

Beyond MRI, PET, and SPECT are also widely used in AD 
research, providing quantitative information about neuronal function 
and metabolism (Xiang et al., 2021; Colloby et al., 2016). PET uses 
radiolabeled tracers such as fluorodeoxyglucose (FDG) to assess 
glucose metabolism (Park et al., 2023), Aβ tracers to measure amyloid 
deposits (Chouliaras et al., 2022), and tau-specific tracers to reveal 
NFTs (Wagatsuma et al., 2023), thus enabling direct evaluation of AD’s 
hallmark pathology. Similarly, SPECT offers valuable insights into 
regional cerebral blood flow and dopamine receptor activity, which 
are disrupted in AD. MRS enables the measurement of metabolic 
compounds such as N-acetylaspartate, glutamate, and myo-inositol, 
which serve as indicators of neuronal health, neuroinflammation, and 
glial activity, providing insights into AD-related metabolic 
disturbances (Chaney et al., 2021). EEG, a cost-effective technique, 
records electrical activity, reflecting synaptic function and neural 
oscillations that correlate with cognitive impairment in AD (Gaubert 
et  al., 2019). Near-Infrared Spectroscopy (NIRS), although less 
frequently used in AD, enables non-invasive monitoring of cortical 
oxygenation changes in real time, with applications in functional 
connectivity studies (Canova et al., 2012).

2.2 The application of neuroimaging 
techniques in AD research and clinical 
practice

2.2.1 Early diagnosis and staging of AD
Structural neuroimaging techniques, including CT and MRI, 

reveal morphological changes in the brains of AD patients, such as 
widened cerebral sulci, enlarged ventricles, and atrophy of the 
hippocampus and entorhinal cortex (Jang et al., 2022; Yang et al., 
2021). MRI, particularly with high-resolution T1-weighted imaging 
(Frisoni, 2001), can visualize subtle changes in the hippocampus and 
temporal lobe regions associated with early AD (Hampel et al., 2002; 
De Santi et al., 2001; Josephs et al., 2008). DTI and DWI assess white 
matter integrity and microstructural changes (Jin et al., 2017; Dou 
et al., 2020), while MRI can quantify gray matter atrophy rates through 
volumetric analysis (Upadhyay et  al., 2016; Rahman et  al., 2020). 
Additionally, multi-parameter MRI enables simultaneous 
measurement of brain atrophy, white matter changes, and vascular 
integrity, enhancing diagnostic sensitivity for early AD (Zhang and 
Liu, 2018).

Integration and machine learning improve the accuracy and 
sensitivity of early diagnosis and staging (Chételat, 2018). Multimodal 
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integration combines MRI, PET, and MRS to correlate structural and 
functional data, providing an enriched view of AD progression. For 
instance, Sheng et al. (2024) proposed a multimodal machine learning 
framework that integrates various neuroimaging techniques with 
biomarkers to utilize complementary multimodal data for enhancing 
AD diagnosis (Table 1).

2.2.2 A biomarker development and validation
Neuroimaging techniques have revolutionized our ability to detect 

and monitor AD biomarkers in vivo, offering a comprehensive multi-
modal approach to understanding AD pathology. These techniques 
can be broadly categorized into structural, functional, and molecular 
imaging modalities, each providing distinct yet complementary 
information about AD pathophysiology:

Positron Emission Tomography is a powerful technique, allowing 
for the visualization of AD-specific pathological processes (Wang 
et al., 2023). Most significantly, PET imaging with specific tracers, 
such as Aβ ligands and tau ligands, enables the direct and quantitative 
measurement of Aβ and tau tangles (Ruan and Sun, 2023; Chandra 
et al., 2019). Furthermore, fluorine-18 labeled FDG-PET is used to 
evaluate brain glucose metabolism, which serves as a proxy for 
neuronal activity, highlighting regions of hypometabolism that are 
frequently associated with AD (Albert et al., 2011). Levin et al. (2021) 
have used FDG-PET as a sensitive molecular imaging biomarker to 
explore data-driven subtypes of neurodegenerative changes in AD, 
identifying three main subtypes of metabolic decline. Another tracer, 
18F-FEBMP, has been used by Ji et  al. (2021) to assess 
neuroinflammation in AD, finding it to be an ideal PET ligand for 
detecting neuroinflammation associated with AD.

In terms of biomarker development, MRI can reveal the 
connectivity and integration of brain structures and functions and 
their relationships with cognitive reserve, cognitive training, sleep 
quality, etc. (Choe et al., 2019; Thams et al., 2020). Structural MRI 
(sMRI) using T1-weighted imaging enables precise measurements of 
brain atrophy patterns, with studies showing that medial temporal 
lobe atrophy can predict conversion from mild cognitive impairment 
to AD with 80–85% accuracy (Blamire, 2018). Specific sequences or 
techniques, such as DTI, fMRI, and MRS, are used to assess changes 
in neuronal connections, brain function, and metabolism in AD. A 
systematic review based on DTI showed that AD patients mainly 
exhibit extensive microstructural damage, structural discontinuities, 
and topological abnormalities in areas like the corpus callosum, 
cingulum, and medial temporal lobe, including the hippocampus and 
cingulate. Advanced diffusion imaging techniques, particularly 
neurite orientation dispersion and density imaging (NODDI), have 
elucidated distinct patterns of white matter degeneration in AD by 
providing insights into neurite complexity and orientation dispersion 
(Veale et  al., 2021). These metrics reveal that neurodegenerative 
processes, characterized by reduced neurite density and altered fiber 
organization, predominantly affect key regions such as the mesial 
and lateral temporal lobes (Sone et  al., 2020). The diffusion 
characteristics and structural connectomics of specific regions can 
provide information for early auxiliary identification of AD (Chen 
et  al., 2023). Khatri and Kwon (2022) have combined sMRI and 
resting-state functional MRI (rs-fMRI) for efficient biomarker 
diagnosis and classification of AD, crucial for accurate diagnosis at 
the initial stages. MRS has shown reduced N-acetylaspartate/creatine 
ratios in the anterior cingulate region, indicating neuronal 

TABLE 1 Overview of neuroimaging techniques in Alzheimer’s Disease research and clinical practice.

Neuroimaging 
technique

Clinical application Advantages Limitations References

MRI Structural imaging of brain 

atrophy in AD

High spatial resolution; non-

invasive; widely available

Limited in detecting early 

changes; requires patient 

compliance

Risacher and Saykin (2021), Jang et al. 

(2022), Yang et al. (2021), Upadhyay et al. 

(2016), Rahman et al. (2020), and Zhang 

and Liu (2018)

fMRI Functional connectivity 

studies in AD

Real-time monitoring of brain 

activity; assesses cognitive 

processes

Susceptible to motion 

artifacts; indirect measure of 

neuronal activity

Sheline and Raichle (2013) and Arbabyazd 

et al. (2023)

PET Assessment of amyloid and tau 

pathology

Provides quantitative measures of 

specific biomarkers

High operational costs; 

radiation exposure; limited 

accessibility

Park et al. (2023), Chouliaras et al. (2022), 

and Wagatsuma et al. (2023)

SPECT Evaluation of cerebral blood 

flow and neurotransmitter 

activity

Useful for assessing perfusion 

changes; relatively easy to 

perform

Lower resolution than PET; 

challenges in quantitative 

analysis

Herholz (2011), Sala et al. (2021), 

Marcolini et al. (2022), David et al. (2008), 

and Depboylu et al. (2013)

DTI and DWI Assessment of white matter 

integrity

Detects microstructural changes; 

sensitive to axonal injury

Interpretation can be complex; 

influenced by other pathology

Leandrou et al. (2018), Jin et al. (2017), 

and Dou et al. (2020)

MRS Measurement of metabolic 

compounds

Non-invasive; provides insight 

into neuronal health and 

metabolism

Limited spatial resolution; 

specific expertise required for 

analysis

Chaney et al. (2021) and Yeh et al. (2018)

EEG Monitoring electrical activity 

associated with cognition

Cost-effective; excellent temporal 

resolution

Poor spatial resolution; 

difficult to localize activity

Gaubert et al. (2019)

NIRS Non-invasive monitoring of 

cortical oxygenation changes

Real-time data acquisition; useful 

for functional connectivity studies

Less commonly used; limited 

depth of penetration

Canova et al. (2012)
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dysfunction even before structural changes become apparent (Yeh 
et al., 2018).

While less commonly used than PET or MRI, SPECT offers the 
ability to use various tracers to assess changes in cerebral perfusion 
and neurotransmitter dynamics in AD (Herholz, 2011; Sala et al., 
2021). For example, SPECT can show changes in cerebral blood flow 
and neuronal metabolism (Herholz, 2011; Marcolini et al., 2022), as 
well as their relationships with mood disorders, stress responses, 
antioxidants, etc. (David et al., 2008; Depboylu et al., 2013). Jeong 
et  al. (2022) used SPECT scanning to investigate the association 
between regional cerebral blood flow in early AD and neuropsychiatric 
symptom domains, finding that scores in all neuropsychiatric 
symptom domains showed correlations with differences in cerebral 
perfusion. Moreover, SPECT can reveal significant reductions in 
dopamine receptors in areas such as the basal ganglia and frontal lobe 
in AD patients, related to neuronal functional impairment (Bajaj et al., 
2013) (Table 1).

2.2.3 Therapeutic monitoring and disease 
progression

The ability to monitor treatment response and track disease 
progression is crucial for both clinical trials and patient care. 
Neuroimaging provides objective measures for these assessments:

Therapeutic response monitoring: For example, a study using MRI 
technology found that BACE inhibitors can cause rapid, regional, and 
non-progressive reductions in brain volume in AD patients (Sur et al., 
2020). Specifically, volumetric MRI analyses indicated a significant 
increase in brain volume loss associated with verubecestat treatment, 
particularly in amyloid-rich regions, with the most pronounced 
hippocampal volume reduction occurring within the first 13 weeks, 
although no further loss was observed through 78 weeks and without 
corresponding cognitive decline (Sur et al., 2020). Similarly, another 
study using PET technology found that plasma exchange could 
enhance brain metabolism and perfusion in AD patients, especially in 
cognitively relevant areas such as the temporal and parietal lobes 
(Cuberas-Borrós et al., 2022). Therefore, neuroimaging techniques can 
assess not only the effects of pharmacological treatments in AD but 
also the outcomes of non-pharmacological therapies.

Disease progression and predictive modeling: A study by Li et al. 
(2018) utilizing MRI and PET technologies found that prognostic 
models based on multiple longitudinal measurements and time-to-
event data could accurately predict cognitive abilities and mortality risks 
in AD patients. This finding suggests that neuroimaging techniques can 
provide critical references for the personalized management and 
intervention of AD patients. Building on this, another study using MRI 
technology discovered that a model based on deep recurrent neural 
networks could effectively predict treatment responses and outcomes in 
AD patients (Jung et al., 2021). Thus, neuroimaging techniques also 
offer powerful tools and methods for the personalized treatment and 
evaluation of AD patients, enhancing the ability to tailor interventions 
to individual needs and monitor their efficacy over time.

2.3 Current challenges and future 
directions

While neuroimaging has revolutionized AD research and clinical 
practice, several significant challenges remain:

Specificity and differential diagnosis: although neuroimaging can 
observe abnormal changes in brain structure and function in AD 
patients, these changes are not entirely specific and may overlap with 
other neurodegenerative diseases such as Parkinson’s Disease (Carey 
et al., 2021) and Huntington’s Disease (Estevez-Fraga et al., 2020) or 
even the normal aging process (Schilling et al., 2022; Blinkouskaya 
et al., 2021). Consequently, relying solely on neuroimaging techniques 
is insufficient for accurate diagnosis of AD. It necessitates integration 
with other clinical assessment indicators, such as biological markers, 
to enhance diagnostic precision (Graff-Radford et al., 2021).

Technical limitations: current imaging technologies face several 
modality-specific challenges. While PET imaging provides valuable 
molecular insights, its widespread application is constrained by high 
operational costs, limited accessibility, radiation exposure concerns, 
and the inherent challenge of short tracer half-lives (Berg and Cherry, 
2018). Similarly, SPECT imaging, though useful for assessing cerebral 
perfusion, is hampered by its relatively lower resolution, challenges in 
image quality, and difficulties in achieving precise quantitative analysis 
(Livieratos, 2015). The resolution of commonly used neuroimaging 
techniques like MRI and EEG is still limited in terms of observing the 
minute structural and functional changes characteristic of early AD 
(Kim et al., 2022). These techniques cannot directly detect the neural 
origins of brain volume or thickness loss, nor distinguish whether the 
loss is due to cell death or the loss of dendrites and synapses (Márquez 
and Yassa, 2019). Additionally, the need for processing and analyzing 
large volumes of data poses a challenge in terms of the accuracy and 
stability of data handling and statistical analysis, which demands high 
technical proficiency from researchers (Qiu et al., 2020).

Practical implementation barriers: the cost of neuroimaging 
technology poses a significant challenge. High-resolution brain 
imaging equipment and the training of specialized personnel require 
substantial investments, making neuroimaging techniques less 
accessible in regions with limited resources and medical facilities.

Key priorities include improving the resolution and accuracy of 
these technologies, reducing costs, and facilitating broader application 
of neuroimaging techniques in both AD research and clinical practice.

3 Gene therapy in AD research

Gene therapy represents a promising therapeutic approach for 
AD, operating through the delivery of target genes into the cells of a 
patient via a transduction vector, enabling the production of required 
proteins or the correction of abnormal gene expression (Brody, 2018), 
ultimately achieving stable expression of the target genes in the 
patient’s body. Currently, the main vectors used in AD gene therapy 
include adeno-associated virus (AAV), lentivirus, and non-viral 
vectors, each with distinct advantages in terms of targeting efficiency, 
safety profile, and expression duration (Mendell et al., 2021).

3.1 Therapeutic applications in AD

3.1.1 Targeting genetic risk factors
The genetic factors in AD include pathogenic genes and risk genes, 

which can promote or inhibit the development of AD by affecting the 
metabolism of Aβ or tau proteins, or influencing pathways such as 
immune responses, inflammatory responses, and oxidative stress 
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(Scheltens et al., 2021; Jansen et al., 2019). High-throughput sequencing 
studies have revealed that early-onset AD is primarily associated with 
mutations in APP, PSEN1, and PSEN2, while late-onset AD involves 
complex interactions among multiple risk genes (Bertram and Tanzi, 
2012). Recent genome-wide association studies (GWAS) and exome 
sequencing have identified multiple genetic variants associated with AD 
risk, such as rare variants in genes like NOTCH3, TREM2, SORL1, 
ABCA7, ATP8B4, and ABCA1 (Khani et al., 2022; Bellenguez et al., 
2022; Holstege et al., 2022). Gene therapy could target these genetic 
variants using gene editing techniques like the CRISPR/Cas9 system or 
gene transfer methods to correct or alter the function of these risk genes, 
thus reducing the risk of developing AD (Bhardwaj et  al., 2022; 
Thompson, 2024). For example, genome editing of the APP gene’s 
3’-UTR in a humanized knock-in mouse model led to reduced Aβ 
pathology, highlighting the efficacy of CRISPR/Cas9  in mitigating 
Alzheimer’s Disease through protective mutations (Nagata et al., 2018). 
One study demonstrated that the CRISPR/Cas9 system could knock out 
the Swedish APP mutation in fibroblasts derived from patients, resulting 
in a 39% reduction in Aβ levels (György et al., 2018). The APOE gene, 
particularly the APOE4 allele, is the strongest genetic risk factor for 
sporadic AD (Zhao et al., 2020) and serves as a significant biomarker 
for disease susceptibility (Farrer et al., 1997), making it an important 
target for gene therapy in AD. Lin et al. (2018) used the CRISPR/Cas9 
system in iPSC-derived organoids to convert APOE4 to APOE3, which 
alleviated multiple AD-related pathologies. Hudry et  al. (2013) 
introduced APOE2 into AD model mice using AAV, reducing the 
accumulation of Aβ deposits and suggesting that gene transfer to reduce 
APOE4 or increase APOE2 could help inhibit the progression of AD.

Moreover, gene therapy can also target the expression of specific 
molecular targets. For example, a therapy strategy based on 
AAV-mediated knockdown of the CD33 gene successfully reduced the 
Aβ plaque burden in APP/PS2 mice and significantly lowered levels 
of the chemokine Ccl33 and the pro-inflammatory factor TNF-α 
(Griciuc et al., 2020). Wang et al. (2016) found that intramuscular 
delivery of AAV-p75ECD increased the levels of p75ECD in the blood, 
significantly improving the behavioral phenotype of APP/PS1 

transgenic mice, reducing brain amyloid burden, decreasing tau 
hyperphosphorylation, and attenuating neuroinflammation. Another 
study found that inducing the AD-like phenotype in normal mice via 
MST1, and knocking down or chemically inactivating MST1 
significantly improved cognitive deficits and neuronal apoptosis in 
7-month-old 5xFAD mice (Wang et al., 2022) (Table 2).

3.1.2 Neuroprotection and neural circuit repair in 
AD

In the context of AD, the concepts of neuroprotection and repair 
refer to interventions designed to slow down or reverse the process of 
neuronal damage (Wareham et al., 2022). In a multicenter Phase II 
trial, AAV2-NGF delivery was tested in AD patients. While 
AAV2-NGF delivery was well tolerated, it did not affect clinical 
outcomes or selected AD biomarkers (Rafii et  al., 2018). Further 
analysis revealed that nerve growth factor (NGF) did not directly 
reach any cholinergic neurons at the injection site, indicating the need 
for improved vector delivery (Castle et al., 2020). More encouraging 
results have emerged from preclinical studies. In experiments with 
mice, Xiao et al. (2023) found that early hippocampal delivery of AAV 
carrying the gene for Neurotrophic factor-α1/Carboxypeptidase E 
(NF-α1/CPE) in 3xTg-AD male mice could prevent the later 
development of cognitive deficits, neurodegeneration, and excessive 
tau phosphorylation. Additionally, Sun et  al. (2019) used the 
CRISPR-Cas9 system to introduce an early stop codon at the extreme 
C-terminus of the APP gene, inhibiting β-cleavage and Aβ production 
while promoting α-cleavage, which has neuroprotective effects. Park 
et al. (2019) used a CRISPR-Cas9 nanoparticle complex that effectively 
crossed the blood–brain barrier (BBB), entered neurons in adult mice, 
and produced high-frequency indels at target sites in the BACE1 gene, 
thereby reducing BACE1 expression and activity. This alleviated 
Aβ-related pathology and cognitive deficits in two AD mouse models 
(5XFAD and APP knock-in). Singer et al. (2005) used a lentiviral 
vector expressing siRNA targeting BACE1 to reduce BACE1 levels, 
thereby decreasing amyloid production as well as neurodegenerative 
and behavioral deficits in APP transgenic mice.

TABLE 2 Applications of genetic interventions in Alzheimer’s Disease treatment.

Gene/
target

Application Mechanism/outcome References

APP Gene editing Reduces Aβ pathology; mitigates Alzheimer’s Disease through protective mutations Nagata et al. (2018) and György et al. 

(2018)

APOE Gene therapy Conversion of APOE4 to APOE3 alleviates AD-related pathologies Lin et al. (2018) and Hudry et al. (2013)

CD33 AAV-mediated 

knockdown

Reduces Aβ plaque burden and pro-inflammatory factors; improves cognitive function Griciuc et al. (2020) and Griciuc et al. 

(2019)

BACE1 Gene silencing Decreases amyloid production and neurodegeneration; improves behavioral deficits Park et al. (2019) and Singer et al. (2005)

NGF Neuroprotective 

therapy

Promotes neuronal survival and reduces degeneration; may improve cognitive function Rafii et al. (2018)

BDNF Gene delivery Enhances synaptic plasticity; reduces neuronal loss and synaptic degeneration Jiao et al. (2016) and Arora et al. (2022)

TREM2 Gene knockout Reduces microglial activation and neurodegenerative changes Leyns et al. (2017)

IL-4, IL-10, 

TGF-β

Plasmid delivery Modulates inflammatory responses; improves spatial memory performance in AD 

models

Yoo (2022)

MST1 Knockdown Improves cognitive deficits and reduces neuronal apoptosis in AD models Wang et al. (2022)

Rheb Gene transfer Activates neurotrophic pathways; enhances neuron survival in vivo Jeon et al. (2020)
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Synaptic plasticity is crucial for restoring cognitive function in AD 
patients (Cuestas Torres and Cardenas, 2020). A key focus has been on 
neurotrophic factors, particularly Brain-Derived Neurotrophic Factor 
(BDNF), which plays multiple crucial roles: BDNF plays a key role in 
promoting nerve growth and maturation, as well as regulating synaptic 
transmission and plasticity in adulthood (Edelmann et al., 2015; Mizui 
et al., 2015). However, exogenous BDNF delivery is limited due to its 
short plasma half-life and limited diffusion across the BBB (Zuccato 
and Cattaneo, 2009; Pardridge et  al., 1994). A study delivered the 
BDNF gene to the brains of P301L transgenic mice via AAV, resulting 
in stable expression of BDNF, prevention of neuronal loss, reduction 
in synaptic degeneration, and fewer neuronal abnormalities (Jiao et al., 
2016). Arora et al. (2022) used safer nanoparticles to deliver a plasmid 
encoding BDNF to the brains of APP/PS1 mice, significantly reducing 
Aβ and amyloid plaque loads and notably improving synaptic 
plasticity. NGF is vital for the survival, maintenance, and regeneration 
of specific neuron populations in the adult brain (Allen et al., 2013). 
Hohsfield et al. (2013) demonstrated that lentiviral infection could 
successfully transduce primary rat monocytes and produce effective 
NGF secretion. Additionally, AAV-2 has been used for NGF delivery, 
and studies have shown this to be feasible and well-tolerated (Rafii 
et  al., 2014). A study using AAV1-Rheb (S16H) transduced 
hippocampal neurons induced reactive astrocytes, which produced 
Ciliary Neurotrophic Factor (CNTF) by activating astrocytic TrkB and 
upregulating neuronal BDNF and astrocytic CNTF, synergistically 
aiding the survival of hippocampal neurons in vivo (Jeon et al., 2020). 
Recent research has also shown that AAV11 can effectively retrogradely 
target projection neurons and enhance astrocytic targeted 
transduction, making AAV11 a promising tool for mapping and 
manipulating neural circuits, as well as for gene therapy in neurological 
and neurodegenerative diseases (Han et al., 2023) (Table 2).

3.1.3 Immunomodulation and neuroinflammation 
suppression in AD

Recent genetic studies have highlighted the critical role of immune-
related genes in AD, opening new avenues for therapeutic intervention. 
GWAS have identified genetic loci associated with AD, including those 
related to immune responses and microglia, such as CD33 
(Hollingworth et al., 2011; Bertram et al., 2008) and TREM2 (Guerreiro 
et al., 2013; Jonsson et al., 2013). Griciuc et al. (2019) have demonstrated 
that knocking out CD33 attenuated Aβ pathology and improved 
cognitive functions in 5xFAD mice. Additionally, using AAV to deliver 
artificial microRNAs targeting CD33 into APP/PS1 mice reduced CD33 
mRNA levels in brain extracts, as well as TBS-soluble Aβ40 and Aβ42 
levels, which are beneficial for mitigating the AD pathological process 
(Griciuc et al., 2020). Contrary to CD33, in mouse models of tauopathy, 
knocking out TREM2 reduced microglial activation and improved 
neurodegenerative changes (Leyns et al., 2017), indicating that further 
research is needed on targeting TREM2 for AD gene therapy.

Beyond microglial targets, gene therapy can be used to modulate 
the expression of inflammatory factors such as TNF-α, IL-2, and IL-4, 
effectively treating AD. Griciuc et al. (2020) used AAV to encode 
artificial microRNAs targeting CD33 in APP/PS1 mice, significantly 
downregulating pro-inflammatory factors like Tlr4, Ccl2, and TNF-α.

Oxidative stress and chronic neuroinflammation are among the 
earliest biochemical changes that trigger AD (Prasad, 2017). These 
early changes present potential therapeutic windows for intervention. 
Evidence suggests that these early biochemical changes in AD are 

regulated by small non-coding microRNAs (miR/MiR) (Hernandez-
Rapp et al., 2017). Furthermore, most of the upregulated pathogenic 
genes in AD are under the transcriptional control of pro-inflammatory 
mediators (Zhao et  al., 2016). Studies in patient populations have 
shown that genetic deficiencies in cytokines like IL-4 and IL-10 
increase susceptibility to AD (Li et al., 2014; Su et al., 2016; Babić Leko 
et al., 2020). Building on this understanding, one study introduced 
plasmids encoding IL-10, IL-4, TGF-β, or their combination into AβPP 
mice, resulting in downregulated neuroinflammation and improved 
spatial memory performance in these mice (Yoo, 2022) (Table 2).

3.2 Challenges and future considerations

A primary concern in gene therapy development is the safety and 
effectiveness. Gene therapy may cause non-specific or non-targeted 
editing of the genome, leading to genomic instability or oncogenicity 
(Goswami et al., 2019). The effectiveness of gene therapy may also 
be affected by factors such as the selection of gene vectors, transduction 
efficiency, expression level and duration (Cecchin et al., 2023).

Second, the targeting and specificity of gene therapy need to 
be further improved. Gene therapy needs to precisely deliver genes to 
damaged neurons or related glial cells to avoid damage to normal cells 
or tissues (Sudhakar and Richardson, 2019). Additionally, gene 
therapy must take into account the heterogeneous and multifactorial 
nature of AD and select appropriate genes and combination strategies 
to achieve the best therapeutic outcome. Beyond technical challenges, 
the ethical and social aspects of gene therapy need to be  further 
explored, particularly regarding germline modifications and long-
term effects on future generations.

4 Application of gut microbiome in AD

4.1 Overview of gut microbiota

The gut microbiota constitutes a complex ecosystem together with 
the host, playing a crucial role in digestion, metabolism, immunity, 
and neuroendocrine functions. It is also linked to the development of 
various diseases, including obesity, diabetes, inflammatory bowel 
diseases, cancer, and neurodegenerative diseases (Lin and Medeiros, 
2023; Shi et al., 2023). Recent research has revealed the profound 
influence of gut microbiota on neurological function through the 
gut-brain axis, suggesting a novel pathway for understanding and 
treating AD. Studies have demonstrated that alterations in the gut 
microbiome can significantly impact brain function and may 
contribute to neurodegenerative processes through the gut-brain axis 
(Kesika et al., 2021; Tan et al., 2022).

4.2 Gut microbiota in AD pathogenesis

4.2.1 Clinical evidence and epidemiological 
insights

AD is a multifactorial disease influenced by genetic 
predispositions and environmental factors throughout a person’s life 
(Zhang et  al., 2021). Emerging evidence has established strong 
connections between gut dysbiosis and AD development, with 
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multiple pathways linking intestinal health to cognitive function. 
Studies have shown that dysbiosis can lead to is associated with 
conditions that increase AD risk, including type 2 diabetes (Ma et al., 
2019; Yang et al., 2021), cardiovascular diseases (Rahman et al., 2022; 
Tang et al., 2019), and hyperhomocysteinemia (Rosario et al., 2021). 
Notably, research has demonstrated that dietary interventions aimed 
at correcting gut dysbiosis can prevent Alzheimer’s Disease, 
indicating that modulation of the gut microbiota can improve AD 
symptoms (van den Brink et al., 2019; Nagpal et al., 2019). Recent 
molecular analyses have provided compelling evidence for these 
connections. Liu et  al. (2019) found that the AD patients show 
distinct gut microbiota compositions that correlated directly with 
cognitive impairments. This finding has been further supported by 
16S ribosomal RNA gene sequencing, which identified similar gut 
microbiota profiles between AD and MCI patients, profiles that differ 
significantly from those of healthy individuals (Li et  al., 2019). 
Adding to this evidence, researchers have found that changes in gut 
microbiota of AD patients linked to their peripheral inflammatory 
status (Cattaneo et  al., 2017), while Haran et  al. (2019) used 
metagenomic sequencing to identify an increase in pro-inflammatory 
bacteria in the fecal microbiota of AD patients.

4.2.2 Molecular mechanisms and biomarker 
correlations

Firstly, the gut microbiota can influence the regulation of the 
immune system, thereby altering the interactions between the 
immune and nervous systems. The gut microbiota can produce 
metabolites with pro-inflammatory or anti-inflammatory properties, 
such as short-chain fatty acids (SCFAs), lipopolysaccharides (LPS), 
and amino acids (Alkhalaf and Ryan, 2015). These metabolites can 
enter the brain through the BBB or the vagus nerve, affecting the 
activity of neurons and glial cells, thus inducing or inhibiting the 
occurrence of neuroinflammation (Chen et al., 2022; Xu et al., 2023). 
In the case of microbial dysbiosis, the expression of trigger receptors 
(TREM-1/2) on bone marrow cells has been described as linking the 
inflammation process between the gut and neurodegenerative diseases 
through the microbiota-gut-brain axis (Natale et al., 2019).

Secondly, the gut microbiota can directly or indirectly affect the 
production and clearance of Aβ. On one hand, the gut microbiota can 
regulate the synthesis and metabolism of bile acids, influencing 
cholesterol levels in the liver, and subsequently in the brain (Wahlström 
et al., 2016). Cholesterol not only regulates the synthesis of Aβ but also 
controls the interaction between Aβ and neuronal cell membranes. 
Therefore, an increase in cholesterol levels can promote the production 
and accumulation of Aβ in the brain (Lockhart and Klimov, 2017). On 
the other hand, the gut microbiota can produce metabolites with 
antioxidant, anticoagulant, and blood pressure-regulating effects, such 
as SCFAs, vitamin K, and hydrogen sulfide, which can affect the function 
and permeability of cerebral blood vessels, thus influencing the clearance 
of Aβ (Koszewicz et al., 2021). Moreover, when the gut microbiota is 
disrupted, pathogenic microbes may replace normal microbes and break 
through the compromised barriers (Olsen and Yamazaki, 2019), 
ultimately entering the brain tissue, inducing inflammation and affecting 
the pathological process of AD (Dando et al., 2014).

What’s more, the gut microbiota can produce or consume 
precursors or antagonists of neurotransmitters, such as tryptophan, 
tyrosine, gamma-aminobutyric acid (GABA), dopamine, and 
serotonin (5-HT) (Collins et al., 2012). These neurotransmitters can 

enter the brain through the BBB or the vagus nerve, influencing the 
excitability or inhibition of neurons, thus affecting cognitive functions 
such as memory, learning, and mood, ultimately leading to cognitive 
impairment (De-Paula et al., 2018).

Finally, oxidative stress is one of the important causes of AD 
pathology progression (Bai et al., 2022; Plascencia-Villa and Perry, 2021). 
Gut bacteria such as bifidobacteria and lactobacilli convert nitrates and 
nitrites into nitric oxide (NO), increasing the release of NO from host 
epithelial cells (Oleskin and Shenderov, 2016). Streptococci and bacilli 
can also produce NO from l-arginine using nitric oxide synthase (Tiso 
and Schechter, 2015). Furthermore, pathogens such as Salmonella typhi, 
Escherichia coli, and Mycobacterium can produce hydrogen sulfide from 
sulfur-containing amino acids (such as cysteine) in the gastrointestinal 
tract. High concentrations of hydrogen sulfide can inhibit cyclooxygenase 
activity, thereby altering glycolytic metabolism, reducing mitochondrial 
oxygen consumption, decreasing ATP production, and overexpressing 
pro-inflammatory effects (Leschelle et al., 2005; Beaumont et al., 2016). 
Thus, the gut microbiota can promote the development of AD directly 
through oxidative stress or indirectly through promoting 
neuroinflammation (Bhatt et al., 2020; Łuc et al., 2021).

Beyond these molecular mechanisms, recent studies have 
revealed important correlations between gut microbiota and AD 
biomarkers. Gut microbial communities are also closely related to 
biomarkers of AD. Liu et  al. (2019) found that enriched 
Enterobacteriaceae could be used as markers of AD. Meanwhile, Lu 
et al. (2024) reported that specific metabolites of intestinal flora, 
such as indole lactic acid, indole-4-acetaldehyde, and l-proline, 
could be used as early warning markers of MCI due to AD, and 
Marizzoni et al. (2020) showed that the metabolites of intestinal 
microbial communities, LPS and SCFA, were associated with 
amyloid load and brain amyloid deposition in AD patients. 
Additionally, biomarkers in cerebrospinal fluid, such as tau protein 
and Aβ42, are key elements in the pathophysiology of AD (Blennow 
and Zetterberg, 2018).

4.3 The potential of gut microbiota 
regulation in AD research

While multiple studies have confirmed the association between 
gut microbiota and AD, three main therapeutic approaches have 
shown promise in targeting this connection.

Firstly, some studies suggest that probiotics and prebiotics can 
improve cognitive functions and neuroinflammation in AD patients 
(Kim et al., 2021). Many probiotics have been used in animal studies 
and AD models. For instance, in rats, administration of 
Bifidobacterium and Lactobacillus has shown positive effects on AD 
treatment, improving memory, learning deficits, and oxidative stress 
(Azm et al., 2018). In AD mouse models, Bifidobacterium breve strain 
A1 has been shown to block Aβ-induced cognitive dysfunction and 
inhibit gene expression changes in the hippocampus induced by Aβ 
(Kobayashi et  al., 2017). Additionally, a clinical trial found that 
administering a probiotic formulation containing Lactobacillus and 
Bifidobacterium to AD patients could lower serum C-reactive protein 
levels and improve scores on the Mini-Mental State Examination 
(Akbari et al., 2016). These findings from both animal and human 
studies highlight the therapeutic potential of probiotics, though more 
clinical trials are needed.
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Secondly, Fecal Microbiota Transplantation (FMT). FMT involves 
transferring the fecal microbiota from a healthy individual to the gut 
of a recipient to restore intestinal microbial balance (Gupta and 
Khanna, 2017). For example, Sun et  al. (2019) found that FMT 
treatment could improve cognitive deficits and reduce Aβ deposition 
in the brains of APP/PS1 mice. Kim et  al. (2020) discovered that 
cognitive deficits caused by Aβ and NFTs deposition could 
be improved through FMT from healthy mouse donors. While these 
preclinical results are promising, human studies are still limited. These 
results suggest that FMT might serve as a novel therapeutic approach 
by modulating the gut microbiota to influence the progression of AD, 
but more research is needed to verify its effects, mechanisms, and 
applications in humans. Moreover, since fecal microbiota 
transplantation is an invasive method, other less invasive approaches 
such as dietary intervention strategies should be tried first.

The role of antibiotics in AD treatment remains controversial, 
with studies showing both beneficial and detrimental effects. 
Antibiotic interference with the gut microbiota could disrupt the 
balance of the microbiota-gut-brain axis, thus affecting the 
occurrence and progression of AD. Some studies have found that the 
use of antibiotics can improve the symptoms and pathology of AD, 
possibly through mechanisms such as reducing gut and systemic 
inflammation, reducing the production and deposition of Aβ, 
increasing the expression of neuroprotective factors, and improving 
cognitive functions. For example, Minter et al. (2016) found that 
long-term broad-spectrum antibiotic treatment induced changes in 
the composition and diversity of the gut microbiota, which reduced 
Aβ plaque deposition in APP/PS1 mice. Also, multiple studies have 
shown that rifampicin exhibits strong brain-protective effects in 
preclinical models of AD, reducing levels of Aβ in the brain and 
decreasing inflammatory factors (Yulug et al., 2018). However, some 
studies have found that the use of antibiotics can exacerbate the 
symptoms and pathology of AD, possibly through mechanisms such 
as disrupting the diversity and stability of the gut microbiota, 
lowering levels of beneficial bacteria and metabolites, increasing 
oxidative stress in the gut and brain, and impairing cognitive 
functions. For instance, antibiotics like streptomycin have been used 
to induce sporadic forms of AD in animal models and affect learning 
and memory performance (Cattaneo et al., 2017; Ravelli et al., 2017). 
Wang et al. (2015) found that administering ampicillin to rats could 
increase serum corticosterone, causing anxiety-like behaviors and 
spatial memory impairments, potentially leading to the exacerbation 
of AD. The discrepancies in these study results could be related to 
factors such as the type, dosage, timing of antibiotic use, animal 
models, evaluation indicators, as well as individual differences and 
the complexity of the gut microbiota. Therefore, the rational and 
moderate use of antibiotics, maintaining the balance and health of 
the gut microbiota, is of significant importance for the prevention 
and treatment of AD.

In conclusion, the regulation of the gut microbiota holds great 
potential in AD research, but there are still many challenges, such as 
the causal relationship between the gut microbiota and AD, the 
optimal timing and methods for modulating the gut microbiota, and 
the individual differences and side effects of gut microbiota regulation. 
Thus, more basic and clinical research is needed to further explore the 
mechanisms by which the gut microbiota functions in AD, aiming to 
develop more effective and safer methods of gut microbiota regulation 
(Table 3).

5 Strategies for combining 
neuroimaging techniques, gene 
therapy, and gut microbiome

5.1 Integration principles of neuroimaging 
techniques, gene therapy, and gut 
microbiota

The integration of neuroimaging techniques, gene therapy, and 
gut microbiota offers a novel perspective for studying AD. This 
integration is based on the principle that neuroimaging techniques 
allow for the direct monitoring of changes in brain structure and 
function, gene therapy enables molecular-level regulation and repair 
of neural damage, and the gut microbiota influences brain health 
through the gut-brain axis.

Furthermore, advancements in neuroimaging technologies 
enable unprecedented resolution and dimensionality in observing 
brain structure and function, such as with PET (Tripathi and Murray, 
2022), DTI (Chen et al., 2023), and multimodal MRI (Houria et al., 
2022). These technologies allow researchers to directly monitor the 
specific impacts of gene therapy on brain structure and function and 
achieve precise targeting of vectors. For example, Ren et al. (2016) 
utilized translatable MRI to verify the expression of hG-CSF cDNA 
in living brains, representing a significant non-invasive method for 
monitoring exogenous gene expression in experimental gene therapy 
for AD. Convection-enhanced delivery (CED) uses a pressure 
gradient to create a large infusion of fluid in the interstitial space, 
enhancing the distribution of large and small molecules in the brain 
and achieving drug concentrations several orders of magnitude 
higher than systemic levels (Bobo et al., 1994). Its development allows 
for efficient, direct, and controlled distribution of viral vector 
particles throughout the brain. Moreover, real-time MRI-guided 
CED (iMRI-CED), aimed at monitoring infusion with MRI contrast 
agents mixed with therapeutic drugs, represents an optimized 
approach over traditional CED (Varenika et al., 2008; Richardson 
et al., 2011; Richardson et al., 2011). One study successfully infused 
AAV2-BDNF into the entorhinal cortex of non-human primates 
under MRI guidance, achieving safe and precise targeting and 
distribution of BDNF in the entorhinal cortex and hippocampus 
(Nagahara et al., 2018). Furthermore, neuroimaging technologies can 
monitor how changes in the gut microbiota affect brain structure and 
function. An ex-vivo DTI study in rats showed that changes in brain 
structure were related to diet-dependent changes in the gut 
microbiota, particularly white matter integrity (Ong et al., 2018). 
Janik et al. (2016) using MRS and MRI in BALB/c mice, demonstrated 
that oral administration of Lactobacillus reuteri promoted increases 
in brain GABA, N-acetylaspartate, and glutamate. Bagga et al. (2018) 
found that probiotics could improve memory and alter brain 
activation patterns. Moreover, a study involving healthy volunteers 
found functional connectivity changes after a four-week probiotic 
intervention (Bagga et al., 2019), indicating significant correlations 
between human gut microbiota characteristics and brain 
microstructure, intrinsic neural activity, brain functional connectivity, 
and cognitive and emotional functions. Well-designed longitudinal 
studies, including assessments of gut microbiota structure and 
microbial metabolomics, along with neuroimaging and behavioral 
tests, are needed to establish directionality and causality (Liu 
et al., 2019).
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In particular, recent studies combining neuroimaging with genetic 
research in AD have identified new targets. Zhao et  al. (2022) 
developed a comprehensive Bayesian genetic power analysis to jointly 
estimate the heritability of high-dimensional neuroimaging features. 
Through extensive simulations, they applied this method to two large 
imaging genetics datasets: the Alzheimer’s Disease Neuroimaging 
Initiative and the UK Biobank, yielding biologically meaningful 
results. Ren et  al. (2023) assessed the functional connectivity 
disruptions of the nucleus basalis of Meynert (NbM) in healthy 
controls and MCI patients using resting-state fMRI data from the 
ADNI2/GO phase. They explored the transcriptional correlates of 
NbM connectivity disruptions using public post-mortem whole-brain 
gene expression datasets from the Allen Human Brain Atlas (AHBA) 
and the Mount Sinai Brain Bank (MSBB). The results revealed the 
transcriptional vulnerability of NbM connectivity disruptions and 
their key role in explaining preclinical Aβ changes and the age of onset 
in MCI, providing new insights into early AD pathology and 
encouraging further gene therapy targeting NbM (Ren et al., 2023).

5.2 Conceptualization of integrating 
neuroimaging techniques, gene therapy, 
and gut microbiota for treating AD

As a foundation, it is essential to establish the causal 
relationships between gut microbiota dysbiosis and the 
pathogenesis of AD. Using gene-editing technologies like 
CRISPR-Cas9, we could develop various transgenic mouse models 
by knocking out or inserting genes associated with gut microbiota, 
such as receptors for short-chain fatty acids (FFAR), bile acids 
(FXR), and neuropeptide Y (NPYR). Through these models, we can 
assess the resulting alterations in gut microbiota composition, 
brain Aβ deposition, neuronal integrity, inflammatory markers, 
and cognitive performance. Such studies will provide invaluable 
insights into the molecular pathways and regulatory mechanisms 
connecting gut microbiota to AD pathology.

Additionally, to complement these animal studies, we propose 
longitudinal cohort studies in humans. These studies should focus on 
collecting fecal samples from both healthy controls and AD patients. 
Following sample collection, we  can employ 16S rRNA gene 
sequencing alongside metabolomics to evaluate changes in gut 
microbiota diversity, enterotypes, and metabolite profiles over time. 
This longitudinal data will help to establish correlations with clinical 
phenotypes and biomarker levels indicative of AD, thus laying the 
groundwork for future therapeutic interventions.

Simultaneously, we  must prioritize the development of 
sophisticated neuroimaging technologies capable of capturing 
dynamic changes in brain structure, function, and molecular activities, 
as well as gut microbiota activity. To address the current limitations of 
resolution and data integration, we propose the implementation of a 
multimodal fusion approach. This would involve integrating advanced 
imaging modalities (such as high-resolution MRI, PET, SPECT, fMRI, 
and MRS) into a unified analytical framework. By utilizing state-of-
the-art computational techniques, we  can create a comprehensive 
model that accurately reflects the interactions between the brain and 
gut microbiota. This model would facilitate the extraction of relevant 
features and biomarkers through machine learning algorithms, which 
could be trained on datasets derived from both animal models and 
human cohorts.

Moreover, incorporating animal research into the development of 
these imaging techniques will allow for the validation and refinement of 
our methodologies in controlled settings. For example, we can use mice 
to evaluate the impact of specific gut microbiota alterations on 
neuroimaging outcomes, thereby optimizing our approach for human 
studies. This iterative process will enhance the reliability of the 
neuroimaging data we obtain, ultimately informing clinical applications.

In tandem with these investigative efforts, a focused exploration 
of gut microbiota-based therapeutic strategies is essential. We can 
leverage gene therapy to introduce beneficial genes (such as those 
encoding NGF or IL-10) into targeted gut microbes like Lactobacillus 
or Bifidobacterium. These genetically modified organisms can then 
be  administered to AD patients via oral or enema delivery. By 

TABLE 3 Bacterial dysbiosis and antibiotic influence in Alzheimer’s Disease pathogenesis.

Category Bacteria Role in AD References

Pathogenic 

bacteria

Enterobacteriaceae Enriched in AD patients, correlated with cognitive impairments Liu et al. (2019)

Pro-inflammatory bacteria Increased in fecal microbiota of AD patients Haran et al. (2019)

Bifidobacteria and Lactobacilli Produce NO and promote oxidative stress Oleskin and Shenderov (2016)

Salmonella typhi, Escherichia coli, and 

Mycobacterium

Produce hydrogen sulfide, promoting neuroinflammation Leschelle et al. (2005) and 

Beaumont et al. (2016)

Beneficial 

bacteria

Bifidobacterium and Lactobacillus Can treat AD and improve memory, learning deficiencies, and 

oxidative stress; Reduces serum C-reactive protein levels and 

improves scores on the MMSE

Azm et al. (2018) and Akbari 

et al. (2016)

Bifidobacterium breve strain A1 Can block Aβ-induced cognitive dysfunction and inhibit Aβ-

induced changes in hippocampal gene expression

Kobayashi et al. (2017)

Antibiotics Rifampicin Exhibits brain-protective effects, reducing Aβ levels Yulug et al. (2018)

Broad-spectrum antibiotics Induced changes in gut microbiota, reducing Aβ plaque deposition Minter et al. (2016)

Streptomycin Affects learning and memory performance and induces a sporadic 

form of AD in animal models

Cattaneo et al. (2017) and 

Ravelli et al. (2017)

Ampicillin Can increase serum corticosterone, causing cognitive impairment Wang et al. (2015)
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FIGURE 1

Neuroimaging techniques can monitor the activity and metabolites of the gut microbiota, as well as changes in brain structure and function. Gene 
therapy can regulate the gut microbiota by producing beneficial genes, and can also regulate and repair neural damage at the molecular-level. The gut 
microbiome can influence brain health through the gut-brain axis and can also evaluate the effects of gene therapy. These three technologies 
combined with each other, complement each other, can provide a new means for the diagnosis, treatment, prognosis and monitoring of AD.

colonizing the gut, these microbes would secrete neuroprotective 
proteins that traverse the gut-brain axis, promoting neurorepair and 
exerting anti-inflammatory and antioxidant effects directly in the 
brain. Additionally, we should explore the feasibility of combining 
these interventions with existing AD therapies, assessing their 
synergistic potential through controlled clinical trials.

In conclusion, through the integration of comprehensive animal 
studies, advanced human cohort analyses, and cutting-edge 
neuroimaging technologies, we can elucidate the complex interactions 
between gut microbiota and AD. The development of targeted 
therapeutic strategies utilizing gene therapy and modified gut 
microbes offers a promising avenue for improving AD symptoms and 
underlying pathology, potentially transforming the management of 
this debilitating condition (Figure 1).

6 Conclusion

In this review, we have highlighted the significant advancements in 
neuroimaging techniques, gene therapy, and gut microbiota research in 
the context of Alzheimer’s Disease (AD). These fields not only 
interconnect but also offer distinct mechanisms that could enhance 
early diagnosis, improve understanding of disease pathology, and 

inform novel therapeutic strategies. We  propose a conceptual 
framework that emphasizes the integration of these approaches to foster 
innovation in AD research. This framework highlights the potential for 
synergistic effects that could lead to breakthroughs in diagnostic and 
therapeutic tools, ultimately advancing prevention and intervention 
strategies. Despite the progress made, several challenges remain. The 
effectiveness of neuroimaging relies on improvements in resolution and 
specificity, while gene therapy necessitates enhanced safety and targeted 
delivery methods. Furthermore, the complex role of gut microbiota in 
AD pathology requires more thorough investigation to elucidate causal 
relationships. We  advocate for interdisciplinary collaboration to 
integrate insights and technologies across these fields. Such collaboration 
is essential to address the current limitations and to harness the full 
potential of these approaches, paving the way for transformative 
advances in AD research and ultimately improving patient outcomes.
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