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Silymarin administration after 
cerebral ischemia improves 
survival of obese mice by 
increasing cortical BDNF and IGF1 
levels
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Background: Obesity is associated with a systemic inflammatory state that 
contributes to neuroinflammation and increases the risk of stroke at an early 
age. Stroke is the third leading cause of death worldwide and the leading cause 
of permanent disability. This work aimed to assess whether obesity-induced 
neuroinflammation can be a prognostic stroke factor that can be improved with 
oral administration of silymarin, an anti-inflammatory and neuroprotective drug.

Methods: Male C57/Bl6 mice were used to establish an obesity model through 
a high-fat diet (HFD) for 12  weeks. Cerebral ischemia was performed with 
photothrombosis in the left motor cortex at the end of the diet. Following the 
induction of ischemia, silymarin (100  mg/kg) was administered orally for 14  days. 
Levels of pro-inflammatory (IL1β, TNFα, and MCP1) and anti-inflammatory 
markers (IL4, IL10), neurotrophic factors (IGF1, BDNF), and CX3CL1 were 
assessed in the cortex and striatum using ELISA.

Results: Mice on the HFD gained significantly more weight than control subjects 
and exhibited altered glucose metabolism, which was improved after silymarin 
treatment. The survival rate was significantly lower in HFD mice (52.2%) 
compared to control mice (86%). Silymarin treatment improved survival in both 
ischemic groups (non-diet control: 95.7%, HFD: 78.3%). Silymarin raised cortical 
TNFα, IL4, IL10, IGF1, BDNF, and CX3CL1 levels in the HFD group with stroke, 
while the striatum did not present relevant differences.

Conclusion: Our findings suggest that silymarin improves glucose metabolism, 
possibly impacting post-stroke survival in obese mice. The increased levels of 
neurotrophic factors BDNF and IGF1, along with microglial regulatory factor 
CX3CL1, may contribute to the improved survival observed. These results 
indicate that silymarin could be  a potential therapeutic option for managing 
neuroinflammation and enhancing post-stroke outcomes in obese individuals.
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1 Introduction

Obesity is a global health problem, representing the sixth cause of 
death worldwide (Hruby and Hu, 2015). According to the World 
Health Organization (WHO), in 2016, more than 650 million adults 
worldwide were classified as obese (World Health Organization, 
2021), a number that continues to rise. By 2035, the World Obesity 
Federation estimates nearly 2 billion individuals, including adults, 
children, and adolescents, will be obese, with the associated healthcare 
costs surpassing those of the COVID-19 pandemic in 2020 
(Federation, 2023).

Obesity is characterized by adipocyte hypertrophy and 
hyperplasia, which results in a chronic low-grade inflammatory state 
(Longo et al., 2019). This inflammatory environment arises from the 
chronic release of pro-inflammatory cytokines such as TNFα, IL6, 
and ILβ by visceral adipose tissue, triggering inflammatory pathways 
such as NFκB or JNK that, in the long term, lead to complications 
such as insulin resistance (Singer and Lumeng, 2017). Moreover, this 
inflammation compromises the permeability of the blood–brain 
barrier (BBB) by decreasing the expression of claudins and 
occludins, enabling inflammatory molecules to infiltrate the central 
nervous system (CNS) (Van Dyken and Lacoste, 2018). In the CNS, 
microglia and astrocytes are activated by these circulating 
inflammatory agents—TNFα, free fatty acids, and LPS—via Toll-like 
receptors, further perpetuating neuroinflammation in brain regions 
such as the hippocampus, cortex, brainstem, and amygdala (Amor 
et  al., 2014; Van Dyken and Lacoste, 2018; Saieva and 
Taglialatela, 2022).

Obesity is also a well-established independent risk factor for 
cerebral ischemia, with the World Stroke Organization (WSO) listing 
high body mass index as one of the leading causes of stroke (Feigin 
et al., 2022). In individuals aged 15 to 49 with stroke, obesity has been 
linked to an increased risk of early-onset ischemic stroke, likely 
mediated by hypertension and diabetes mellitus (Mitchell et al., 2015). 
Animal studies further illustrate this risk, showing that obese mice 
present a larger infarct area and more significant neuronal loss than 
lean mice, as obesity amplifies post-ischemic inflammatory response 
in animals, impacting their recovery (Haley and Lawrence, 2016). In 
obese patients, elevated levels of inflammatory markers such as 
C-reactive protein (CRP), IL6, TNFα, MCP1, and ICAM-1 have been 
associated with higher risks of cerebral infarction (Haley and 
Lawrence, 2016).

Cerebral infarction, which includes both ischemic and 
hemorrhagic stroke, is the second cause of death and permanent 
disability worldwide, with ischemic stroke accounting for over 80% of 
cases (Musuka et al., 2015; Saini et al., 2021). This condition progresses 
through acute, subacute, and chronic stages, leaving permanent 
neurological deficits due to primary and secondary neuronal loss 
(Musuka et  al., 2015). Animal models, particularly the 
photothrombotic model of cerebral ischemia, are instrumental in 
studying these pathological processes. The photothrombotic stroke 
model induces cerebral ischemia via photosensitive dye and targeted 
light exposure, creating precise, reproducible cortical infarctions with 
minimal invasiveness. This model is especially valuable for studying 
post-ischemic pathways like cell death and inflammation, as it causes 
localized ischemic damage within the cortex (Clarkson et al., 2013; 
Labat-gest and Tomasi, 2013). Furthermore, because the model 
ensures high survival rates, it enables long-term investigations of 

sensorimotor deficits, making it a robust tool for assessing 
neuroprotective interventions (Uzdensky, 2018).

In parallel, high-fat diet (HFD)-induced obesity models are widely 
used to replicate human metabolic conditions in animals. In these 
models, rodents are fed diets with increased fat content to mimic 
obesity-related metabolic changes such as insulin resistance, 
hyperlipidemia, and chronic inflammation (Buettner et al., 2007). The 
HFD model is particularly relevant for studying the interplay between 
obesity and stroke, as it mirrors the inflammatory and metabolic 
dysfunctions seen in obese patients, which worsen ischemic outcomes 
(Maysami et  al., 2015; Grisotto et  al., 2021). By combining the 
photothrombotic stroke and HFD-induced obesity models, 
researchers can explore how obesity exacerbates stroke pathology and 
how therapeutic interventions might mitigate the synergistic effects of 
obesity and cerebral ischemia.

One promising avenue for neuroprotection in cerebral ischemia 
is silymarin, a standardized extract derived from the seeds and fruits 
of Silybum marianum. 80% of silymarin is composed of four 
flavonolignan isomers (silybin, isosilybin, silydianin, and silychristin), 
while 20% contain an unidentified chemical fraction of polyphenolic 
compounds (Wellington and Jarvis, 2001). Flavonolignans comprise 
70% silybin, the main active compound responsible for most of its 
pharmacological effects such as antioxidant activity, anxiolytic, anti-
inflammatory, and neuroprotective (Wellington and Jarvis, 2001; 
Ranjan and Gautam, 2023). These attributes make silymarin an 
attractive candidate for treating cerebral ischemia, where 
inflammation, oxidative stress, and cell death are prominent factors.

Preclinical studies have shown that when administered before 
ischemia, silymarin mitigated tissue damage by modulating 
inflammatory pathways and reducing the activation of 
pro-inflammatory mediators, like NF-kB and STAT-1 pathways, 
improving neurological outcomes (Hou et al., 2010). In the middle 
cerebral artery occlusion (MCAO) model, silymarin pretreatment 
demonstrated a dose-dependent antioxidant effect, reducing apoptosis 
and enhancing functional recovery (Raza et  al., 2011). This is 
significant because oxidative stress plays a critical role in the 
pathophysiology of cerebral ischemia since it contributes to cell death 
(Allen and Bayraktutan, 2009).

Given that over 60% of stroke patients are ineligible for 
recanalization therapy, they are more likely to experience long-term 
cognitive impairment (Ma et al., 2020; Cerasuolo et al., 2022). Thus, 
cerebral ischemia remains a leading cause of disability, imposing 
substantial burdens on patients, their families, and healthcare systems. 
This study aims to evaluate whether silymarin can improve survival 
and motor outcomes in obese mice subjected to permanent cerebral 
ischemia through the photothrombotic model, offering insights into 
potential neuroprotective strategies for stroke recovery.

2 Methods

2.1 Animals

All experiments were performed in 12-weeks-old male C57BL/6 J 
mice (25–30 g), which were maintained with food and water ad 
libitum under a 12:12 light–dark cycle.

All experimental procedures followed the Mexican Law of Animal 
Protection for the use and care of laboratory animals (Norma Official 
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Mexicana NOM-062-ZOO-1999) and the Guidelines for the Use of 
Animals in Neuroscience Research of the Society of Neuroscience. 
This project was approved by the Comisiones de Investigación y Ética 
(Approval FM/DI/119/2019) and the Comité Interno para el Cuidado 
y Uso de Animales de Laboratorio (CICUAL 035-CIC-2019) of 
Facultad de Medicina, Universidad Nacional Autónoma de México. 
We reduced the number of mice used and their suffering or pain as 
much as possible.

2.2 Obesity model and silymarin treatment

Obesity was induced in mice by administering a high-fat diet 
(HFD) for 3 months, consisting of 38% fat, 38% carbohydrates, and 
16% protein, while control mice were fed a standard laboratory diet 
(ND) with 6% fat, 49% carbohydrates, and 24% protein, as described 
by Buettner et al. (2007)(Buettner et al., 2007).

Following the induction of obesity, both ND and HFD groups 
underwent photothrombosis and were randomly assigned to receive 
either silymarin (S0292 Sigma-Aldrich, MO, United States; 100 mg/kg 
of body weight administered orally for 14 consecutive days) or 
vegetable oil as a vehicle (Muley et al., 2013; Ramirez-Carreto et al., 
2023). Intragastric administration in mice was performed daily at 
8:00 h with an oral gavage (curved needle, 20G x1 ½ in). Each mouse 
was trained for 3 days before the administration scheme to recognize 
the curved gavage needle and for the restraining technique. During 
the protocol performance, mice were gently restrained, immobilizing 
the head and avoiding signs of distress. The total administration 
volume was calculated as 8 mL/Kg, and necropsies were performed to 
discard misadministration issues for mice who died during the 
photothrombosis protocol.

Animals were euthanized 15 days after photothrombosis.

2.3 Metabolic follow-up of the animals

During the induction of the obesity period, weight gain was 
determined weekly, and biochemical analyses were done to determine 
the metabolic state.

ND and HFD mice treated with silymarin or vehicle were assigned 
to an intraperitoneal glucose or insulin tolerance curve.

For the glucose and insulin tolerance tests, animals fasted for 12 h. 
Each animal received an intraperitoneal injection with glucose (2 g/
kg) or insulin (rapid recombinant human insulin, 1 U/kg). Blood 
glucose concentration was measured using a standard glucometer 
(Freestyle Optium Neo, Abbott) at 0, 15, 30, 60, and 120 min post-
injection. After the procedure, the mice were left in their boxes with 
food and water on demand.

2.4 Cerebral ischemia

Mice were anesthetized with 2% isoflurane and maintained with 
1% in an oxygen/air mixture using an anesthetic gas mask in a 
stereotaxic setting to induce the ischemic event. Three minutes before 
illumination, 0.3 mL of rose bengal solution (198,250 Sigma-Aldrich, 
MO, United States) was injected intraperitoneally in isotonic saline at 
10 mg/mL concentration. The skull was exposed through a midline 

skin incision and illuminated with a fiberoptic beam from a 4.5 mm 
aperture cold-light source centered 1.5 mm to the left of the bregma 
for 8 min (Lopez-Valdes et  al., 2014). The scalp was sutured after 
illumination, and the mice were allowed to awaken from anesthesia.

The animals were observed for 15 days post-ischemia, during which 
the behavioral motor evaluation test was performed. Trimethoprim-
sulfamethoxazole at 2 mg/mL was dispensed orally for 8 days in 
drinking water to avoid infections. No analgesics were administered to 
prevent modifying the inflammatory response pathways.

2.5 Cylinder test

The cylinder test was performed before ischemia and at weeks one 
and two post-ischemia.

The animal was recorded while exploring a cylinder 10 cm in 
diameter and 20 cm high for 10 min to observe the differential use of 
its limbs from various angles and correlate it with the ischemic event. 
The videos were evaluated for the analysis by observing the times the 
animal sustained its paw ipsi- or contralateral to the lesion on the 
cylinder wall.

A double-blind system was used to avoid bias in evaluating 
behavioral trials. This method ensured that observers were unaware 
of the distribution of the experimental groups, thus minimizing 
potential influences on data collection and analysis. It also allowed 
behavioral tests to be standardized between observers and ensured 
consistent and reliable results in the analysis of motor exploration.

2.6 Cytokine titration

Pro- (IL1β, and TNFα) and anti-inflammatory cytokines (IL4 and 
IL10), monocyte chemoattractant protein (MCP1), CX3CL1, insulin-
like growth factor 1 (IGF1) and brain-derived neurotrophic factor 
(BDNF) were determined by ELISA in cortex and striatum from the 
ipsilateral region of the lesion (DuoSet Mouse TNF-α DY410, DuoSet 
Mouse IL-1β/IL-1F2 DY401, DuoSet Mouse IL-4 DY4045, DuoSet 
Mouse IL-6 DY406, DuoSet Mouse IL-10 Dy417, DuoSet Mouse 
CX3CL1/Fractalkine DY472, DuoSet Mouse/Rat IGF-1/IGF-I DY791, 
and DuoSet Human/Mouse BDNF Dy248 ELISA kits, R&D Systems, 
Minneapolis, MN, United  States). Mice were euthanized with 
intraperitoneal sodium pentobarbital (150 mg/kg). Brain regions were 
dissected in ice and transferred to microcentrifuge tubes containing 
500 μL of lysis buffer (20 mM Tris, 0.25 M sucrose, 2 mM EDTA, 10 mM 
EGTA, 1% Triton X-100) and a protease inhibitor cocktail. Tissues were 
homogenized and centrifuged at 15,000 rpm for 30 min at 4°C, and 
then the supernatant was recovered and kept at −70°C until processing. 
The assays were performed following the manufacturer’s instructions. 
Optical density readings were made at 450 nm and corrected with 
570 nm wavelength. All assays were performed by duplicate.

2.7 Statistical analysis

Analysis was done using GraphPad Prism 10.0. Results from all 
experiments were subjected to normality (D’Agostino-Pearson test) 
and homoscedasticity (Brown-Forsythe test) tests to determine 
parametric data. Groups were compared using the Student T test, 
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one-way or two-way ANOVA, and Tukey’s post-hoc test. Mortality 
was analyzed using the log-rank Mantel-Cox test. Data are 
presented as mean ± sem. p ≤ 0.05 was considered significant.

3 Results

3.1 High-fat diet-induced weight gain and 
impaired glucose metabolism

At the beginning of HFD model induction, both groups started with 
similar body weights (ND 23.88 gr ± 0.4795; HFD 23.75 gr ± 0.4532). 
Significant weight differences appeared by week 3 (p = 0. 0153), 
becoming highly significant at the end of the diet (p < 0.0001; Figure 1A).

As expected, basal fasting glucose levels were higher in the HFD 
group (p = 0.0419; Figure  1B), and while the glucose tolerance test 
showed a slightly higher post-load level at 15, 30, 60, and 120 min in the 
HFD group, no statistical significances were found (Figure 1C). However, 

analysis of the area under the curve (AUC) indicated that the HFD-fed 
mice presented more AUC than the ND group (p = 0.001; Figure 1D).

3.2 Silymarin effectively restored glucose 
metabolism

Initially, all groups had similar body weights (ND 24.64 gr ± 0.6191; 
HFD 24.45 gr ± 0.5085; ND + S 25.54 gr ± 0.6851; HFD 26.23 gr ± 1.172). 
By week 4, weight differences between ND and HFD groups became 
significant (ND vs. HFD p = 0.0011; ND + S vs. HFD p = 0.0106). By 
week 6, all HFD groups were significantly heavier than the ND groups 
(ND vs. HFD p = 0.0017; ND vs. HFD + S p = 0.0127; ND + S vs. HFD 
p = 0.0218; ND + S vs. HFD + S p = 0.0357), with differences more 
pronounced by week 12 (ND vs. HFD p < 0.0001; ND vs. HFD + S 
p = 0.0011; ND + S vs. HFD p = 0.0009; ND + S vs. HFD + S p = 0.0042; 
Figure 2A). Silymarin had no effect in the ND or HFD groups, and 
weight differences between the ND groups and the HFD mice were 

FIGURE 1

Induction of the obesity model. (A) Weight gain in mice fed a normal diet (ND; n  =  8) and high-fat diet (HFD; n  =  8). Data presented are mean  ±  SEM and 
were analyzed with two-way ANOVA with a Tukey post hoc test. (B) Basal glucose levels of ND (n  =  5) and HFD (n  =  5). Data presented are mean  ±  SEM 
and were analyzed with a T-test. (C) Intraperitoneal glucose tolerance curve of ND (n  =  4) and HFD (n  =  4). Data presented are mean  ±  SEM and were 
analyzed with two-way ANOVA with a Tukey post hoc test. (D) Area under the curve (AUC) for the intraperitoneal glucose tolerance test of ND and 
HFD. Data presented are mean  ±  SEM and were analyzed with a t-test. *p  ≤  0.05, **p  ≤  0.01, p***  ≤  0.001, and p****  <  0.0001.
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FIGURE 2

Effect of silymarin in the obesity model. (A) Weight gain in mice fed a normal diet (ND; n  =  22), high-fat diet (HFD; n  =  22), ND with silymarin treatment 
(ND  +  S  =  14), and HFD with silymarin treatment (HFD  +  S  =  15). Mice received 14  days of 100  mg/kg of silymarin oral treatment after the obesity 
induction diet. Data presented are mean  ±  SEM and were analyzed with two-way ANOVA with a Tukey post hoc test. (B) Basal glucose levels of ND 
(n  =  7), HFD (n  =  7), ND  +  S (n  =  12), and HFD  +  S (n  =  12) groups. Data presented are mean  ±  SEM and were analyzed with one-way ANOVA with a Tukey 
post hoc test. (C) Intraperitoneal glucose tolerance curve of ND (n  =  7), HFD (n  =  7), ND  +  S (n  =  12), and HFD  +  S (n  =  12) groups. Data presented are 
mean  ±  SEM and were analyzed with two-way ANOVA with a Tukey post hoc test. (D) Area under the curve (AUC) for the intraperitoneal glucose 
tolerance test of ND, HFD, ND  +  S, and HFD  +  S. Data presented are mean  ±  SEM and were analyzed with one-way ANOVA with a Tukey post hoc test. 
(E) Insulin tolerance test of the ND (n  =  5), HFD (n  =  4), ND  +  S (n  =  4), and HFD  +  S (n  =  5) groups. Data presented are mean  ±  SEM and were analyzed 
with two-way ANOVA with a Tukey post hoc test. (F) Area under the curve (AUC) for the insulin tolerance test of the ND, HFD, ND  +  S, and HFD  +  S 
groups. Data presented are mean  ±  SEM and were analyzed with one-way ANOVA with a Tukey post hoc test. ND compared to HFD group: *p  ≤  0.05, 
**p  ≤  0.01, p***  ≤  0.001, and p****  <  0.0001. ND compared to HFD  +  S group: $p  ≤  0.05, $$p  ≤  0.01, $$$p  ≤  0.001. HFD compared to ND  +  S group: 
&p  ≤  0.05, &&p  ≤  0.01, &&&p  ≤  0.001, &&&&p  <  0.0001. ND  +  S compared to HFD  +  S group: %p  ≤  0.05, %%p  ≤  0.01. ND compared to ND  +  S group: 
#p  ≤  0.05, ##p  ≤  0.01. HFD compared to HFD  +  S group: ++p  ≤  0.01, +++p  ≤  0.001, ++++p  <  0.0001.
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preserved, although HFD + S mice were not significantly different from 
the ND group at the end of the diet (ND vs. HFD p = 0.0249; ND + S vs. 
HFD p = 0.0265; ND + S vs. HFD + S p = 0.015; Figure 2A).

The glucose tolerance test revealed that HFD mice had higher 
glucose levels at 15, 30, 60, and 120 min compared to ND + S 
(p = 0.0211, p = 0.0006, p = 0.002, p < 0.0001, respectively; Figure 2C), 
and significantly higher glucose levels at 30, 60, and 120 min compared 
to HFD + S (p = 0.027, p = 0.0085, p = 0.0003, respectively; Figure 2C). 
Silymarin treatment also reduced glucose levels at 120 min in ND + S 
mice compared to ND controls (p = 0.0311; Figure 2C). AUC analysis 
confirmed that HFD had a larger area than ND (p = 0.0467), ND + S 
(p < 0.0001), and HFD + S groups (p < 0.0001) and that ND + S mice 
had a smaller AUC than ND controls (p = 0.0091; Figure 2D).

Although the insulin tolerance test showed no significant 
differences in post-load glucose levels at 15, 30, 60, and 120 min 
among the groups (Figure 2E), HFD groups exhibited a significantly 
larger AUC than ND (p = 0.0016), ND + S (p = 0.0009), and HFD + S 
groups (p = 0.0024; Figure 2F).

Interestingly, silymarin improved glucose and insulin tolerance 
tests in the HFD group (Figures  2C–F) and enhanced glucose 
metabolism in the ND group (Figures 2C,D).

3.3 Silymarin improved survival after stroke 
in obese mice

The survival curves differed significantly among experimental 
groups (p = 0.0056; Figure  3A). Only 53% of HFD mice survived 
cerebral ischemia, compared to 87% in the ND group (p = 0.0195). 
Silymarin treatment improved survival in both HFD and ND mice (75 
and 95%, respectively; Figure 3A).

Notably, ND mice subjected to photothrombosis did not 
experience significant weight loss (Figure 3B). However, HFD mice 
with cerebral ischemia lost weight on days 6, 7, and 8 compared to day 
1 (1 vs. 6 p = 0.0284, 1 vs. 7 p = 0.0076, 1 vs. 8 p = 0.0079), and on day 
five compared to day four after photothrombosis (p = 0.0177). Silymarin 
treatment in the ND + I induced weight loss on days 1 and 6 compared 
to the beginning body weight (0 vs. 1 p = 0.0013, 0 vs. 6 p = 0.0201) and 
on day five compared to day 6 (p = 0.0441). Silymarin-treated HFD + I 
mice lost weight on days 2, 6, 7, and 8 compared to baseline (0 vs. 2 
p = 0.0146, 0 vs. 6 p = 0.0288, 0 vs. 7 p = 0.0123, 0 vs. 8 p = 0.0167).

Silymarin-treated ND and HFD groups with cerebral ischemia 
showed no significant differences in body weight over the 14 days of 
treatment compared to their respective controls with photothrombosis 
(Figure 3B). The main significant differences were between the two 
diets, ND and HFD, independently of silymarin treatment (Figure 3B).

3.4 Cerebral ischemia impaired the motor 
behavior of animals, and silymarin 
improved it

HFD mice exhibited severe motor deficits after cerebral ischemia, 
as measured by the cylinder test. Some mice did not even perform the 
test. Due to this situation and mortality, we present the data of mice 
who performed the exploration during the cylinder test, with the HFD 
group significantly different (p < 0.0001); silymarin administration 
reversed this deficit (Figure 3C), consistent with improved survival.

3.5 Silymarin modulated the 
postischemia-induced TNFα levels in the 
cerebral cortex of HFD mice

Several cytokines and neurotrophic factors were determined to 
evaluate further how silymarin could improve survival in HFD mice 
after cerebral ischemia. After 14 days of silymarin, IL1β tended to rise 
in the cerebral cortex of ND mice compared to ND + I and HFD + I + S 
(p = 0.0781 and p = 0.0736, respectively; Figure 4A), while no changes 
were observed in the striatum (Figure 4B). Silymarin treatment in 
HFD submitted to photothrombosis showed a slight increase in both 
cerebral regions (Figures 4A,B). TNFα levels were significantly elevated 
in the cerebral cortex of silymarin-treated HFD mice compared to all 
other groups (p < 0.0001 compared to ND + I and HFD + I, and 
p = 0.0007 compared to ND + I + S; Figure 4C), although no changes 
were observed in the striatum (Figure 4D). MCP1 levels showed no 
significant differences across experimental groups (Figures 4E,F).

3.6 Silymarin treatment after cerebral 
ischemia increased cortical modulatory 
molecules in HFD mice

Among the modulatory molecules that could be involved in the 
post-ischemia outcome of HFD mice are IL4 and IL10. Silymarin-
treated HFD mice presented cortical IL4 significantly higher than the 
other experimental groups (p < 0.0001; Figure 5A). In the striatum, no 
significant differences were observed (Figure  5B). Also, HFD 
submitted to photothrombosis treated with silymarin increased 
cortical IL10 compared to the ND + I and HFD + I control groups 
(p = 0.0432 and p = 0.0291, respectively; Figure 5C); no changes were 
detected in the striatum (Figure 5D).

Additionally, cortical CX3CL1, fractalkine, a key microglial 
regulatory chemokine, was significantly increased in the HFD + I + S 
mice (p = 0.0091 compared to ND + I, p = 0.0022 compared to HFD + I, 
p = 0.0068 compared to ND + I + S; Figure 5E), suggesting its role in 
reducing excitotoxic damage and improving stroke outcomes. In the 
striatum, silymarin had no effect (Figure 5F).

Neurotrophic factors are relevant neuroprotective molecules; 
herein, we determined BDNF and IGF1 in the cortex and striatum 
14 days after photothrombosis. BDNF was higher in HFD + I + S mice 
than in the HFD + I group (p  = 0.0108) and tended to be  higher 
compared to the ND + I + S group (p = 0.0589; Figure 5G). Additionally, 
IGF1 was significantly elevated after treatment of HFD mice than in 
the other experimental groups (p < 0.0001, Figure  5I), further 
indicating its neuroprotective potential. No significant changes were 
detected in the striatum (Figures 5H,J).

4 Discussion

This article investigated the impact of obesity on stroke prognosis 
while exploring the potential therapeutic effects of silymarin, known 
for its anti-inflammatory and neuroprotective properties (Moghaddam 
et al., 2020; Habotta et al., 2023; Haddadi et al., 2023; Li et al., 2023). 
Male C57/Bl6 mice were placed on a high-fat diet (HFD) for 12 weeks 
to induce obesity. Notably, HFD mice showed signs of weight gain as 
early as 3 weeks, which persisted throughout the study, emphasizing 
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FIGURE 3

Silymarin effects on the clinical outcome after cerebral ischemia. (A) Survival curves of mice submitted to cerebral ischemia fed a normal diet (ND  +  I; 
n  =  23), high-fat diet (HFD  +  I; n  =  23), ND  +  I with silymarin treatment (ND  +  I  +  S; n  =  19), and HFD  +  I with silymarin treatment (HFD  +  I  +  S; n  =  20). Data 
were analyzed using the log-rank Mantel-Cox test. *p  ≤  0.05, ND  +  I compared to HFD  +  I group. (B) Body weight loss in ND  +  I (n  =  4), HFD  +  I (n  =  5), 
ND  +  I  +  S (n  =  7), and HFD  +  I with silymarin treatment (HFD  +  I  +  S  =  8). Mice received 14  days of 100  mg/kg of silymarin oral treatment after the 
photothrombosis. Data presented are mean  ±  SEM and were analyzed with two-way ANOVA with a Tukey post hoc test. (C) Percentage of ND  +  I 
(n  =  8), HFD  +  I (N  =  7), ND  +  I  +  S (n  =  5), and HFD  +  I  +  S (n  =  8) mice exploring the cylinder. Data were analyzed with Chi-square. ND  +  I compared to 
HFD  +  I group: *p  ≤  0.05, **p  ≤  0.01. ND  +  I compared to HFD  +  I  +  S group: $p  ≤  0.05, $$p  ≤  0.01. HFD  +  I compared to ND  +  I  +  S group: &p  ≤  0.05, 
&&p  ≤  0.01. ND  +  I  +  S compared to HFD  +  I  +  S group: %p  ≤  0.05, %%p  ≤  0.01.
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FIGURE 4

Effect of silymarin on cortical and striatal levels of inflammatory cytokines and MCP1. Cortical (A,C,E) and striatal (B,D,F) of IL1β (A,B), TNFα (C,D), and 
MCP1 (E and F) were determined in mice submitted to cerebral ischemia fed a normal diet (ND  +  I; n  =  4–8), high-fat diet (HFD  +  I; n  =  4–7), ND  +  I with 
silymarin treatment (ND  +  I  +  S; n  =  3), and HFD  +  I with silymarin treatment (HFD  +  I  +  S; n  =  3–4). Data presented are mean  ±  SEM and were analyzed 
with one-way ANOVA with a Tukey post hoc test. ND  +  I compared to HFD  +  I  +  S group: $$$$p  <  0.0001. HFD  +  I compared to HFD  +  I  +  S group: 
++++p  <  0.0001. ND  +  I  +  S compared to HFD  +  I  +  S group: %%%p  ≤  0.001.
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FIGURE 5

Effect of silymarin on cortical and striatal levels of modulatory molecules. Cortical (A,C,E,G,I) and striatal (B,D,F,H,J) of IL4 (A,B), IL10 (C,D), and MCP1 
(E,F) were determined in mice submitted to cerebral ischemia fed a normal diet (ND  +  I; n  =  3–9), high-fat diet (HFD  +  I; n  =  4–5), ND  +  I with silymarin 
treatment (ND  +  I  +  S; n  =  3–4), and HFD  +  I with silymarin treatment (HFD  +  I  +  S; n  =  3–5). Data presented are mean  ±  SEM and were analyzed with 
one-way ANOVA with a Tukey post hoc test. ND  +  I compared to HFD  +  I  +  S group: $p  ≤  0.05, $$p  ≤  0.01, $$$$p  <  0.0001. HFD  +  I compared to 
HFD  +  I  +  S group: +p  ≤  0.05, ++p  ≤  0.01, ++++p  <  0.0001. ND  +  I  +  S compared to HFD  +  I  +  S group: %%p  ≤  0.01, %%%p  ≤  0.001, %%%%p  <  0.0001.
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the early and sustained impact of an HFD on weight (Figure 1A; 
Moreno-Fernandez et  al., 2018; Nagy and Einwallner, 2018; 
Rodriguez-Correa et al., 2020). Fasting glucose and intraperitoneal 
glucose tolerance tests in the HFD mice indicated potential metabolic 
syndrome development (Figures 1B,C), a well-known risk factor for 
cerebral vascular events (Ak et al., 2022; Zuo et al., 2023).

Considering that obesity is a primary risk factor for type 2 
diabetes (Bays et al., 2023), the risk of an ischemic stroke increases in 
the younger population with diabetes (Emerging Risk Sarwar et al., 
2010; Chen et al., 2016; O'Donnell et al., 2016). Moreover, in humans, 
the sole higher body mass index is an established risk factor for 
developing ischemic stroke in both men and women (Kurth et al., 
2002; Kroll et al., 2016). Our data highlighted obesity as a substantial 
risk factor for stroke, as demonstrated by increased mortality in obese 
mice subjected to induced cerebral ischemia (Figure 3A). Additionally, 
obesity severity correlated with impaired motor function, as evidenced 
by poorer performance on the cylinder test, a deficit reversed by 
silymarin treatment (Figure 3C). Silymarin treatment also improved 
post-ischemia survival in all photothrombotic-exposed mice 
(Figure 3A). Interestingly, unlike other models of cerebral ischemia, 
stroke-induced mice had no critical weight loss, and silymarin had no 
effect on this parameter (Figure 3B).

We measured several pro- and anti-inflammatory cytokines, 
CX3CL1, and neurotrophic factors at 14 days post-photothrombosis 
to explore silymarin’s neuroprotective mechanisms. We found no 
significant differences between the ischemic HFD and ND mice in 
either the cortex or striatum (Figures 4, 5), suggesting that surviving 
HFD mice responded similarly to ND mice regarding molecular 
profiles. Notably, silymarin’s effects were restricted to the cortex of 
HFD-treated mice. The penumbra, an area with hypoperfusion and 
potential for neuron rescue, represents a therapeutic target in post-
ischemia interventions (Walther et  al., 2023). In our model, the 
motor cortex was the primary infarct zone, while the striatum was 
the penumbra. Therefore, silymarin’s beneficial effect on the cortex 
likely reflects its role in tissue rescue and regeneration. This is 
supported by the observed increases in the anti-inflammatory 
cytokines IL-4 and IL-10 in the cortex (Figures 5A,C), both of which 
are known to regulate neuroinflammation and are predominantly 
produced by activated glial cells and T lymphocytes (Schwartz and 
Baruch, 2014; Kawabori and Yenari, 2015).

Fractalkine (CX3CL1) is another key molecule that may modulate 
neuroinflammation (Poniatowski et al., 2017). Produced primarily by 
neurons and endothelial cells in the cortex, hippocampus, and other 
structures (Nishiyori et  al., 1998; Tarozzo et  al., 2003), CX3CL1 
interacts with its receptor, CX3CR1, on microglia and macrophages 
to regulate microglial activations (Harrison et al., 1998; Zujovic and 
Taupin, 2003). Additionally, CX3CL1 is relevant in controlling 
glutamate excitotoxicity and TNFα secretion by microglia (Zujovic 
et  al., 2000; Limatola et  al., 2005). Our results show a significant 
cortical increase in CX3CL1 in obese animals treated with silymarin 
(Figure  5E), suggesting that CX3CL1 might regulate excitotoxic 
damage by modulating glutamate release after ischemia, thus 
promoting neuronal survival. Elevated plasma CX3CL1 has been 
associated with better human stroke outcomes (Donohue et al., 2012).

At the subacute stage, 14 days post-ischemia, silymarin did not 
affect MCP1 levels (Figure 4E), indicating a more nuanced timeline of 
its therapeutic influence. However, TNFα was the only 
pro-inflammatory cytokine elevated in HFD treated with silymarin 

after the ischemic event, which was accompanied by elevated levels of 
the anti-inflammatory cytokines IL4 and IL10, suggesting that TNFα 
may play a dual role, maintaining an inflammatory environment while 
also modulating synaptic strength and excitatory transmission in the 
cortex (Beattie et  al., 2002; Pickering et  al., 2005; Stellwagen and 
Malenka, 2006; Bras et al., 2020; Wang et al., 2023). In ischemic stroke 
models, TNFα has a pro-inflammatory effect in the acute phase but 
protective effects in later stages, as seen in hippocampal tissue (Bruce 
et al., 1996). This may explain the motor improvements observed in 
the cylinder test, where silymarin restored exploratory behavior in 
HFD mice 14 days after stroke (Figure 3C).

Importantly, silymarin’s influence on neurotrophic factors, as 
evidenced by increased BDNF levels, aligns with existing literature 
highlighting its anti-inflammatory and antioxidant effects in several 
neurological-related models, including cerebral ischemia, translating 
into improved motor function and BDNF content recovery in animals 
(Song et al., 2016; Thakare et al., 2017; Yon et al., 2019; Moghaddam 
et al., 2020; Shokouhi et al., 2020; Ramirez-Carreto et al., 2023).

Although direct evidence linking silymarin to increased IGF-1 
levels is lacking, its potential role in enhancing insulin sensitivity 
opens avenues for exploring the intricate signaling cascades shared by 
insulin and IGF-1. This hypothesis is probable since our data show 
that obese mice treated with silymarin improved metabolically, 
reflected in glucose and insulin tolerance tests (Figures 2C–F). IGF-1, 
produced by microglia, astrocytes, and neurons, likely contributes to 
neuroprotection by modulating glutamate excitotoxicity in cerebral 
ischemia models (Hayes et al., 2021; Ge et al., 2022; Hayes et al., 2023), 
promoting functional outcomes.

In summary, our study demonstrates that silymarin improves 
survival and motor outcomes in obese mice following cerebral 
ischemia, with potential clinical implications for obese stroke 
patients. Elevated anti-inflammatory cytokines (IL-4 and IL-10) and 
neurotrophic factors (BDNF, IGF-1) in silymarin-treated mice 
suggest that silymarin may offer neuroprotective benefits by 
mitigating obesity-related neuroinflammation. Given that obesity is 
a significant risk factor for stroke, silymarin could be a promising 
adjunct therapy for improving post-stroke outcomes, particularly in 
patients not eligible for recanalization therapies like tissue 
plasminogen activator due to the short therapeutic window, leaving 
patients with limited treatment options (Kang et  al., 2021). 
Additionally, its ability to improve glucose metabolism and insulin 
tolerance further highlights silymarin’s potential in managing 
comorbid conditions, such as diabetes, which is prevalent among 
obese stroke patients (Ruze et al., 2023). Future clinical trials should 
investigate whether these findings translate to improved outcomes 
in human stroke patients.
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