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Background: Alzheimer’s disease (AD) is a neurodegenerative disorder 
characterized by memory and cognitive impairments. Previous studies have 
shown neuronal death in the brains of AD patients, but the role of cuproptosis 
and its associated genes in AD neurons remains unclear.

Methods: Intersection analysis was conducted using the AD transcriptome dataset 
GSE63060, neuron dataset GSE147528, and reported cuproptosis-related genes 
to identify the cuproptosis key gene FDX1 highly expressed in AD. Subsequently, 
cell experiments were performed by treating SH-SY5Y cells with Aβ25-35 to establish 
AD cell model. The real-time reverse transcriptase-polymerase chain reaction (RT-
qPCR) and western blotting (WB) assays were employed to detect the expression 
levels of FDX1, DLAT, and DLST. Cell proliferation was analyzed by counting Kit-8 
(CCK8), mitochondrial ROS levels were analyzed using flow cytometry. shRNA was 
used to downregulate FDX1 expression, followed by repetition of the aforementioned 
experiments. Clinical experiments utilized qPCR to detect FDX1 mRNA levels in 
peripheral venous blood of patients, and analyzed FDX1 expression differences in 
different APOE genotypes of AD patients. Finally, a protein–protein interaction (PPI) 
network of FDX1 was constructed based on the GeneMANIA database, immune 
infiltration analysis was conducted using R language, and transcription factors 
prediction for FDX1 was performed based on the ENCODE database.

Results: The cuproptosis key gene FDX1 showed significantly higher expression 
in peripheral blood and neuron models of AD compared to non-AD individuals, 
with significantly higher expression in APOE ε4/ε4 genotype than other 
APOE genotype of AD patients. Knockdown of FDX1 expression reduced the 
lipidation levels of DLAT and DLST in neurons, alleviated ROS accumulation 
in mitochondria, improved cell viability, and mitigated cuproptosis. Immune 
infiltration analysis results indicated a high enrichment of peripheral blood γδ-T 
lymphocytes in AD, and FDX1 was significantly associated with the infiltration of 
four immune cells and may be regulated by three transcription factors.

Conclusion: The cuproptosis key gene FDX1 is highly expressed in AD and 
may promote cuproptosis in AD neurons by regulating the lipidation levels of 
DLAT and DLST, thereby participating in the onset and development of AD. This 
provides a potential target for the diagnosis and treatment of AD.
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Introduction

Alzheimer’s disease is currently the most common type of 
dementia, accounting for approximately 60–70% of all dementia cases 
(Gao et al., 2022; Huang, 2023), affecting around 47 million people 
worldwide (Oboudiyat et  al., 2013). Its clinical features include 
impairments in executive and visuospatial functions, as well as short-
term memory deficits (Scheltens et al., 2021). The exact etiology of AD 
remains incompletely understood. Currently, the leading pathological 
hypotheses revolve around the deposition of amyloid-β (Aβ) forming 
senile plaques and abnormal p-Tau protein forming neurofibrillary 
tangles, leading to neuronal loss and death (Bharadwaj et al., 2009; 
Van der Kant et al., 2020). However, numerous targeted drug clinical 
trials globally based on these hypotheses have ended in failure (Lam 
et al., 2013; Byun et al., 2015), and there is still no effective treatment 
available to slow down, treat, or reverse AD (Lam et al., 2013; Byun 
et al., 2015). The exact causes and pathogenic mechanisms of AD 
remain to be further elucidated, with research focusing on alternative 
or innovative fields (Lai et al., 2022).

Long-term observational studies have found widespread neuronal 
loss in the brains of AD patients. Neuronal death is the direct cause of 
neurodegenerative changes, resulting in irreversible damage to the 
nervous system, leading to memory deficits and cognitive impairments 
(Yan et al., 2021; Duan et al., 2016). However, previous relevant studies 
mainly focused on apoptosis (Mangalmurti and Lukens, 2022).

Regulated cell death (RCD), as determined by genes, plays a 
crucial role in the orderly active death of cells, regulating homeostasis 
(Peng et al., 2022). As research by domestic and international scholars 
deepens, regulated cell death modes such as ferroptosis, pyroptosis, 
and cuproptosis have been shown to play important roles in diseases 
(Wang et al., 2023).

In March 2022, Tsvetkov et  al. first proposed and confirmed 
cuproptosis as a novel form of cell death (Tsvetkov et al., 2022). Unlike 
other known forms of cell death such as apoptosis, pyroptosis, and 
necroptosis, cuproptosis, similar to ferroptosis and zinc-induced cell 
death, is a regulated cell death induced by metal ion overload. When 
copper directly binds to the lipoyl moiety of the tricarboxylic acid 
cycle, it triggers the loss of iron–sulfur cluster proteins, protein toxicity 
stress, and ultimately leads to cell death (Tsvetkov et al., 2022). Among 
them, FDX1 serves a key regulator of cuproptosis and a direct target 
of elesclomol (ES), a copper ionophore that induces cuproptosis by 
promoting oxidative stress (Tsvetkov et al., 2019). FDX1 is directly 
related to protein lipoylation and significantly associated with ATP, 
ROS, etc. (Zhang et al., 2021; Zhang et al., 2022), thereby playing a 
crucial role in cuproptosis. Knocking out the key upstream regulator 
FDX1 of lipoylation proteins or lipoylation-related enzymes can block 
cuproptosis (Tsvetkov et al., 2022).

There have been preliminary studies exploring the correlation 
between cuproptosis-related genes and immune cells in AD (Nie et al., 
2023; Zhang et al., 2023), and experimental evidence showing that Cu 
overload can induce extensive neuronal cell death in the hippocampus 
of mice (Zhang et  al., 2023), but the role of cuproptosis in the 
pathogenesis of AD is still unclear.

Based on this, we  reasonably speculate that the cuproptosis 
mechanism may be  involved in the pathological process of 
AD. However, the role of cuproptosis and its related gene regulation 
in AD remains to be  determined. This study aims to screen for 
differentially expressed genes related to cuproptosis in AD neurons by 

biological information technology, verify their expression in 
peripheral blood and neurons of AD, and explore their impact on the 
activity of AD neurons to provide insights for effective 
treatment strategies.

Materials and methods

Data download and processing

The transcriptome dataset GSE63060 for AD patients (n = 145) 
and healthy subjects (n = 184) was downloaded from the GEO 
database1 and analyzed for differential expression genes (DEGs) using 
the Limma (Ritchie et al., 2015) package in R language. The single-cell 
dataset GSE147528 was also obtained and processed using the Seurat 
package version 3.2.2. Principal component analysis (PCA) was 
performed, and key principal components (PCs) were selected by 
executing JackStraw and PCEIbowPlot functions. The FindAllMarkers 
function in Seurat was used to accurately identify genes specific to 
each cell subtype, followed by UMAP algorithm-based cell clustering 
and visualization analysis using the RunUMAP method. Annotation 
of marker genes was done using the singleR package, and feature 
calibration was performed using CellMarker. The corrected DEGs, 
neuron cell-related genes, and collected cuproptosis genes were 
intersected using an online Venn diagram tool to obtain the 
differential expression cuproptosis-related genes (DE-CRG): FDX1.

Cell culture and transfection

The human neuroblastoma cell line SH-SY5Y was obtained from 
the Cell Bank of the Chinese Academy of Sciences. Cells were cultured 
in DMEM medium supplemented with 10% fetal bovine serum and 
1% antibiotics (penicillin–streptomycin mixture) at 37°C and 5% CO2.

Given that the generation, aggregation, and deposition of Aβ are 
considered pivotal initiating events in the pathological cascade of AD, 
with the Aβ25-35 peptide segment being one of the most neurotoxic 
fragments (Wang et  al., 2023), it is capable of inducing oxidative 
cellular damage, increasing the production of reactive oxygen species 
(ROS) within cells, and leading to apoptosis, thereby simulating key 
pathological processes of AD in cellular models (Arispe et al., 1993; 
Changhong et al., 2021; Limón et al., 2009). Consequently, this study 
employed a concentration of 20 μmol/L of Aβ25-35 to treat SH-SY5Y 
cells for 36 h in order to establish an AD cellular model.

Short hairpin RNA (shRNA) targeting FDX1 (pGPU6-shFDX1-1 
and pGPU6-shFDX1-2) were purchased from Shanghai Jierui 
Biotechnology Co., Ltd., containing two different FDX1 shRNA 
sequences (shFDX1-1: 5’-GGACAAUAUGACUGUUCGAGU-3’, 
shFDX1-2: 5’-AGUUGGUGAUUCUCUGCUAGA-3’). The plasmids 
were transfected into SH-SY5Y cells (density: 2 × 10^5/ml in 6-well 
plates) using Lipofectamine 2000 Reagent (Life Technologies, 
Carlsbad, CA, USA) according to the manufacturer’s instructions, 
with pGPU6 empty vector used as a negative control.

1 https://www.ncbi.nlm.nih.gov/geo/
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Clinical data and sample collection

Study subjects
The study subjects were patients admitted to the Neurology 

Department of Anhui Provincial Hospital from 2021 to 2023. The 
inclusion criteria for the disease group followed the core clinical 
criteria for AD dementia from the National Institute on Aging and 
Alzheimer’s Association (NIAAA-2011) (McKhann et al., 2011), and 
30 typical AD patients were included based on cerebrospinal fluid and 
imaging biomarkers. The control group consisted of 20 hospitalized 
patients with normal cognitive function during the same period. All 
subjects signed informed consent forms for the study and received 
approval from the hospital’s Medical Ethics Committee, with ethics 
approval number: 2019KY Ethics Review No. 79.

Data collection
Patient information including name, gender, age, medical history, 

laboratory tests, and MMSE scores were collected through electronic 
medical records and on-site questionnaires. MMSE scores of ≤19 
(illiterate), ≤22 (primary education), and ≤ 27 (middle school 
education and above) were considered indicative of 
cognitive impairment.

Sample collection
Peripheral venous blood was collected from all subjects around 

6 a.m. on the day after admission (fasting for at least 8 h) into 
EDTA-K2 anticoagulant tubes. Within 2 h, the blood was aliquoted 
into centrifuge tubes (EP tubes) at 400 μL per tube, stored in −80°C, 
and avoided repeated freeze–thaw cycles.

Real-time reverse 
transcriptase-polymerase chain reaction

Total RNA was extracted and purified from cells/whole blood 
using TRIzol reagent according to the manufacturer’s instructions. 
The extracted RNA was reverse transcribed into cDNA, followed by 
RT-qPCR amplification normalizing all samples to GAPDH. The gene 
primers were synthesized by Shanghai Jierui Biotechnology Co., Ltd., 
which sequences are listed in Table 1. The corresponding Ct values 
and melting curves were recorded after the reaction, and the 2-ΔΔCt 
method was used for relative quantitative analysis of the target genes 
(Yildiz Gulhan et al., 2022).

Western blotting

Cells were separated using a cell scraper and then incubated on ice 
for 30 min. Protein lysates were prepared by adding 4:1 volume ratio of 
5× reducing protein loading buffer, followed by denaturation in a boiling 
water bath for 15 min. Total protein content was separated by SDS-PAGE 
electrophoresis, and 20 μg of protein samples were loaded. 
Electrophoresis was conducted initially at 80 V for 20 min and then 
increased to 120 V for an additional 60 min. Subsequently, proteins were 
transferred onto PVDF membranes at 25 V for 30 min. After blocking 
in skim milk, the membranes were incubated overnight at 4°C with 
primary antibodies against the target proteins (FDX1, DLAT, and DLST) 
and the internal reference (GAPDH). The next day, the membranes were 
incubated with goat anti-rabbit HRP-conjugated secondary antibodies 
and goat anti-mouse HRP-conjugated secondary antibodies for 30 min. 
After incubation, the membranes were washed and visualized, and band 
grayscale values were calculated using Image J imaging analysis software.

Cell proliferation assay

The effect of FDX1 downregulation on cell viability was determined 
by CCK-8. SH-SY5Y cells and transfected cells were treated at 0, 24, 48, 
and 72 h. CCK-8 and serum-free essential culture medium were mixed 
at a 1:10 volume ratio, and 100 μL of the mixture was added to each well. 
Cells were then incubated at 37°C and 5% CO2 for 2 h, and absorbance 
at 450 nm wavelength was measured using a microplate reader.

Flow cytometry

Total mitochondrial ROS in SH-SY5Y cells was detected using the 
DCFH-DA probe (Beyotime Biotechnology). Cells were incubated 
with diluted DCFH-DA probe (1 mL) in serum-free culture medium 
for 20 min, followed by three washes with serum-free culture medium. 
Fluorescence intensity was measured by flow cytometry at an excitation 
wavelength of 488 nm and an emission wavelength of 525 nm.

Protein–protein interaction network

The PPI network of FDX1 was automatically constructed on the 
GeneMANIA database2 online website, and functional and enrichment 
pathway analyses were also performed. The more connecting lines 
between proteins in the network diagram, the stronger the correlation.

Immune infiltration analysis

Based on the gene expression profile of AD patients from the 
GSE63060 transcriptome dataset, the CIBERSORT algorithm was 
used to calculate the proportions of various cell types (p < 0.05). The 
“pheatmap” package was used to create a heatmap of 22 immune cell 
types, and the “corrplot” package was used to create a correlation 

2 http://genemania.org/

TABLE 1 Sequence of gene primers.

Primer 
names

Primer sequences (5’-3’) Product length

GAPDH
Forward:GAGAAGGCTGGGGCTCATTT

231 bp
Reverse:AGTGATGGCATGGACTGTGG

FDX1
Forward:ACCACGCTGGGTCCCG

250 bp
Reverse:GTTCCCTCACATGCACCAAAGC

DLAT
Forward:TGATGTCAGTGTTGCGGTCA

166 bp
Reverse:CGTAAAAGTGCCACCCTGGA

DLST
Forward:AGGTGGGAGAAAGCTGTTGG

230 bp
Reverse:TCCCAAGAGGGAACACTGGA
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heatmap to visualize the correlation between 22 different infiltrating 
immune cells. The relationship between infiltrating immune cells and 
FDX1 was analyzed by Spearman rank correlation test in R package.

Transcription factors prediction

FDX1-related transcription factors binding data were retrieved 
from the ENCODE database. Through bioinformatics analysis tools, 
the binding strength and differential expression patterns of 
transcription factors were compared to predict which transcription 
factors might affect FDX1 expression.

Statistical analysis

Statistical analysis was performed using SPSS 25.0 software. Count 
data were expressed as numbers of cases, and qualitative data were 
compared using the χ2 test. Quantitative data following a normal 
distribution were expressed as (x̄ ± s), and comparisons between two 
groups were performed using independent sample t-tests. Non-normally 
distributed data were expressed as median (upper quartile, lower 
quartile), and comparisons between two groups were performed using 
Mann–Whitney U test. p-value <0.05 was used as the filtering condition. 
Experimental data were plotted using GraphPad Prism 10.0.

Results

Dataset information and DE-CRG screening 
results

After careful screening, the original files of GSE63060 were 
downloaded. DEGs were filtered with criteria of p <  0.05 and 

|logFC| > 1, resulting in 21,684 genes meeting the requirements, with 
11,043 genes upregulated and 10,641 genes downregulated. The 
volcano plot and heatmap of DEGs were generated using the ggplot2 
and pheatmap packages (Figure 1). T-SNE and UMAP plots were 
used to visualize the expression distribution of neurons in clusters, 
demonstrating the heterogeneity of neurons in the GSE147528 
dataset (Figure  2). Finally, a Venn diagram was constructed to 
intersect the processed DEGs, neuron cell-related genes, and 
cuproptosis-related genes, obtaining DE-CRG: FDX1 (Figure 3).

High expression of FDX1 in AD model cells

The relative expression levels of genes and proteins in cells were 
detected using RT-qPCR and WB assays, with results depicted in 
Figure 4. In the Aβ25-35-induced AD model SH-SY5Y cells, the relative 
expression levels of FDX1, DLAT, and DLST mRNA and proteins were 
significantly increased compared to the control group.

Decreased expression of DLAT and DLST 
after FDX1 knockdown

After downregulation of FDX1 expression, the relative expression 
levels of DLAT and DLST mRNA and proteins in the AD + shFDX1-1 
and AD + shFDX1-2 model SH-SY5Y cells were markedly reduced 
compared to the control group, as shown in Figure 5.

Increased cell proliferation activity after 
FDX1 knockdown

Cell proliferation activity of SH-SY5Y cells was measured by 
CCK8 assay at 0, 24, 48, and 72 h. Compared to the control group, 

FIGURE 1

Volcano map and heat map of DEGs: (A) Volcano map of DEGs, blue for up-regulated gene, yellow for down-regulated gene, gray for no significant 
difference; (B) Heat maps of DEGs in different groups, blue for healthy controls and yellow for disease groups.
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cell proliferation activity significantly decreased after Aβ25-35 
treatment (Figure 6A). After FDX1 knockdown, cell proliferation 
activity significantly increased compared to the non-knockdown 
group (Figure  6B). At 48 h, cell viability recovered to 71.41% 
(p < 0.0001).

Reduced cell damage after FDX1 mRNA 
knockdown

Mitochondrial ROS levels in SH-SY5Y cells were measured using 
flow cytometry. Compared to the control group, mitochondrial ROS 
accumulation in SH-SY5Y cells significantly increased after Aβ25-35 
treatment (Figure 7A). After FDX1 knockdown, mitochondrial ROS 
levels in SH-SY5Y cells decreased significantly (p < 0.001) (Figure 7B), 
indicating alleviated cell damage.

Comparison of general information and 
FDX1 expression in peripheral blood 
between AD and control group

There were statistical differences in gender, age, MMSE, and 
lipoprotein(a) (Lp(a)) between the two groups (p < 0.05) (Table 2). 
The relative expression of FDX1 mRNA in the peripheral blood of AD 
patients was significantly increased compared to non-AD patients 
(p < 0.0001) (Figure 8).

Comparison of FDX1 expression among AD 
patients with different APOE genotypes

In AD patients, there was no statistical difference in FDX1 
mRNA relative expression levels between APOE ε4+ and APOE 
ε4− individuals, but there was differential expression between 
APOE ε4/ε4 and APOE ε2, ε3/ε4 individuals (p < 0.05) (Figure 9). 
FDX1 mRNA relative expression levels in peripheral blood of AD 
patients with the APOE ε4/ε4 genotype were significantly higher.

PPI analysis results of FDX1

The PPI network showed that FDX1 primarily interacts with 
FDXR, FDX2, CYP27C1, CYP27B1, and CYP24A1. Functional 
predictions indicated that FDX1 is involved in hormone biosynthesis 
along with FDXR, FDX2, and CYP27B1, and also participates in the 
binding process of iron–sulfur clusters and metal clusters (Figure 10).

High infiltration of γδ-T cells in AD

In differential analysis of immune cell infiltration (Figure 11), 
there was a significant difference in γδ-T cell infiltration expression 
between AD patients and healthy controls (p < 0.01). γδ-T cells were 

FIGURE 2

T-SNE and UMPA atlas: (A) T-SNE projection of 3,000 cells from all brain tissues; (B) UMPA projection of 3,000 cells from all brain tissues.

FIGURE 3

Venn diagram of the three data sets (DE-CRG is the cross part).
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FIGURE 4

(A) Relative expression of FDX1 mRNA, DLAT mRNA, DLST mRNA in NC and AD model SH-SY5Y cells; (B) Relative expression of FDX1, DLAT, DLST 
protein levels in NC and AD model SH-SY5Y cells (***p < 0.001, ****p < 0.0001). A: control group, B: model group.

enriched and increased in AD patients, indicating possible immune 
inflammatory reactions in AD.

Significant correlation between FDX1 and 
four immune cells

FDX1 were significantly correlated with four immune cells in the 
analysis of the correlation between 22 immune cells and it (Figure 12). 
Specifically, FDX1 was negatively correlated with M0 macrophages 
(p < 0.001), activated mast cells (p < 0.01), and resting NK cells (p < 0.05), 
and positively correlated with CD4 memory resting T cells (p < 0.05).

Existence of three transcription factors for 
FDX1

Based on the ENCODE database, three transcription factors 
related to FDX1 were predicted (Figure 13): Signal Transducer and 
Activator of Transcription 1 (STAT1), Zinc Finger Protein 37 (ZFP37), 
and Nuclear Receptor Corepressor 1 (NCOR1).

Discussion

Currently, research on cuproptosis in AD is still in its infancy, 
lacking direct experimental validation of the relevance between 
cuproptosis and AD. Therefore, this study conducted preliminary 
research on the cuproptosis mechanism in AD based on FDX1 by 
biological information technology and experimental verification. The 
results indicate that FDX1 is highly expressed in AD neurons. After 

downregulation of FDX1 expression, the expression of acylated 
proteins DLAT and DLST in cuproptosis also decreased. Neuronal 
oxidative stress damage was significantly alleviated, and proliferation 
activity was markedly improved. Subsequently, using peripheral blood 
samples from some AD clinical patients, we found that FDX1 was also 
highly expressed in AD patients, with higher expression levels in 
patients carrying the APOE ε4/ε4 genotype. The experiments verified 
the high expression of FDX1 in the peripheral and central nervous 
systems of AD patients, which is associated with the APOE ε4/ε4 risk 
gene and may regulate neurons through the cuproptosis pathway. 
Inhibition of FDX1 expression can alleviate cuproptosis in AD 
neurons, thereby delaying the progression of AD.

This study’s results demonstrate that after downregulation of 
FDX1 expression, the expression of DLAT and DLST also decreases, 
potentially affecting the cuproptosis process through the FDX1-
DLAT/DLST regulatory axis (Belloy et  al., 2019), consistent with 
previous research findings. The loss of FDX1 disrupts the acylation of 
proteins such as DLAT and DLST (Nie et al., 2023), resulting in loss of 
their ability to bind to copper, thus easing the cuproptosis process in 
neurons. Therefore, subsequent gene expression regulation can 
be achieved through FDX1 transcription factors STAT1, ZFP37, and 
NCOR1, providing new strategies for AD treatment.

APOE mainly functions as a lipid transport protein, playing a key 
role in certain transport between neurons (Yamazaki et al., 2019). It 
can also affect the development of AD by blocking Aβ clearance, 
accelerating Aβ aggregation, influencing Tau pathology and 
Tau-mediated neurodegeneration, and damaging synaptic integrity 
and plasticity (Komai et al., 2024; Strittmatter et al., 1993). In 1993, 
APOE isoforms were first confirmed as risk factors for AD 
(Strittmatter and Roses, 1996), among which the ε4 isoform increases 
the risk of developing AD and lowers the age of onset. One ε4 allele 
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FIGURE 5

(A) Relative expression of FDX1 mRNA, DLAT mRNA and DLST mRNA in SH-SY5Y cells of NC, AD, AD + shFDX1-1 and AD + shFDX1-2 models; 
(B) Relative expression of FDX1, DLAT and DLST in SH-SY5Y cells of NC, AD, AD + shFDX1-1 and AD + shFDX1-2 models. (*p < 0.05, **p < 0.01, 
***p < 0.001, ****p < 0.0001). A: control group, B: model group, C: model group + shFDX1-1, D: model group + shFDX1-2.

FIGURE 6

(A) The effect of Aβ25-35 on the viability of SH-SY5Y cells; (B) The effect of knocking down FDX1 expression on the viability of SH-SY5Y cells in AD model. 
(**p < 0.01, ***p < 0.001, ****p < 0.0001).
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FIGURE 7

(A) Effect of Aβ25-35 on mitochondrial ROS content in SH-SY5Y cells. (B) The effect of knocking down FDX1 expression on mitochondrial ROS content in 
SH-SY5Y cells of AD model. (***p < 0.001, ****p < 0.0001).
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can increase the risk of developing AD by 2- to 4-fold, while 
homozygosity for the allele can increase the risk to 8–12 times (Gao 
et al., 2022; Strittmatter and Roses, 1996).

This study showed that FDX1 is more highly expressed in patients 
with AD carrying the APOE ε4/ε4 genotype, suggesting that FDX1 

may interact with the APOE ε4/ε4 genotype, jointly affecting the 
progression of the disease.

Clinical data show differences in age, gender, and lipoprotein 
between the two groups of patients. Age is one of the most significant 
risk factors for cognitive decline in AD (Liu et al., 2024). The older 
the age, the higher the probability of developing AD. Women are 
more likely to develop AD than men (Alzheimer’s Disease 
International, 2018), with a 19–29% higher incidence rate (ADI, 
n.d.), possibly due to women having a higher Tau protein load 
(Buckley et al., 2019; Babapour Mofrad et al., 2020), measured at 
higher levels of AD pathology (Oveisgharan et al., 2018; Biechele 
et al., 2024). Related experiments have shown that the effects of Cu 
on memory function and oxidative stress in rats are also gender-
related, with slightly greater effects observed in female rats (Lamtai 
et  al., 2020), which may be  due to estrogen enhancing copper 
retention, making females more susceptible to its neurotoxic effects 
(Amtage et  al., 2014). Therefore, further research is necessary to 
clarify the potential gender differences in the effects of copper 
homeostasis on neurocognitive function.

Lp(a) is a distinctive hepatic lipoprotein (Kamstrup, 2021), and 
there is evidence indicating a high correlation between serum 
Lp(a) levels and the severity of AD (Larsson et al., 2020; Merched 
et al., 2000), which suggests that clinical measurement of Lp(a) 
could be  utilized for assessing the risk and severity of 
AD. Nevertheless, the relationship between Lp(a) and AD remains 
elusive. Some studies have demonstrated a significant positive 
correlation between serum concentrations of Lp(a) and increased 
risk of AD (Solfrizzi et al., 2002), while some studies have indicated 
a negative correlation (Gong et al., 2022), and others have found 
no significant difference in Lp(a) concentrations between AD 
patients and healthy controls (Ray et al., 2013; Ban et al., 2009). 
This current study reveals that the Lp(a) concentration in the AD 
patient group is higher than that in the control group, implying a 
potential positive correlation between Lp(a) and the risk of AD 
onset. However, due to the small sample size of this study, the 
statistical results may be  subject to certain biases. Therefore, 

TABLE 2 General data analysis of AD group and control group.

Profile AD group 
(n = 30)

NC group 
(n = 20)

t/
x2/z

p

Sex
Male 8 11 4.089 0.043

Female 22 9

Age 65.70 ± 8.66 56.40 ± 10.70 3.384 0.001

MMSE
17.00(9.00–

20.75)

27.00(27.00–

28.00)
−5.958 <0.001

Lp (a)

(mg/L)

235.00(160.00–

278.00)

95.50(63.25–

155.50)
−2.032 0.042

FIGURE 8

Difference in expression of FDX1 mRNA between AD group and NC 
group (****p < 0.001).

FIGURE 9

(A) Difference analysis of relative expression of FDX1 mRNA in APOE ε4+/APOE ε4− of AD patients; (B) Difference analysis of relative expression of FDX1 
mRNA in APOE ε4/ε4 and APOE ε2 ε3/ε4 of AD patients (**p < 0.01).
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FIGURE 10

PPI network of FDX1. The colors in the circle represent the different functions of the proteins corresponding to each gene, and the colors of the lines 
represent the different interactions between the proteins. The more lines there are, the closer the connections are.

FIGURE 11

Differences in expression levels of immune cells in AD group and control group (*p < 0.05, **p < 0.01).
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whether reducing Lp(a) levels would increase the risk of dementia 
requires further investigation with an expanded sample size 
(Larsson et al., 2020).

Immunocytes, particularly microglia and astrocytes, play a pivotal 
role in the pathogenesis of AD by modulating neuroinflammation 
(Princiotta Cariddi et al., 2022), Aβ clearance (Ennerfelt et al., 2022; 
Hur et al., 2020), and tau pathology (Rajesh and Kanneganti, 2022). 
Impaired immunocyte function can lead to reduced phagocytosis and 
accumulation of Aβ, while their activation results in the release of 
pro-inflammatory cytokines, neuronal damage, and disruption of 
synaptic integrity. Additionally, this activation may facilitate the 
spread of pathological Tau, induce neuronal apoptosis, and accelerate 
the decline in cognitive abilities in AD patients (da Mesquita et al., 
2018). Recent investigative findings suggest that γδ-T cells, functioning 
as potential regulatory or pathogenic entities, are capable of infiltrating 

the brain (Aliseychik et al., 2020). During the early stages of AD, the 
IL-17 produced by γδ-T cells accumulates in the central nervous 
system in significant quantities and persists throughout the disease’s 
progression. IL-17 can cause in synaptic dysfunction and impairments 
in short-term memory in AD mouse models, which neutralization was 
sufficient to rescue Aβ-induced neuroinflammation and hippocampal 
glutamatergic dysfunction in early stages of disease with a mechanism 
that is independent of Aβ and Tau pathology or blood–brain barrier 
(BBB) disruption (Brigas et al., 2021; Cristiano et al., 2019). This is 
consistent with the findings of the current study, which observed a 
high enrichment of γδ-T cells in AD, potentially offering new avenues 
for the diagnosis and therapeutic intervention of AD.

In the analysis of the correlation between FDX1 and immune 
cells in AD, we  found that FDX1 is closely associated with the 
infiltration of four types of immune cells, among which M0 

FIGURE 12

Correlation analysis between immune cells and FDX1 (*p < 0.05,**p < 0.01,***p < 0.001). Blue represents negative correlation, yellow represents 
positive correlation.
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macrophages were the most strongly associated. According to 
research reports, Chronic M0-differentiation may lead Triggering 
Receptor Expressed on Myeloid Cells 2 (TREM2), which serves as 
a putative therapeutic target for AD, to increased synthesis in 
AD-derived cells (Cosma et al., 2023). This suggests that the high 
expression of FDX1 is correlated with immune pathways (Wang 
et al., 2024), and may participate in the occurrence and development 
of AD by altering the composition of the immune microenvironment.

There have been reports on the development of functional drugs 
targeting cuproptosis pathways and their application in cancer (Tong 
et al., 2022), but the role of cuproptosis and its related genes in AD has 
not been thoroughly studied. Therefore, developing new therapies for 
AD based on the cuproptosis is of great significance and deserves 
further investigation.

However, this study has certain limitations. Firstly, our study used 
a public dataset with limitations, which sample size is mainly 
composed of gene expression data, omitting other biological data like 
proteomics or metabolomics. Sample diversity and platform 
differences could bias our analysis and affect the findings’ 
generalizability. Diverse samples and multi-omics data should 
be utilized in future research to better understand disease mechanisms. 
Secondly, the sample size for clinical validation is relatively small, 
which may limit the universality and reliability of the research 
outcomes. Further validation and exploration are needed through the 
expansion of sample size and in vitro experiments. Thirdly, whether 
FDX1 exclusively affects AD through the cuproptosis and the specific 
effects on AD after cuproptosis in neurons remain to 
be explored further.

Conclusion

The key gene FDX1 involved in cuproptosis is highly expressed in 
neurons and peripheral blood of AD, and it can affect the status of 
neurons by regulating the expression of DLAT and DLST. Thus, 
we  speculate that FDX1 may participate in the occurrence and 
development of AD through the cuproptosis. Exploring how to reduce 

FDX1 expression to inhibit cuproptosis in neurons may become a new 
strategy for developing anti-AD drugs or delaying the progression of AD.
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Transcription factors prediction of FDX1.
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