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Introduction: Alzheimer’s disease (AD) is a progressive neurodegenerative

disorder characterized by gradual loss of cognitive function. Understanding the

molecular mechanisms is crucial for developing effective therapies.

Methods: Data from single-cell RNA sequencing (scRNA-seq) in the GSE181279

dataset and gene chips in the GSE63060 and GSE63061 datasets were

collected and analyzed to identify immune cell types and differentially expressed

genes. Cell communication, pseudotime trajectory, enrichment analysis, co-

expression network, and short time-series expression miner were analyzed to

identify disease-specific molecular and cellular mechanisms.

Results: We identified eight cell types (B cells, monocytes, natural killer cells,

gamma-delta T cells, CD8+ T cells, Tem/Temra cytotoxic T cells, Tem/Trm

cytotoxic T cells, and mucosal-associated invariant T cells) using scRNA-seq.

AD samples were enriched in monocytes, CD8+ T cells, Tem/Temra cytotoxic T

cells, and Tem/Trm cytotoxic T cells, whereas samples from healthy controls

were enriched in natural killer and mucosal-associated invariant T cells. Five

co-expression modules that were identified through weighted gene correlation

network analysis were enriched in immune- inflammatory pathways. Candidate

genes with higher area under the receiver operating characteristic curve values

were screened, and the expression trend of Ubiquitin-Fold Modifier Conjugating

Enzyme 1 (UFC1) gradually decreased from healthy controls to mild cognitive

impairment and then to AD.

Conclusion: Our study suggests that peripheral immune cells may be a potential

therapeutic target for AD. Candidate genes, particularly UFC1, may serve as

potential biomarkers for progression of AD.
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GRAPHICAL ABSTRACT

The flowchart of this study. AD, Alzheimer’s disease; AUC, area under receiver operating characteristic curve; DEGs, differentially expressed genes;
NC, normal control; scRNA-seq, single cell RNA-sequencing.

Introduction

Alzheimer’s disease (AD) is a devastating neurodegenerative
disorder that typically occurs in people over the age of 60 and is
characterized by a gradual decline in cognitive functions, including
memory, thinking, emotion, and behavior (Eissman et al., 2022;
Zou D. et al., 2019; Zou et al., 2024). It is the most common cause
of dementia, accounting for more than 65% of all dementia cases in
elderly individuals (Ballard et al., 2011; Lin et al., 2022). While some
treatment options are available for AD, its causes and mechanisms
are not fully understood, underscoring AD as a significant focus in
the scientific community (Zou et al., 2022; Jian et al., 2017).

The two main pathological hallmarks of AD are the
accumulation of beta-amyloid proteins in amyloid plaques and
the formation of neurofibrillary tangles, which are twisted fibers
of tau protein that accumulate inside neurons (Gonzalez-Ortiz
et al., 2023; Zou C. et al., 2019). These pathological changes
lead to inflammation, oxidative stress, and damage to brain cells,
eventually resulting in AD symptoms. Currently, there is no cure
for AD, and the available treatments can only temporarily alleviate
some of its symptoms (Zou et al., 2023).

Abbreviations: AD, Alzheimer’s disease; AUC, area under the receiver
operating characteristic curve; BP, biological processes; DEGs, differentially
expressed genes; GEO, Gene Expression Omnibus; GSEA, Gene set
enrichment analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes;
kME, eigengene-based connectivity; MAIT, mucosal-associated invariant
T; MCI, Mild cognitive impairment; MEs, Module eigengenes; NC,
normal controls; NK, natural killer, PBMCs, peripheral blood mononuclear
cells; scRNA-seq, single-cell RNA sequencing; STEM, Short Time-series
Expression Miner; TEM, effector memory T cells; TEMRA, CD45RA+ effector
memory T cells; TOM, topological overlap matrix; tSNE, t-distributed
stochastic neighbor embedding; UFC1, Ubiquitin-Fold Modifier Conjugating
Enzyme 1; WGCNA, weighted gene correlation network analysis.

Single-cell RNA sequencing (scRNA-seq) is a powerful tool for
studying the molecular and cellular mechanisms underlying AD
(Olah et al., 2020; Xu and Jia, 2021; Lu et al., 2024). AD is a
complex and multifactorial disease that involves multiple cell types
and molecular pathways (Xiong et al., 2021; Saura et al., 2023; Xie
et al., 2024). scRNA-seq allows researchers to study individual cells,
providing a more comprehensive understanding of the cellular and
molecular changes associated with AD (Jian et al., 2021).

Targeting immune cells for AD as a potential therapeutic
strategy has gained increasing attention in recent years
(Hampel et al., 2020). The immune system plays a critical
role in AD pathogenesis and the activation of immune cells,
such as microglia and peripheral immune cells, contributes to
disease progression (Luo et al., 2022; Ma et al., 2022). Studies
have shown that peripheral immune cells are increased
in AD patients and that immune cells in the periphery
can influence the development and progression of AD
(Bettcher et al., 2021).

Mild cognitive impairment (MCI) is often considered a
transitional stage between normal aging and AD (Ritchie et al.,
2014). Individuals with MCI are at increased risk of developing AD
or other dementias (Davis et al., 2013). Studies have shown that
the annual rate of conversion from MCI to AD is higher than that
of cognitive decline in healthy older adults (Chandra et al., 2019).
By analyzing and comparing the gene expression patterns from
patients with MCI and AD, researchers can identify the molecular
pathways that are switched towards AD and determine how these
alterations contribute to AD progress.

To explore the molecular basis of peripheral immune cells
and gene expression patterns, we used scRNA-seq data and
transcriptomes from patients with AD and healthy controls to
reveal the composition and proportions of immune cell types and
identify key genes and pathways.

Frontiers in Aging Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnagi.2024.1477327
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-16-1477327 November 11, 2024 Time: 16:47 # 3

Lin et al. 10.3389/fnagi.2024.1477327

FIGURE 1

Characterization of cell populations in AD with scRNA-seq profiling. (A) The T-distributed stochastic neighbor embedding (tSNE) plot showing
major cell types. (B) The tSNE plot showing subtypes of immune cells. (C) Dot plot showing average expression of marker genes of immune cell
types. The color represents the average expression level of marker genes. (D) The tSNE plot showing subtypes of T cells. (E) The tSNE plot showing
all cells in the AD and normal control groups. (F) Proportion of cell types in AD and normal control samples. AD, Alzheimer’s disease.

Materials and methods

Data collection

The GSE181279 (Xu and Jia, 2021) and GSE63063 (Sood
et al., 2015) datasets were obtained from the Gene Expression
Omnibus (GEO) database.1 GSE181279 includes scRNA-seq data of
peripheral blood mononuclear cells (PBMCs) from three patients
with AD and two cognitively normal controls (NC), based on
the GPL24676 platform. GSE63063 is a superseries composed of
GSE63060 and GSE63061 datasets. GSE63060 includes gene-chip
datasets of blood samples from 49 patients with AD, 39 patients
with mild cognitive impairment (MCI), and 67 NC based on the
GPL6947 platform. GSE63061 included gene-chip datasets of blood
samples from 40 patients with AD, 30 patients with MCI, and 72
NC, based on the GPL10558 platform.

scRNA-seq cell clustering and differential
analysis

During preprocessing, we used the Seurat R package (v3.1.2)
to filter out empty droplets (those containing only ambient RNA)
based on the criteria of expressing fewer than 200 genes. We also
applied stringent thresholds for unique molecular identifier (UMI)
count and mitochondrial gene content to exclude low-quality cells.

1 https://www.ncbi.nlm.nih.gov/gds

Cells expressing more than 30% mitochondrial genes were filtered
out to avoid cells undergoing apoptosis or stress. Additionally, we
applied a lower UMI threshold of 200 and an upper threshold
of 8,000 genes. After normalizing the data using the Seurat R
package (v3.1.2), the FindClusters function was used to identify
the major clusters. Subsequently, t-distributed stochastic neighbor
embedding (tSNE) (Pont et al., 2019) was used to visualize major
clusters. Cell types were defined based on the reported marker genes
(Supplementary Table 1) and differential expression analysis of
unique markers. Intercellular communication was analyzed using
the CellChat R package (Jin et al., 2021). Pseudotime trajectory
analyses were performed using monocle2 R package (Qiu et al.,
2017). The contribution of cells to AD was calculated using the
Seurat R package.

Differences between AD and NC in cell types were analyzed
using the Seurat R package. Differentially expressed genes (DEGs)
were identified at P < 0.05. Differences between cell types
were analyzed using the limma R package (Ritchie et al., 2015).
Enrichment analysis of biological processes (BP) in the Gene
Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG)
for DEGs was performed using the ClusterProfiler R package (Yu
et al., 2012).

Construction of co-expression network

The co-expression networks of the 2000 most variable
genes were constructed using scRNA-seq with weighted gene
correlation network analysis (WGCNA) (Langfelder and Horvath,
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FIGURE 2

Single cell immune landscape in ARDS and healthy controls. (A) Cellular interaction number and strength. (B) Pseudotime trajectory analysis of
major immune cells. (C) Heatmap of gene expression in immune cells of branches.

2008) and high-dimensional WGCNA. We constructed meta-
cells for each cell and normalized their expression matrix.
The soft threshold power was calculated, and the optimal
β was selected to obtain a scale-free network. Then the
adjacency matrix was transformed into a topological overlap
matrix (TOM) and the co-expression network was constructed.
Module eigengenes (MEs) were calculated to represent module
expression levels. The correlation between genes and module
eigengenes was calculated to obtain eigengene-based connectivity
(kME) and to identify highly connected genes (hub genes) in
each module. The top 25 hub genes in each module were
scored using the moduleexprscor function. Correlations between
the modules and cell types were calculated using Pearson’s
correlation.

Gene-chip data processing

DEGs between the AD and NC groups were analyzed using
the limma R package with a permutation-based P-value of < 0.05.
Common DEGs were obtained by intersectional analysis of DEGs
that were up - or downregulated in both the GSE63060 and
GSE63061 datasets.

Enrichment analyses of the Gene Ontology and KEGG
databases for common DEGs were performed using Metascape.2

Gene set enrichment analysis (GSEA) was performed using
the clusterprofiler R package to detect which gene sets were
significantly enriched in AD. Adjusted P < 0.05 were considered
statistically significant. The area under the receiver operating
characteristic curve (AUC) values were calculated using the pROC
package (Robin et al., 2011) for both the GSE63060 and GSE63061
datasets. Common DEGs with the top ten AUC values were selected
as candidate genes.

Short time-series expression miner
(STEM)

We performed differential analyses between AD and MCI
or between MCI and NC samples. The generated genes were
provided as inputs to STEM (Ernst and Bar-Joseph, 2006) to
observe variations in gene expression. Hierarchical clustering was
used to observe activated or inhibited variation trends in the KEGG
pathways.

2 https://metascape.org/gp/#/main/step1
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FIGURE 3

Co-expression modules and their association with immune cells. (A) Different soft-thresholding for screening scale-free network. (B) Hierarchical
clustering tree of 5 modules of co-expression. (C) Score of each module in immune cells. The color represents the score level of top 25 hub genes.
(D) Top 10 hub genes within individual modules were determined by kME values. ME, module eigengenes. (E) Correlation between modules and
immune cells in different clinical traits. *P < 0.05, **P < 0.01, ***P < 0.001. (F) Differential condition of cell types in each module. *P < 0.05,
**P < 0.01, ***P < 0.001.

Results

Single-cell gene expression profiles
reveal major immune cell types in AD

Graphical Abstract highlights the experimental design,
including the datasets used (GSE181279, GSE63060, and
GSE63061) and their respective contributions to identifying
immune cell types and gene expression profiles in AD and normal
controls. The cell clustering based on scRNA-seq data is depicted,
illustrating the differences in immune cell populations between
AD patients and controls. The identification of key DEGs and the
co-expression network analysis are also represented, emphasizing
the role of immune cells in AD progression.

The raw GSE181279 dataset was read using the Seurat R
package, and 22,776 individual cells in AD and 14,074 individual

cells in normal tissue were obtained (Supplementary Figure 1).
This was followed by quality control leading to 21,791 high-quality
individual cells and 13,877 individual cells from normal individuals
identified (Supplementary Figure 2). Using graph-based tSNE, we
identified 13 clusters of major immune cells containing 35,668 total
cells. Subsequently, we annotated 13 cell clusters with marker genes
for major cell types and found that they were annotated as B cells,
T cells, monocytes, and natural killer (NK) cells (Figures 1A, C).
The distribution of T cells was clear and loose. Thus, we subdivided
the T cell population and identified five T cell subtypes: gamma-
delta T cells, CD8+ T cells, Tem/Temra cytotoxic T cells, Tem/Trm
cytotoxic T cells, and mucosal-associated invariant T (MAIT) cells
(Figures 1B–D). Different cell types were enriched in patients with
AD and NC. Monocytes, CD8+ T cells, Tem/Temra cytotoxic T
cells, and Tem/Trm cytotoxic T cells were enriched in patients with
AD, whereas MAIT and NK cells were enriched in NCs (Figure 2E).

Frontiers in Aging Neuroscience 05 frontiersin.org

https://doi.org/10.3389/fnagi.2024.1477327
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-16-1477327 November 11, 2024 Time: 16:47 # 6

Lin et al. 10.3389/fnagi.2024.1477327

Cell type proportions were significantly different between AD and
NC, with monocytes, Tem/Temra cytotoxic T cells, and Tem/Trm
cytotoxic T cells predominantly present in the AD samples, and
MAIT cells, NK cells, and B cells predominantly present in the NC
samples (Figure 1F).

CellChat and cellular trajectory based on
scRNA-seq

We sought to explore the communication networks between
immune cells. The interactions between Tem/Temra cytotoxic T
cells, Tem/Trm cytotoxic T cells, and CD8 cells were stronger, and
CD8 cells were signal recipients (Figure 2A). Three cell branches
were identified in the pseudotime analysis: gamma-delta T cells
and CD8+ T cells concentrated at the end of branch 1, monocytes
concentrated at the end of branch 2, and Tem/Temra cytotoxic
T cells and Tem/Trm cytotoxic T cells bifurcating into branch
3 (Figure 2B). The gene expression of immune cells in these
branches is shown in Figure 2C. These results revealed the potential
transcriptional heterogeneity between cell types.

Identification of co-expression network
using WGCNA

To explore the co-expression networks of genes in immune
cell types, we performed WGCNA. The power parameter range
of 1–30 was filtered the power of β = 8 (scale-free R2 = 9) was
used as the optimal screening soft threshold to construct a scale-
free network and obtain five co-expression modules (Figures 3A,
B). The modules spanned multiple cell populations by scoring
the top 25 hub genes of each module, then mapping them to
single cells (Figure 3C). We identified the top 10 hub genes in
each module (Figure 3D). Among these modules, yellow (M3)
and green (M5) modules showed significant positive correlations
with CD8+ T cells and significant negative correlations with
gamma-delta T cells in AD, while turquoise module (M1) showed
significant positive correlations with monocytes and MAIT cells
and significant negative correlations with CD8+ T cells, gamma-
delta T cells, and B cells in AD (Figure 3E). Moreover, all immune
cells were significantly different in the M1 group (Figure 3F).

Differentially expressed genes and
biological roles

We investigated the contribution of immune cells in AD. The
results indicated that MAIT cells had the highest contribution
to AD, followed by B cells and NK cells (Figure 4A). By
comparing gene expression changes between AD samples and
normal controls, we found that MAIT cells and monocytes were
primarily upregulated in AD (Figure 4B). Enrichment analysis of
DEGs in various cell types revealed that the DEGs were mainly
enriched in growth hormone synthesis, secretion, and action
(Figure 4C). In the quantitative analysis, we found that Butanoate
metabolism was significantly activated in MAIT cells (Figure 4D).

In addition, to explore the disease mechanism in patients
with AD from a molecular perspective, we analyzed the genes in
immune cells identified by scRNA-seq for differential expression.
We identified 1683 DEGs in B cells, 951 DEGs in CD8+ T cells, 1407
DEGs in gamma-delta T cells, 250 DEGs in MAIT cells, 1615 DEGs
in monocytes, 644 DEGs in NK cells, 1595 DEGs in Tem/Temra
cytotoxic T cells, and 1582 DEGs in Tem/Trm cytotoxic T cells
(Figure 5A). Enrichment analysis revealed that these DEGs were
enriched for regulation of T cell proliferation, B cell activation, and
inflammatory responses (Figure 5B). In KEGG pathway analysis,
we found that the DEGs were mainly enriched for ribosomes,
Parkinson’s disease, and AD (Figure 5C). Of these, MAIT cells
are involved in the fewest signaling pathways. However, all are
implicated in the nervous system.

Notably, we identified 110 DEGs from the GSE63060 dataset
(Figure 6A) and 429 DEGs from the GSE63061 dataset (Figure 6B).
Analyzing the upregulated and downregulated DEGs separately,
we found eight DEGs that were upregulated and 89 DEGs that
were downregulated in both GSE63060 and GSE63061. Both were
considered common DEGs (Figure 6C). Enrichment analysis
showed that common DEGs were involved in SRP-dependent
co-translational proteins targeting the membrane, oxidative
phosphorylation, and ribonucleoprotein complex biogenesis
(Figure 6D).

Candidate genes and pathways in AD

We further extracted candidate genes (CETN2, COX17,
MRPL51, NDUFA1, NDUFS5, RPA3, RPL36AL, RPS25, SHFM1,
and UFC1) with high AUC values in both GSE63060 and GSE63061
(Figure 7A). RPS25 and RPL36AL were highly expressed in the
eight immune cell types identified by scRNA-seq (Figures 7B, C).
Interestingly, all candidate genes exhibited decreased expression in
AD patients compared to normal controls in both the GSE63060
and GSE63061 datasets (Figure 7D).

In addition, we analyzed the KEGG pathways in AD of
GSE63060 (Figure 8A) and GSE63061 (Figure 8B) using GSEA.
The results showed that in AD patients, osteoclast differentiation,
lysosomes, TNF signaling pathway, JAK-STAT signaling pathway,
growth hormone synthesis, secretion, and action were activated;
while ribosomes, oxidative phosphorylation, coronavirus
disease-COVID-19, Parkinson’s disease, and thermogenesis
were inhibited. We found that ribosomes (hsa03010) and
coronavirus disease-COVID-19 (hsa05171) were mainly
enriched in the eight immune cell types identified by scRNA-seq
(Figure 8C).

Patterns of genes and signaling pathways
in AD progression

Temporal expression analysis was performed using STEM
software of the differentially expressed genes between AD and
MCI and between MCI and controls to further explore the
expression patterns of genes in the progression of AD. We
found that the expression trends of the 13 genes in the course
of the normal control to MCI and AD were consistent in the
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FIGURE 4

Contribution of immune cell types, analysis of differentially expressed genes, and metabolic pathway enrichment analysis in AD. (A) Contribution of
different immune cell subtypes to AD. (B) Volcano plot of differentially expressed genes in various immune cell types between AD and control
samples. (C) Metabolic pathway enrichment analysis based on differentially expressed genes. (D) Quantitative analysis of metabolic pathways in
different immune cell types.

GSE63060 (Figure 9A) and GSE63061 (Figure 9B) datasets. Among
these 13 genes, UFC1 was identified as one of the candidate
genes.

Cluster heatmap analysis of common DEGs in GSE63060
(Figure 10A) and GSE63061 (Figure 10B) revealed that the

genes upregulated in AD progression were mainly involved
in the regulation of neuronal apoptotic processes and the
actin cytoskeleton. In contrast, the genes downregulated in AD
progression were mainly involved in ribosome and oxidative
phosphorylation.
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FIGURE 5

Identification of differentially expressed genes and biological roles of immune cells based on scRNA-seq. (A) Differentially expressed genes in each
cell type compared to others. The top 5 up- or downregulated expressed genes are labeled. (B) Biological processes of differentially expressed
genes in all cell types. The size represents the count of cells. The color represents the FDR. (C) KEGG pathways of differentially expressed genes in all
cell types. The size represents the count of cells. The color represents the FDR. FDR, false discovery rate.

Discussion

scRNA-seq is a powerful tool for studying the molecular
and cellular mechanisms of AD. Its applications are expected to
accelerate the development of new therapies and diagnostic tools
for this devastating disease (Murdock and Tsai, 2023). In this study,
we identified eight immune cell types with significantly different
proportions between the AD and NC groups. We also explored the
co-expression networks of DEGs among immune cells. This study
provides insights into the molecular mechanisms underlying AD
and suggests potential therapeutic targets for the disease.

Using tSNE, we identified 27 clusters of immune cells, which
were subsequently annotated with marker genes for major cell
types. The composition of immune cell subsets is variably altered

in patients with AD compared to NCs. Interestingly, we found
that the AD and NC groups were enriched in different cell types.
Previous studies have found increased numbers of CD8 + T cells
in the postmortem brain tissue of patients with AD, which was also
validated in a murine APP/PS1 amyloidosis model (Unger et al.,
2020). TEM (effector memory T cells) and TEMRA (CD45RA+
effector memory T cells) carry the greatest amounts of perforin
and Fas ligand, with their numbers increasing after viral infection
(Shen et al., 2010). The number and cytotoxic activity of blood
NK cells were decreased in patients with AD compared to those
in control subjects, which may be related to tissue transfer and
neurogenic innervation of NK cells (Qi et al., 2022). Consistent
with the findings of this study, MAIT cell abundance was also
reduced in the AD group compared to the healthy control group
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FIGURE 6

Identification of differentially expressed genes and biological roles of immune cells based on gene-chip data. (A) Differentially expressed genes
between AD and normal controls in the GSE63060 dataset. The top 3 up- or downregulated expressed genes are labeled. (B) Differentially
expressed genes between AD and normal controls in GSE63061 dataset. The top 3 up- or downregulated expressed genes are labeled. (C) Common
DEGs were screened with the intersection of up-expressed genes or down expressed genes in both datasets. (D) Functional enrichment analysis of
common DEGs through Metascape.

(Qian et al., 2022). MAIT cells have the greatest contribution to
AD, indicating that they may have important immune regulatory
functions in the pathological process of AD. In quantitative analysis
of metabolic pathways, we found significant activation of Butanoate
metabolism in MAIT cells. Changes in metabolism may affect
cell function and survival, thereby affecting the progression of
AD.

CellChat can be used to identify and visualize the cell-
cell communication networks involved in AD. These findings

suggest that the dysregulation of immune cells may play a role
in the pathogenesis of AD. Communication between Tem/Temra
cytotoxic T cells, Tem/Trm cytotoxic T cells, and CD8+ cells was
strong. This may be related to the fact that these three cells share
common marker genes (Xiong et al., 2023; Sallusto et al., 2004).
These interactions suggest that cytotoxic T cells, known for
their role in immune surveillance and clearance of damaged
cells, may contribute to the neurodegeneration observed in AD.
Increased cytotoxicity may drive inflammation and exacerbate
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FIGURE 7

Identification of candidate genes. (A) AUC values of common DEGs in GSE63060 and GSE63061 datasets. Red represents high expression and blue
represents low expression in AD. AUC, area under receiver operating characteristic curve. (B) Expression of candidate genes in 8 immune cells. The
color represents the expression levels. (C) Violin plots showing the expression of candidate genes in 8 immune cells. (D) Expression of candidate
genes in AD and normal controls in GSE63060 and GSE63061 datasets. ***P < 0.001. AD, Alzheimer’s disease.

neuronal damage, implicating these cells in the progression of
the disease. Pseudotime analysis further supported the idea that
immune cells follow distinct developmental pathways during AD
progression. These findings provide evidence for the temporal
and functional heterogeneity of immune cells in AD. Given
immune cells increased activation and altered communication in
AD, modulating the activity of specific immune cell populations
- particularly cytotoxic T cells and monocytes−could help reduce
neuroinflammation and slow the progression of the disease.

WGCNA allows the identification of groups of genes that are
highly correlated in their expression patterns across different cell
types. Correlation analysis suggests that genes in yellow (M3)
and green (M5) modules are highly active in CD8+ T cells
but less active in gamma-delta T cells in the context of AD.
Genes in turquoise (M1) are highly active in monocytes and
MAIT cells, but less active in CD8+ T cells, gamma delta T
cells, and B cells in the context of AD. The enriched biological
functions of DEGs in different immune cell types were regulation
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FIGURE 8

Analysis of pathways in AD and immune cells. Top 5 activated or inhibited intersecting KEGG signaling pathways in GSEA in GSE63060 (A) and
GSE63061 (B) datasets. NES, normalized enrichment score. (C) Enrichment of pathways in 8 immune cells. The color represents the enrichment
levels.

of the immune inflammatory response, ribosomes, and AD. This
suggests a potential link between these immune cell types and
AD development (Zhou et al., 2021). We noted that MAIT
cells, in particular, are involved in pathways implicated in the
nervous system. This finding is important because it suggests that
MAIT cells may play a crucial role in neuroinflammation and

neurodegeneration observed in AD (Wyatt-Johnson et al., 2023;
Elkjaer et al., 2022; Liang et al., 2022).

On top of that, we identified candidate genes based on
the diagnostic efficacy. We performed temporal expression
analysis to investigate the progression of AD using STEM
software and found that the expression trends of 13 genes were
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FIGURE 9

Expression trends of genes in STEM analysis. Genes with the same expression trend in GSE63060 (A) and GSE63061 (B) datasets. AD, Alzheimer’s
disease; NC, normal control.

consistent in both the GSE63060 and GSE63061 datasets. Among
these 13 genes, UFC1 (Ubiquitin-Fold Modifier Conjugating
Enzyme 1) was identified as a candidate gene, exhibiting a
trend of decreasing expression from NC to MCI and then
to AD. UFC1 is downregulated in AD compared to controls
(Madrid et al., 2021). UFC1 is involved in ubiquitination as
an E2 conjugating enzyme and interacts with neuronal cell
adhesion molecules in neurological diseases (Nahorski et al.,
2018; Liu et al., 2015). However, its role in AD remains poorly
understood.

This study has several limitations that should be considered.
Firstly, this study was primarily focused on immune cells
thus, excluding other cell types that may also be significantly
involved in AD pathology. Furthermore, this study used data
from publicly available datasets and did not include new

experimental data. The sample size was relatively small for
scRNA-seq, which may also limit the generalizability of the
findings. Moreover, this study did not address the causes
behind the observed differences in immune cell populations
between AD and NC samples. We also acknowledged that
transcriptional changes do not always correlate directly with
protein expression, and therefore, additional validation steps are
necessary. In future studies, we plan to use techniques such
as enzyme-linked immunosorbent assay or Western blotting to
assess UFC1 protein levels in peripheral blood samples from
AD patients, MCI patients, and normal controls. Further studies
are needed to investigate the mechanisms underlying these
differences. Consequently, the findings should be interpreted
with caution, and further studies are needed to confirm and
expand these results.
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FIGURE 10

Clustered Heatmap of common DEGs and signaling pathways in AD, MCI, and NC groups. Expression heatmap of common DEGs and their major
biological functions involved in GSE63060 (A) and GSE63061 (B) datasets. AD, Alzheimer’s disease; MCI, mild cognitive impairment; NC, normal
control.

Conclusion

Overall, the present study identified eight immune cell types
at the single-cell level and explored the cell communication
and co-expression networks of genes in these immune

cell types. Candidate genes, particularly UFC1, may serve
as potential biomarkers for AD progression. This study
reveals the potential transcriptional heterogeneity between
immune cell types and provides insights into the molecular
mechanisms underlying AD.
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