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Background: As a clinical precursor to Alzheimer’s disease (AD), amnestic 
mild cognitive impairment (aMCI) bears a considerably heightened risk of 
transitioning to AD compared to cognitively normal elders. Early prediction of 
whether aMCI will progress to AD is of paramount importance, as it can provide 
pivotal guidance for subsequent clinical interventions in an early and effective 
manner.

Methods: A total of 107 aMCI cases were enrolled and their electroencephalogram 
(EEG) data were collected at the time of the initial diagnosis. During 18-month 
follow-up period, 42 individuals progressed to AD (PMCI), while 65 remained 
in the aMCI stage (SMCI). Spectral, nonlinear, and functional connectivity 
features were extracted from the EEG data, subjected to feature selection and 
dimensionality reduction, and then fed into various machine learning classifiers 
for discrimination. The performance of each model was assessed using 10-fold 
cross-validation and evaluated in terms of accuracy (ACC), area under the curve 
(AUC), sensitivity (SEN), specificity (SPE), positive predictive value (PPV), and F1-
score.

Results: Compared to SMCI patients, PMCI patients exhibit a trend of “high to 
low” frequency shift, decreased complexity, and a disconnection phenomenon 
in EEG signals. An epoch-based classification procedure, utilizing the extracted 
EEG features and k-nearest neighbor (KNN) classifier, achieved the ACC of 
99.96%, AUC of 99.97%, SEN of 99.98%, SPE of 99.95%, PPV of 99.93%, and F1-
score of 99.96%. Meanwhile, the subject-based classification procedure also 
demonstrated commendable performance, achieving an ACC of 78.37%, an 
AUC of 83.89%, SEN of 77.68%, SPE of 76.24%, PPV of 82.55%, and F1-score of 
78.47%.

Conclusion: Aiming to explore the EEG biomarkers with predictive value for 
AD in the early stages of aMCI, the proposed discriminant framework provided 
robust longitudinal evidence for the trajectory of the aMCI cases, aiding in the 
achievement of early diagnosis and proactive intervention.
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1 Introduction

Dementia, resulting from various brain-related disorders and 
injuries, is a major cause of geriatric functional decline and caregiver 
reliance, ranking as the seventh leading cause of death globally (WHO, 
2023). Currently, more than 55 million people are affected by 
dementia, with an annual increment of nearly 10 million new cases 
(Cao et al., 2020). AD is the most prevalent form of dementia and may 
account for 60–70% of cases (Alzheimer's Association, 2020). AD, 
distinguished by irreversible memory impairment, aphasia, apraxia, 
agnosia, and changes in personality and behavioral patterns, onsets 
insidiously with a prolonged course. Regrettably, effective 
pharmacological treatments for AD are not yet available. This 
underscores the critical importance of early screening and diagnosis 
so as to retard the progression and alleviate its disease burden.

Mild cognitive impairment (MCI) is a stage that falls between 
normal age-related cognitive decline and dementia, characterized by 
a subtle decline in cognitive functions that is not substantial enough 
to be classified as dementia. MCI may either stabilize or even improve 
over time, or progressively deteriorate into dementia (particularly 
AD), thus positioning it as a prodromal stage of AD. AMCI, 
characterized by memory dysfunction, is a subtype of MCI with an 
annual progression rate to AD ranging from 10 to 15% (Cai et al., 
2020) and a lifetime conversion rate ranging from 75 to 80% (Gómez-
Soria et al., 2021). Therefore, early and accurate prediction of the 
progression in aMCI stage becomes a crucial issue in managing the 
continuum of the disease and alleviating its burden.

The diagnosis of aMCI requires a combination of various 
examinations including biomarkers, neuroimaging, and 
neuropsychological assessments. This process is time-consuming, labor-
intensive, and cost-prohibitive. Additionally, the insidious onset can 
be easily mistaken for age-related cognitive decline, thus significantly 
diminishing the detection rate of aMCI during clinical practice. As a 
non-invasive examination, EEG presents the benefits of convenience, 
cost-effectiveness, real-time diagnosis, and wide accessibility. It has been 
universally applied for the diagnosis and disease progression monitoring 
of aMCI. Compared to task-related EEG, resting-state EEG does not 
require examinees to perform complex instructions and actions, 

making it particularly suitable for elders with cognitive decline. Several 
studies have explored the spectral features of EEG in aMCI patients and 
identified indicators such as spectral power ratio (Flores-Sandoval et al., 
2023), antero-posterior localization of alpha frequency (Huang et al., 
2000), and spectral powers within the theta and delta bands (Roh et al., 
2011) that exhibit favorable discriminatory capabilities, with an 
accuracy exceeding 80%. Simultaneously, researchers have investigated 
the EEG functional connectivity and graph theory features in aMCI 
patients, confirming the conjecture that aMCI serves as an intermediate 
stage between normal aging and AD (Frantzidis et al., 2014; Toth et al., 
2014; Miraglia et al., 2016; Smailovic et al., 2022). Specifically, certain 
studies have conducted functional connectivity and graph theory 
analyses on the subdivisions of aMCI, namely stable MCI (SMCI) and 
MCI progress to AD (PMCI), revealing differences between the two 
groups and achieving promising predictive outcomes (Vecchio et al., 
2018; Miraglia et al., 2020). Serving as an intermediate stage between 
normal aging and AD, aMCI exhibits considerable EEG variability, 
reflecting the heterogeneity within the aMCI population.

Recently, there has been widespread use of machine learning methods 
for discriminant diagnosis through EEG data in patients with AD and 
MCI. However, few studies have specifically targeted the aMCI 
population. Li et  al. (2021) combined the characteristics of brain 
functional network with support vector machine classifier in aMCI and 
healthy controls (HC), achieved an accuracy of 86.60%. The same research 
team (Li et  al., 2022) incorporated spectral entropy features into a 
convolutional neural network (CNN) model, attaining an accuracy of 
94.64% in aMCI and HC. Kim et al. (2022) explored different patterns of 
functional networks between aMCI and non-aMCI using EEG graph 
theoretical analysis, the naive Bayes algorithm classified aMCI and 
non-aMCI with 89% accuracy. Farina et al. (2020) employed penalized 
logistic regression models to identified the power and functional 
connectivity features of EEG in AD, aMCI, and HC populations, but the 
accuracy remained unstable across various combinations of features. The 
aforementioned studies all treated aMCI as a unified discrimination 
category, without conducting follow-up assessments of the disease 
progression within aMCI, which would allow for further subdivision into 
SMCI and PMCI and subsequently exploration of EEG differences 
between these two subgroups with imperative longitudinal study 
(Mammone et al., 2018; Ruiz-Gomez et al., 2018; Ding et al., 2022; Jiang 
et  al., 2022; Kim et  al., 2022; Lassi et  al., 2023; Wijaya et  al., 2023). 
However, early prediction of whether aMCI will progress to AD is of 
paramount importance, as it aids in guiding subsequent interventions 
involving medications, lifestyle, rehabilitation, and healthcare in an 
advanced and effective manner. Currently, there is a scarcity of 
longitudinal studies concerning aMCI cases, as well as a lack of research 
applying machine learning methods with constrained EEG features to 
disease discrimination and prediction in SMCI and PMCI subgroups.

This study recruited aMCI patients and collected the EEG data at 
the time of initial diagnosis. After an 18-month follow-up period, 
patients were categorized into SMCI and PMCI groups based on 
whether they progressed to AD, which was in alignment with 
definitions from prior research (Vecchio et  al., 2018). By 
comprehensively extracting EEG spectral, nonlinear, and functional 

Abbreviations: ACC, Accuracy; AD, Alzheimer’s disease; ADA, AdaBoost; AE, 

Approximate entropy; aMCI, Amnestic mild cognitive impairment; AUC, Area 
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Interhemispheric asymmetry; ICA, Independent component analysis; KNN, 

k-nearest neighbor; LDA, Linear discriminant analysis; LogReg, Logistic regression; 

LZ, Lempel-Ziv; M-DCPSR, Median distance from the centroid of phase space 

reconstruction; MSC, Magnitude squared coherence; NB, Naive Bayes; PCA, 

Principal component analysis; PE, Permutation entropy; PLI, Phase lag index; 

PMCI, Progressed mild cognitive impairment; PPV, Positive predictive value; PSD, 

Power spectral density; PSDE, Power spectral density entropy; RF, Random forest; 
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connectivity features, we  conducted feature selection and 
dimensionality reduction on extracted features. Subsequently, selected 
features were integrated into different machine learning classifiers for 
discrimination, to explore EEG biomarkers with potential for early 
prediction. Utilizing the afore mentioned framework, we systematically 
extracted EEG features with excellent discriminant ability between the 
SMCI and PMCI populations and to discern the heterogeneity in 
disease progression among individuals with aMCI, enabling the early 
identification of progressing cases and facilitating the implementation 
of three levels of prevention, which conducting prospective 
exploration for follow-up study in the future.

2 Materials and methods

The discriminant framework of this study design was shown in 
Figure 1, which consisted of five main steps: EEG data acquisition, 
EEG preprocessing, feature extraction, classification, and evaluation.

2.1 Participants

Between September 1, 2021 and April 30, 2022, we recruited a 
total of 113 aMCI patients from the Memory Clinic Unit of the First 
Affiliated Hospital of Sun Yat-sen University (SYSU), and 107 patients 
completed the follow-up without any censored data. We collected 
their raw EEG data at the time of initial diagnosis and conducted an 
18-month follow-up for each patient to obtain clinical outcomes after 
18 months. The diagnosis of aMCI was based on the Petersen 2011 
criteria (Petersen, 2004), and made in a blinded manner with respect 
to the EEG examination. The inclusion criteria for this study were as 
follows: (1) age of 50 years and above, (2) memory complaint usually 
corroborated by an informant, (3) objective memory impairment for 
age, (4) essentially preserved general cognitive function, (5) largely 
intact functional activities. The exclusion criteria were: other forms of 
dementia or accompanying Parkinson’s disease, epilepsy, psychiatric 
disorders, and serious organic disease. Among 107 aMCI cases, 42 
individuals were diagnosed with AD after 18 months, while 65 
individuals remained in the aMCI stage. Next, the 107 aMCI patients 
were divided into two groups: PMCI and SMCI. The diagnosis of AD 
was based on the criteria provided by the National Institute on Aging 
and the Alzheimer’s Association (NIA-AA) in 2011 (McKhann et al., 
2011). All disease diagnoses in this study were accomplished by 
experienced neurologists. This study adhered to the Helsinki 
Declaration and was approved by the Ethics Committee of the School 
of Public Health, Sun Yat-sen University (2021-No.081). The 
demographic information of the patients was shown in Table 1.

2.2 EEG data acquisition

Resting-state EEG was recorded using the Nicolet EEG machine 
system (Natus Medical Inc., San Carlos, CA) with a sampling rate of 
500 Hz. Electrodes were placed according to the 10–20 international 
system, with a total of 16 channels (Fp1, Fp2, F3, F4, C3, C4, P3, P4, 
O1, O2, F7, F8, T3, T4, T5, and T6). All patients were right-handed, 
and sufficient sleep was ensured the night before the EEG collection. 
During the recording, patients were instructed to maintain a 

comfortable seated posture with their eyes closed for 5 min. EEG 
technicians continuously monitored the EEG traces and promptly 
alerted participants if any signs of drowsiness were detected.

2.3 EEG preprocessing

EEG signals are susceptible to various artifacts, highlighting the 
importance of preprocessing prior to analysis. Firstly, the raw EEG data 
were re-referenced using an average reference, and a finite impulse 
response (FIR) band-pass filter was applied to filter the EEG signals 
within the range of 0.1–70 Hz. Also, a notch filter was used to eliminate 
the 50 Hz power line interference. The EEG signals were subsequently 
down-sampled to 250 Hz. After joint screening by two experienced EEG 
examiners, bad epochs were removed and bad channels were interpolated. 
Then, 20-s segments of continuous EEG signals with clear background 
rhythms and minimal interference were selected. Following, we conducted 
independent component analysis (ICA) to remove common artifacts such 
as blinks, eye movements, and cardiac interference. Finally, the EEG 
signals were segmented into non-overlapping 2-s epochs for subsequent 
feature extraction. The above preprocessing steps were all performed 
using the EEGLAB toolbox (Delorme and Makeig, 2004) in MATLAB 
(R2023a, MathWorks).

2.4 Feature extraction

For each 2 s EEG epoch, we extracted features in three feature sets: 
spectral, nonlinear, and functional connectivity.

2.4.1 Spectral feature
Using Welch’s power spectral density (PSD) estimation (Alam 

et al., 2020), we transformed the preprocessed EEG signals from the 
time domain into the frequency domain and divided them into the 
following five subbands: delta (0.5–4 Hz), theta (4–8 Hz), alpha 
(8–13 Hz), beta (13–30 Hz), and gamma (30–45 Hz).

 (1) Power spectral density ratio (PSD ratio): Considering the 
variation in absolute PSD values among different patients, 
we calculated the relative PSD values within the aforementioned 
subbands for each patient (see Equations 1–5) resulting in the 
following five ratios:

 1 /Ratio delta alpha=  (1)

 2 /Ratio theta alpha=  (2)

 ( )3 /Ratio delta alpha beta= +  (3)

 ( )4 /Ratio theta alpha beta= +  (4)
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FIGURE 1

Study design.
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 ( ) ( )5 /Ratio delta theta alpha beta gamma= + + +  (5)

 (2) Power spectral density entropy (PSDE): In each subband, a 
sequence of PSD values can be obtained. We used the Shannon 
entropy method to assess the level of disorder in this sequence of 
PSD values (Li et al., 2023). Assuming there are PSD series with N 
values within the subband, the PSDE was calculated as follows:

 1
log

N
i i

i
E p p

=
= −∑

 
(6)

where E and ip  represent the PSDE of the signal and the 
probability of having the i sample in the signal, respectively (see 
Equation 6).

 (3) Interhemispheric asymmetry (IA): IA quantifies the disparity 
in PSD between the left and right channels, reflecting 
differences in the distribution of PSD values in symmetrical 
brain regions. IA is calculated as follows:

 ( ) ( )log loglc rcIA PSD PSD= −  (7)

where IA, lcPSD , and rcPSD  stand for the interhemispheric 
asymmetry, the PSD in the left hemisphere, and the PSD in the right 
hemisphere, respectively. We computed the IA values for a total of 
eight pairs (Fp1-Fp2, F3-F4, C3-C4, P3-P4, O1-O2, F7-F8, T3-T4, 
T5-T6) of channels across five subbands (see Equation 7).

2.4.2 Nonlinear feature
We extracted the following six nonlinear features to capture the 

nonlinear characteristics of the EEG signals in aMCI patients. The 
specific formulas can be found in Appendix A.

 (1) Multi-scale permutation entropy (PE): PE is an efficient 
quantitative complexity measure that explores the local order 
structure of a dynamic time series (Bandt and Pompe, 2002), 
particularly in EEG signals from MCI and AD patients (Siuly 
et  al., 2020; Şeker et  al., 2021). Multi-scale PE provides a 
multiscale perspective on signal complexity, facilitating the 
investigation of these neurological conditions (PARK et al., 
2007; Wu et al., 2013; Deng et al., 2017). Our study calculated 
the PE for scales ranging from 1 to 10 (Busa and van 
Emmerik, 2016).

 (2) Multi-scale approximate entropy (AE): AE is a metric that 
quantifies the repetitiveness of a time series, capturing its 
irregular and chaotic nature by assessing the recurrence of 
patterns within the time series, including the EEG signals in 
MCI and AD cases (Abásolo et al., 2008; Nimmy John et al., 
2019). In our study, AE was calculated for scales ranging from 
1 to 10.

 (3) Multi-scale sample entropy (SE): The SE is proposed by 
Richman and Moorman (2000) as an improvement over AE, 
addressing the bias present in AE. Recently, SE has been 
extensively utilized for feature extraction in patients with MCI 
and AD (Tsai et al., 2012; Ruiz-Gomez et al., 2018). Also, our 
study calculated the SE for scales ranging from 1 to 10.

 (4) Lempel-Ziv complexity (LZ): LZ, a nonlinear feature in EEG 
signal analysis, exhibits distinctive characteristics in MCI and 
AD patients, highlighting encoding intricacies that could reveal 
disease-related patterns (Abásolo et al., 2006; Liu et al., 2016; 
Ruiz-Gomez et al., 2018). We selected the average of the EEG 
signal as the coarse-graining method for LZ analysis in 
this study.

 (5) Hurst exponent: The Hurst exponent quantifies the long-term 
memory or self-similarity of a time series, indicating whether 
it tends to exhibit persistent trends, mean reversion, or random 
behavior. This is valuable for distinguishing different EEG 
activity patterns and monitoring the temporal characteristics 
of EEG signals in MCI and AD patients (Nimmy John et al., 
2018; Amezquita-Sanchez et al., 2019).

The aforementioned five nonlinear metrics all reflect the 
complexity of the EEG signals, with higher values indicating greater 
variability in the EEG signal, and vice versa.

 (6) Median distance from the centroid of phase space 
reconstruction (M-DCPSR): Phase space reconstruction (PSR) 
is applied in EEG research to unveil the nonlinear dynamical 
properties and spatiotemporal relationships of brain electrical 
activity (Lee et al., 2014; Kaur et al., 2020). We innovatively 
propose M-DCPSR to unveil the nonlinear characteristics of 
EEG in the aMCI population. Firstly, we set the embedding 
dimension of PSR as m = 3 and determined the lag of the time 
series (τ ) using the autocorrelation function. Subsequently, the 
three-dimensional coordinates of the time series in the phase 
space were constructed based on τ . Next, the centroid of the 
structure formed by all points in the phase space was computed, 
and the Euclidean distance between each point and the 
centroid was calculated. Finally, we computed the median of 
these Euclidean distances, resulting in the M-DCPSR for the 
given time series.

TABLE 1 The demographic characteristics of participants.

Variable SMCI 
(n = 65)

PMCI 
(n = 42)

Statistics

Age (years) 68.85 ± 8.76 68.17 ± 8.08 t = 0.40, p = 0.69

Gender (male/female) 24/41 22/20 ÷2=2.49, p = 0.12

MMSE (scores) 23.58 ± 2.87 23.55 ± 2.47 t = 0.07, p = 0.95

MoCA (scores) 19.31 ± 3.36 18.52 ± 3.01 t = 1.23, p = 0.22

Type of aMCI (single/

multiple)
27/38 17/25 ÷2=0.01, p = 0.91

Diabetes (yes/no) 25/40 13/29 ÷2=0.63, p = 0.43

Hypertension (yes/no) 41/24 23/19 ÷2=0.73, p = 0.39

Level of education ÷2=0.03, p = 0.99

 Primary education 10 6

 Secondary education 49 32

 Higher education 6 4

MMSE, Mini-Mental State Examination; MoCA, Montreal Cognitive Assessment.
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2.4.3 Functional connectivity feature
We extracted three functional connectivity metrics to measure the 

consistency of EEG signals across channels in aMCI patients. The 
specific formulas can be found in Appendix A.

 (1) Correlation coefficient: The Pearson correlation coefficient (r) 
can measure linear relationships in EEG connectivity research. 
The equation for calculating r between two signals X and Y is:

 

( )( )
( ) ( )

1
2 2

1 1

n
i ii

n n
i ii i

X X Y Y
r

X X Y Y

=

= =

− −
=

− −

∑
∑ ∑  

(8)

where n is the number of data points, X  and Y  are the means of 
signals X and Y, respectively (see Equation 8).

 (2) Phase lag index (PLI): PLI, which is used to measure the degree 
of phase synchronization between two signals, can exclude the 
influences of volume conduction in EEG signals. It is 
commonly employed as a functional connectivity feature in 
MCI and AD patients (Núñez et al., 2019; Nobukawa et al., 
2020; Kuang et al., 2022). PLI values range from 0 to 1. A PLI 
of zero indicates either no coupling or coupling with a phase 
difference centered around 0 or π. A PLI of 1 indicates perfect 
phase locking at a value different from 0 or π.

 (3) Magnitude squared coherence (MSC): MSC is frequently 
employed in EEG connectivity studies to assess the dependence 
between two signals. The MSC value ranges from 0 to 1. An 
MSC of 0 indicates no linear dependence between the two 
signals. A larger MSC value suggests a higher degree of 
statistical dependence between the two signals.

The total number of extracted features can be  found in 
Appendix B.

2.5 Classification and validation

We employed eight commonly used machine learning classifiers for 
binary discrimination in AD Spectrum (Perez-Valero et  al., 2021; 
Tzimourta et al., 2021; Rossini et al., 2022), including support vector 
machine (SVM), decision tree (DT), naive Bayes (NB), linear discriminant 
analysis (LDA), AdaBoost (ADA), k-nearest neighbor (KNN), random 
forest (RF), and logistic regression (LogReg). The detailed descriptions of 
eight classifiers can be  found in Appendix C. All the parameters for 
machine learning models were set to the default settings in MATLAB. All 
2 s EEG epochs were divided into training and testing sets using a 10-fold 
cross-validation approach at the subject level, ensuring that EEG epochs 
from the same participant were not simultaneously included in both the 
training and testing sets. We  conducted feature selection and 
dimensionality reduction on the aforementioned extracted features. 
Firstly, we employed two-sample t-test and Wilcoxon rank-sum test to 
select features with statistical significance between the two groups in the 
training set. Then, the selected features were standardized and subjected 
to principal component analysis (PCA) for dimensionality reduction, 
extracting principal components that contribute to 95.00% cumulative 

variance. Next, we applied the feature selection parameters from the 
training set to the testing set, to prevent data leakage issues in 
machine learning.

Finally, we accessed the classification performance of the machine 
learning model using six metrics: sensitivity (SEN), specificity (SPE), 
positive predictive value (PPV), F1-score, accuracy (ACC), and area 
under the curve (AUC) for the receiver operating characteristic curve 
(see Equations 9–14). The formula for the previously mentioned 
metrics is as follows:

 
TP TNACC

TP FN TN FP
+

=
+ + +  

(9)

 
TPSEN

TP FN
=

+  
(10)

 
TNSPE

FP TN
=

+  
(11)

 
TPPPV

TP FP
=

+  
(12)

 
21

2
TPF score

TP FP FN
− =

+ +  
(13)

 

( )1
2i

i
insins positiveclass

M M
rank

AUC
M N

∈
× +

−
=

×

∑
 

(14)

where M, N are the number of positive sample and negative 
sample, separately (Hanley and McNeil, 1982; Cortes and Mohri, 
2003). TP is the number of PMCI cases that are correctly predicted, 
FN is the number of PMCI cases that are incorrectly predicted as 
SMCI samples, FP is the number of SMCI cases that are incorrectly 
predicted as PMC cases, and TN is the number of SMCI samples that 
are correctly predicted.

3 Results

In this section, we firstly presented the statistical differences of three 
feature sets in SMCI and PMCI cases. Since the assumptions of 
parametric tests were not met for these feature sets, we  employed 
two-sample Wilcoxon rank-sum tests to explore the statistical differences 
of aforementioned features between the two groups. Finally, we presented 
the discriminant performance of different classifiers.

3.1 Spectral features

As shown in Figure 2, the disparities in PSD ratio1, PSD ratio2, 
and PSD ratio3 between SMCI and PMCI cases were more significant 
compared to PSD ratio4 and PSD ratio5. The PSD ratio1 exhibited the 
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most pronounced distinguished capability between the two groups, 
followed by PSD ratio3 and PSD ratio2. In the frontal, central, parietal, 
and occipital regions, the value of PSD ratio1 in the PMCI group was 
noticeably higher than that in the SMCI group.

As illustrated in Figure 3, the differences in PSDE in the alpha and 
beta bands were more significant than those in the delta, theta, and 

gamma bands between SMCI and PMCI cases. The PSDE in the alpha 
band exhibited the best distinguished capability between the two 
groups, followed by the beta band. The PSDE in the alpha band were 
notably lower in all brain regions in the PMCI cases compared to the 
SMCI cases. However, there was no significant difference between 
SMCI and PMCI in IA in the delta band. The same results were 

FIGURE 2

The combination chart of statistical differences for PSD ratios in SMCI and PMCI groups. (A) The EEG topoplot in terms of p-value of five PSD ratios 
between the SMCI and PMCI groups using the Wilcoxon Rank-Sum Test. (B) The boxplot of PSD ratio1 for the SMCI and PMCI groups. The horizontal 
axis represents 16 channels, and the vertical axis represents the values of PSD ratio1. (C) The EEG topoplot in terms of the mean of PSD ratio1 within 
the SMCI and PMCI groups.

FIGURE 3

The combination chart of statistical differences for PSDE and IA in SMCI and PMCI groups. (A) The EEG topoplot in terms of p-value of five PSDE 
between the SMCI and PMCI groups using the Wilcoxon Rank-Sum Test. (B) The boxplot of IA in the delta band for the SMCI and PMCI groups. The 
horizontal axis represents 8 channel pairs, and the vertical axis represents the values of IA. (C) The EEG topoplot in terms of the mean of PSDE in the 
alpha band within the SMCI and PMCI groups.
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observed in IA with the four other frequency bands as well (see 
Appendix B).

3.2 Nonlinear feature

As shown in Figure 4, the differences in SE, PE, and M-DCPSR 
between SMCI and PMCI cases were more significant compared to 
AE, LZ, and the Hurst exponent. Compared to the SMCI group, the 
PMCI group exhibits lower values of SE, PE, and M-DCPSR in all 
brain regions. AE exhibited better discriminant performance in the 
frontal, parietal, and occipital regions; the Hurst exponent 
demonstrated better discriminant performance in the frontal and 
occipital regions. However, LZ showed limited distinguished efficacy 
between SMCI and PMCI patients.

3.3 Functional connectivity feature

As shown in Figure 5, regardless of the functional connectivity 
features employed, the differences in the functional connectivity in the 
full-frequency, alpha, theta, and delta bands between SMCI and PMCI 
patients were more significant than those in the beta and gamma 
bands. The functional connectivity of full-frequency and alpha bands 
exhibited better discriminant performance between the two groups, 
followed by the theta and delta bands.

Also, Figure 5 exhibits the 15 functional connections that yielded 
the lowest p-values for PLI of the full-frequency band between the 
SMCI and PMCI cohorts. The connectivity strength in the SMCI 
group was notably higher than in the PMCI group. The SMCI group 
exhibited a significantly greater number of connections compared to 
the PMCI group when applying a threshold of 0.125.

3.4 Discriminant performance

Table 2 illustrates the discriminant performance of eight classifiers 
using the previously extracted features between the SMCI and PMCI 
groups. It can be  observed that the KNN exhibited the best 
classification performance. It had the highest mean and the lowest 
standard deviation for all evaluation metrics, with an average ACC of 
99.96%, AUC of 99.97%, SEN of 99.98%, SPE of 99.95%, PPV of 
99.93%, and F1-score of 99.96%. The SVM, LDA, and LogReg fell into 
the second tier, with the mean for each metric surpassing 95%. The 
DT, ADA, and RF exhibited slightly lower classification performance, 
with the mean for each metric remaining above 80%. The NB showed 
inferior classification performance, although its lowest metric 
exceeded 75%. The boxplots of discriminant results by different 
classifiers using 10-fold CV can be found in Appendix B.

4 Discussion

Based on EEG spectral, nonlinear, and functional connectivity 
features, we proposed a discriminant framework utilizing machine 
learning methods to diagnose SMCI and PMCI through computer-
aided techniques. We achieved satisfactory classification performance 
by our data.

The differences in PSD ratio3 and PSD ratio1 between the two 
groups are pronounced, revealing a distinct “high to low” EEG 
frequency shift in PMCI patients compared to SMCI patients. This 
finding provides novel and robust longitudinal evidence for the 
association between the tendency of change in PSD ratio features 
and clinical outcomes in aMCI patients, in line with relevant 
research findings (Luckhaus et al., 2008; Ding et al., 2022; Sadegh-
Zadeh et al., 2023). However, the differences in IA between the two 

FIGURE 4

The topoplot of statistical differences for nonlinear features in SMCI and PMCI groups. (A) LZ; (B) Hurst exponent; (C) M-DCPSR; (D) AE, scale = 2; 
(E) SE, scale = 2; (F) PE, scale = 2. The first two columns of each subplot represent the EEG topoplot in terms of the mean of various nonlinear features 
within the SMCI and PMCI groups, respectively. The last column shows the EEG topoplot in terms of p-value of nonlinear features between the SMCI 
and PMCI groups using the Wilcoxon Rank-Sum Test.
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groups are not pronounced, suggesting minimal disparities in the 
distribution of PSD values across the bilateral symmetrical regions 
of the brain for each frequency band, and requesting further 
longitudinal evidence. The extracted nonlinear features indicate that 
the complexity of EEG in the PMCI group is lower than that in the 
SMCI group. Additionally, the classification performance of SE and 
PE is superior to that of AE, LZ, and the Hurst exponent. This 
further underscores that nonlinear features that exhibit outstanding 
discriminant performance among the AD, MCI, and HC populations 
may not necessarily apply to distinguishing between the SMCI and 
PMCI groups (Ruiz-Gomez et al., 2018; Araujo et al., 2022; Ding 
et al., 2022; Lee et al., 2022). Additionally, we have introduced the 

innovative nonlinear feature, M-DCPSR, which exhibits significant 
differences between the two groups and holds promising potential 
for EEG studies involving aMCI patients or “HC-subjective cognitive 
decline (SCD)-MCI-AD” spectrum. Significant disparities in 
functional connectivity were noted between the two groups in both 
the full frequency and alpha bands, suggesting that the PMCI group 
exhibits early-stage reductions in intra- and inter-brain region 
communication during the aMCI phase (Vecchio et  al., 2018; 
Miraglia et al., 2020). Our study showed that the collection of EEG 
features at the aMCI stage and their follow-up in future studies may 
crucial for for personalized and precise prevention and 
treatment strategies.

FIGURE 5

The combination chart of statistical differences for functional connectivity features in SMCI and PMCI groups. (A) Pearson correlation coefficient; 
(B) PLI; (C) MSC. In each subplot, the connections have statistically significance between the SMCI and PMCI groups, with color variations indicating 
the magnitude of p-values. (D) The boxplot of the 15 functional connections with the lowest p-values of PLI (full-frequency band) between the SMCI 
and PMCI groups. (E) The circulargraph of the functional connections with mean PLI (full-frequency band) values exceeding 0.125 within the SMCI and 
PMCI groups.
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By comprehensively extracting EEG features, our discriminant 
framework utilizing machine learning methods has displayed 
exceptional performance in distinguishing between SMCI and PMCI 
cases. Notably, all six metrics surpassed 99% in KNN, while all eight 
classifiers exhibited ACC surpassing 75% and AUC exceeding 80%. 
These results underscore the value of EEG in automated diagnosis and 
AD prediction. As KNN excels in handling feature sets with significant 
dependent, and performs better when the class distributions exhibit 
distinct clustering characteristics within the feature space (Hu et al., 
2022), it outperformed other methods in our research. In contrast, NB 
relies on the assumption of independence between features (Taheri 
et al., 2014), which is clearly not met in our research. The observed 
results may be attributed to the use of PCA for feature dimensionality 
reduction prior to inputting the data into the machine learning model, 
aiming to reduce the correlation among the original features. However, 
while PCA ensures linear independence among the principal 
components, it does not rule out the possibility of 
nonlinear relationships.

Given the limited prior application of machine learning methods 
for longitudinal classification studies involving the aMCI population, 
we concurrently selected machine learning studies that utilized aMCI 
as one of their classification labels for comparison with our results (see 
Table 3). It can be observed that the discriminant framework in this 
study achieved the highest ACC among all similar studies, indicating 
significant potential for its application in automated diagnosis and 
early prediction. Furthermore, using the same discriminant 
framework, we classified the whole 20-s EEG signals of 107 aMCI 

patients (results shown in Appendix B). Despite a slight performance 
decrease, most performance evaluation metrics still exceeded 75%, 
confirming the stability of our machine learning discriminant 
framework. The superior classification performance of 2-s epochs 
compared to 20-s signals in this study may stem from the ability of 
shorter segments to provide higher temporal and spectral resolution. 
Differences in frequency domain features between PMCI and SMCI 
groups likely contributed to this result. We recommend that future 
studies employing machine learning for EEG analysis report both 
epoch-based and subject-based classification results whenever possible.

From the perspective of early prediction, we established a machine 
learning discriminant framework for SMCI and PMCI using EEG 
features, achieving remarkable classification performance. However, 
our study still has several limitations. Firstly, the sample size is 
relatively small, as all cases were recruited from the First Affiliated 
Hospital of SYSU. Despite our efforts to expand the epochs to 1,070 by 
segmenting the EEG data and utilizing 10-fold CVto mitigate the risk 
of overfitting, the small sample size may still affect the stability and 
generalizability of the models. With limited data, the models may fail 
to capture all the important patterns within the data, thereby limiting 
their applicability and performance in real-world settings. 
We conducted simulation studies of classifiers under different sample 
size scenarios and calculated sample size from a statistical perspective 
(see Appendix C). The results indicate that the sample size in our 
study is sufficient to infer differences in the metrics. However, 
we advocate that studies applying machine learning methods in the 
EEG field should estimate sample sizes beforehand to enhance the 

TABLE 3 Comparison between our proposed framework and previous studies (resting-state EEG).

Studies Subjects Duration of 
EEG signal

EEG features Classifiers Accuracy 
(%)

Validation

Vecchio et al. 

(2018)
74 SMCI, 71 PMCI 2-s SW property polynomial regression 61.00 10-fold cross-validation

Li et al. (2021) 28 aMCI, 21 HC 1-s Graph theory SVM 86.60 10-fold cross-validation

Li et al. (2022) 26 aMCI, 20 HC 4-s Spectral entropy CNN 94.64 10-fold cross-validation

Kim et al. (2022) 139 aMCI, 58 non-aMCI 2-s Graph theory
LogReg, SVM, RF, NB, 

GB, NN
89.00 train-test split of 3:7

Youssef et al. 

(2021)
43 aMCI, 51 HC 4-s Graph theory DT 87.20

Leave-one-out cross 

validation

Höller et al. (2017) 71 aMCI, 39 AD 3-min Graph theory SVM 60.00 10-fold cross-validation

Our study 65 SMCI, 42 PMCI 2-s
Spectral, nonlinear, and 

functional connectivity

SVM, DT, NB, LDA, 

ADA, KNN, RF, LogReg
99.96 10-fold cross-validation

SW, small world; CNN, convolutional neural network; WPLI, weighted phase lag index; GB, gradient boosting; NN, neural network. Bold values indicates the best accuracy.

TABLE 2 The discriminant results using 10-fold CV with 2 s epochs (mean ± standard deviation, %).

Classifier ACC AUC SEN SPE PPV F1-score

SVM 95.35 ± 2.11 99.12 ± 0.67 94.32 ± 3.81 95.59 ± 3.21 95.23 ± 2.85 94.73 ± 2.62

DT 84.93 ± 3.58 84.68 ± 4.12 83.35 ± 7.17 85.02 ± 6.13 82.84 ± 6.64 82.90 ± 5.64

NB 77.65 ± 5.19 93.38 ± 2.54 85.84 ± 14.59 76.13 ± 16.04 75.25 ± 16.82 77.30 ± 5.68

LDA 96.23 ± 1.87 99.37 ± 0.47 95.38 ± 3.81 96.40 ± 3.04 96.20 ± 2.48 95.73 ± 2.34

ADA 90.58 ± 2.96 96.66 ± 1.48 88.31 ± 5.44 91.50 ± 5.07 90.34 ± 4.22 89.20 ± 3.80

RF 88.87 ± 3.22 98.13 ± 1.11 81.47 ± 13.85 90.97 ± 12.20 94.06 ± 7.02 86.13 ± 5.69

KNN 99.96 ± 0.18 99.97 ± 0.16 99.98 ± 0.16 99.95 ± 0.27 99.93 ± 0.40 99.96 ± 0.21

LogReg 95.59 ± 1.84 98.39 ± 1.22 94.65 ± 3.26 95.94 ± 2.91 95.46 ± 2.89 95.01 ± 2.32

Bold values indicates the best discriminant performance.
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credibility of the results. It remains essential to further validate the 
generalizability of our discriminant framework by increasing the 
sample size. Therefore, we continue to recruit new cases to enlarge this 
aMCI cohort and plan to conduct a multi-center study intended for 
external validation. However, we  utilized calibration curves for 
internal validation of the model, demonstrating the relationship 
between the predicted probabilities and the observed frequencies (see 
Appendix B). The results indicate outstanding model calibration, with 
the curves closely aligning with the ideal diagonal line, suggesting that 
the predicted probabilities in this study accurately reflect the actual 
likelihood of events. Secondly, we have overlooked the ranking of 
feature importance though inter-group comparisons have highlighted 
statistical significance in extracted features between the two groups. 
In our future work, we will explore the importance of certain features 
and the discriminant efficiency under various combinations of feature 
sets. Additionally, we exclusively employed EEG data obtained at the 
time of the initial diagnosis, although a longitudinal study on the 
aMCI cases was conducted. It could be crucial to collect multiple EEG 
recordings for the aMCI cases during follow-up, as this would aid in 
dynamically monitoring the trends in EEG features within the aMCI 
population, thus facilitating the development of an adaptive risk 
model for the progression from aMCI to AD. However, we proposed 
a computer-aided diagnostic discriminant framework based on 
machine learning methods, capable of early predicting AD during the 
aMCI stage, and achieving satisfactory classification performance.

5 Conclusion

Aiming to explore the EEG biomarkers with predictive value for 
AD in the early stages of aMCI, the proposed discriminant framework 
provided robust longitudinal evidence for the trajectory of the aMCI 
cases, aiding in the achievement of early diagnosis and 
proactive intervention.
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