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Introduction: Alzheimer’s disease (AD) is a common neurological disorder.

Based on clinical characteristics, it can be categorized into normal cognition

(NC), subjective cognitive decline (SCD), mild cognitive impairment (MCI),

and dementia (AD). Once the condition begins to progress, the process is

usually irreversible. Therefore, early identification and intervention are crucial

for patients. This study aims to explore the sensitivity of fNIRS in distinguishing

between SCD and MCI.

Methods: An in-depth analysis of the Functional Connectivity (FC) and

oxygenated hemoglobin (HbO) characteristics during resting state and different

memory cognitive tasks is conducted on two patient groups to search for

potential biomarkers. The 33 participants were divided into two groups: SCD

and MCI.

Results: Functional connectivity strength during the resting state and

hemodynamic changes during the execution of Verbal Fluency Tasks (VFT) and

MemTrax tasks were measured using fNIRS. The results showed that compared

to individuals with MCI, patients with SCD exhibited higher average FC levels

between different channels in the frontal lobe during resting state, with two

channels’ FC demonstrating significant ability to distinguish between SCD and

MCI. During the VFT task, the overall average HbO concentration in the frontal

lobe of SCD patients was higher than that of MCI patients from 5 experimental

paradigm. Receiver operating characteristic analysis indicated that the accuracy

of the above features in distinguishing SCD from MCI was 78.8%, 72.7%, 75.8%,

and 66.7%, respectively.

Discussion: fNIRS could potentially serve as a non-invasive biomarker for the

early detection of dementia.
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1 Introduction

Alzheimer’s disease (AD) is currently the seventh leading cause
of death globally and one of the primary reasons for the loss of
independence and reliance on others among the elderly (World
Health Organization, 2023). In 2019, the global societal total cost
of AD was 1.3 trillion USD; by 2030, with the rising prevalence,
the cost is expected to reach 2.8 trillion USD. Depending on the
degree of cognitive impairment, AD can be divided into several
stages: normal cognition (NC), subjective cognitive decline (SCD),
mild cognitive impairment (MCI), and AD (Jak et al., 2009).
Although SCD and MCI do not inevitably progress to AD, they are
both high-risk groups for AD, especially those patients who have
already exhibited AD pathological characteristics, considered as the
preclinical stage of AD (Ehlis et al., 2014; Petersen, 2016). Given
that early treatment is more effective, developing a simple, reliable,
and sensitive biomarker for early diagnosis in high-risk populations
has significant clinical importance.

Currently, there are various diagnostic methods for the AD
spectrum. Clinical diagnosis mainly relies on patient history
and neuropsychological tests, such as the Mini-Mental State
Examination (MMSE) (Folstein et al., 1975) and Montreal
Cognitive Assessment (Nasreddine et al., 2005). However,
neuropsychological tests are susceptible to factors such as education
and age and require experienced physicians to administer (Nguyen
et al., 2008). To address this issue, the National Institute on
Aging and the Alzheimer’s Association have proposed the latest
diagnostic guidelines,1 suggesting that the diagnostic criteria for
AD should be defined from a biological perspective rather than
clinical symptoms. Previous research has identified a series of
biomarkers, including the use of positron emission tomography
(PET) to detect the accumulation of beta-amyloid (Aβ) and tau
proteins, as well as reduced glucose metabolism in the brain (Jack
et al., 2018; Xie et al., 2022). Additionally, magnetic resonance
imaging (MRI) can be used to assess changes in hippocampal
volume, while diffusion MRI is used to observe the structural
integrity of brain white matter (Gerischer et al., 2018; Ten Kate
et al., 2024). However, the aforementioned biomarkers are either
invasive (cerebrospinal fluid and PET) (Dubbelman et al., 2024) or
involve large equipment and complex procedures (PET and MRI).
They are costly and have low accessibility, making them difficult to
widely apply.

Functional near-infrared spectroscopy (fNIRS) is a wearable,
portable, non-invasive, low-cost, and high temporal resolution
(compared to fMRI) optical neuroimaging technique (Ferrari and
Quaresima, 2012; Quaresima et al., 2012; Torricelli et al., 2014).
It uses two or more near-infrared lights to estimate changes in
neuronal activity caused by variations in the concentration of
oxygenated hemoglobin (HbO) and deoxygenated hemoglobin
(HbR) (Bondi et al., 2014; Ehlis et al., 2014). Multiple studies
have shown that compared to healthy control groups, SCD, MCI,
and AD patients exhibit a more severe reduction in frontal lobe
activation during certain cognitive tasks, with MCI showing a
more pronounced reduction compared to SCD, and the severity
of AD pathology being related to the extent of HbO abnormalities
(Yoon et al., 2019; Yeung and Chan, 2020; Zhang et al., 2024).

1 https://aaic.alz.org/nia-aa.asp

Many studies have also explored the possibility of using fNIRS to
detect different biomarkers for diagnosing AD, where appropriate
biomarkers can provide reliable diagnostic results for patients (Li
R. et al., 2018; Li X. et al., 2018; Zhang et al., 2023).

In the early diagnosis and intervention research of AD,
although current research focuses mainly on the comparative
analysis between NC and MCI to discover potential biomarkers
indicating the development of AD (Yap et al., 2017; Wang et al.,
2024), studies on the transitional stage between SCD and MCI
are relatively scarce. Individuals with SCD exhibit a subjective
perception of decline in cognitive function relative to their previous
normal state, even though this decline does not yet meet the clinical
diagnostic criteria for MCI (Esmaeili et al., 2022; Li et al., 2022).
Previous studies have found that Reisberg and Gauthier (2008)
speculated that SCD precedes MCI, belonging to the symptomatic
pre-dementia stage of AD, and he estimated that up to 60% of
SCD patients will develop into MCI and AD within 15 years.
Furthermore, Jessen (2014), Molinuevo et al. (2017), and others
have proposed that the early risk signs of AD may be the feeling of
decline in one or more cognitive domains experienced by patients
with SCD compared to their previous state, suggesting a certain
correlation between SCD and AD pathological changes. Although
the neuropsychological test results of SCD patients are still within
the normal range, their brain structure may have already undergone
some minor degenerative changes (Amariglio et al., 2012; Wang
et al., 2020; Jia et al., 2021; Schwarz et al., 2021). Increasing evidence
indicates (Jessen, 2014) that the likelihood of elderly individuals
with SCD exhibiting biomarker abnormalities consistent with AD
pathology increases, as does the future risk of pathological cognitive
decline and dementia.

Therefore, the SCD stage provides a critical observation
window for understanding the early pathological changes of AD,
and its importance in early diagnosis and intervention strategies
should not be overlooked (Pike et al., 2022; Ulbl and Rakusa,
2023). Future research should strengthen the exploration of
the transitional stage between SCD and MCI to discover new
biomarkers, providing a more solid scientific foundation for the
early diagnosis and intervention of AD. SCD, as the precursor
stage to MCI, offers an important opportunity for early diagnosis
and intervention, which is crucial for timely monitoring and early
treatment, especially in the preclinical stages of neurocognitive
disorders such as AD (Lin et al., 2019; Esmaeili et al., 2022). By
identifying SCD, effective stratification of high-risk populations
can be implemented, allowing for the deployment of preventive
strategies and targeted intervention measures aimed at intervening
early in the disease’s progression to slow the transition to MCI and
subsequent dementia syndromes. Finding relevant biomarkers is
essential for the prevention and treatment of the progression from
SCD to MCI and AD.

The objective of this study is to utilize fNIRS technology as
a tool to further advance the early detection of individuals with
SCD. For participants with different degrees of illness, we propose a
comprehensive experimental scheme, including resting, cognitive,
memory, and language tests for in-depth analysis, to search
for potential biomarkers. Subsequently, stepwise binary logistic
regression analysis will be used to assess whether those biomarkers
with significant intergroup differences have the potential to
differentiate between different stages of AD.
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2 Materials and methods

2.1 Participants

This study recruited a total of 33 adults. The inclusion criteria
were as follows: (1) participants must be aged between 55 and
85 years; (2) gender and educational level were not restricted,
but participants must be able to understand Chinese and possess
normal or corrected-to-normal vision; (3) individuals with a
history of psychiatric disorders or other physical illnesses that
could affect task performance (such as language disorders or
color blindness) were excluded; (4) volunteers unable to complete
the experimental tasks were also excluded. Figure 1 illustrates
the entire research screening and analysis process. All volunteers
were recruited from the Shanghai Sixth People’s Hospital. This
experiment was approved by the Clinical Trial Ethics Committee
of Shanghai Sixth People’s Hospital, and all participants were
informed and consented to participate in the study prior to their
involvement. Grouping criteria: For the SCD group, according
to the diagnostic criteria established by Jessen et al. (2020),
participants met five conditions: subjective memory decline; onset
time of less than 5 years; concern about cognitive decline;
onset after the age of 55; and no significant objective cognitive
impairment compared to individuals with normal cognition (NC)
in neuropsychological tests, with cognitive deficits not meeting the
criteria for MCI (Rabin et al., 2017). For the MCI group, cognitive
impairment met the Jak/Bondi criteria (Bondi et al., 2014).

2.2 Procedures

All participants underwent a standardized neuropsychological
assessment. The assessment included tests for memory, executive
function, attention, language, and overall cognitive abilities. The
assessment tools comprised the MMSE, Shape Trail Test (Zhao
et al., 2013), and Addenbrooke’s Cognitive Examination III
(ACE-III) (Wang et al., 2017). Additionally, the Boston Naming
Test (Williams et al., 1989), category fluency test (Chan and
Poon, 1999), and Montreal Cognitive Assessment-Basic (MOCA-
B)(Nasreddine et al., 2005) were administered. Subsequently,
functional near-infrared spectroscopy (fNIRS) data collection was
conducted. During the fNIRS data acquisition, participants were
required to perform pre-established tasks while their frontal
lobe hemodynamic activities were recorded. Participants were
instructed to remain still and minimize head and body movements
to prevent any unnecessary motion artifacts. These comprehensive
assessments and data collection steps were designed to thoroughly
evaluate the cognitive status of the participants and provide a solid
foundation for subsequent analysis.

2.3 Experimental paradigm

Participants must be seated in a relaxed posture within
an enclosed chamber to attenuate extraneous environmental
interference, and they are advised to eschew any unnecessary
corporeal motion. In this study, each group of subjects will
sequentially participate in three parts of the test, including a resting

state task, a Verbal Fluency Task (VFT), and the MemTrax task
(Liu et al., 2024). Subjects have 30 s of rest before the start of
each part of the task. During the resting state task, subjects need
to sit quietly with their eyes closed, try to maintain a relaxed state,
and avoid thinking and falling asleep. The recording of the resting
state will last for 7 min without any prior warning. After 7 min,
the recording signal is checked for completeness, and the subjects
are informed that the test has been completed. This is followed by
the VFT, which includes three stages: (1) participants continuously
repeat counting from 1 to 5 within 30 s to obtain a baseline value
for cognitive performance; (2) participants are asked to recall and
say the names of items in a supermarket as much as possible, lasting
60 s; (3) participants continuously repeat step 1 within 30 s to return
to the baseline level. Finally, the MemTrax task is conducted, where
participants will see a series of pictures on the computer screen.
When they see the same picture appearing repeatedly, they must
quickly press the spacebar. The system will record the participants’
reaction time and accuracy rate. Participants who do not complete
these tasks in full will be excluded from the final analysis.

2.4 Hemodynamic response

To measure the hemodynamic activity in the prefrontal cortex
under different task conditions, we used a 19-channel continuous
fNIRS NirSmart system (Danyang Huichuang Medical Equipment
Co., Ltd., China) to collect fNIRS data from the prefrontal lobe.
The system employs near-infrared light with wavelengths of 730
and 850 nm, using the modified Beer–Lambert law to estimate
the relative concentration of HbO in the participants’ prefrontal
cortex. The fNIRS system consists of 7 light sources and 7 detectors
arranged in a 2 × 7 matrix configuration, with a 3 cm distance
between each source and detector. The center of the bottom probe
is approximately located at FpZ, following the international 10/20
system. The sampling rate of the NirSmart system is set to 11 Hz.

2.5 Data pre-processing

Before formally analyzing the data, it is necessary to first verify
the integrity and reliability of the data. Initially, we check whether
the fNIRS data of the 33 participants is complete, ensuring that
the fNIRS data for each task has sufficient experimental duration
and valid starting labels. Since the fNIRS signal may be affected by
changes in the signal-to-noise ratio (SNR), we use the coefficient
of variation (CV) to exclude channels with poor signal quality. The
formula for calculating the CV value is as follows:

CV = σ/µ (1)

where σ and µ are the standard deviation and mean value of the
fNIRS data in the same channel, respectively. Channels with a CV
greater than 15% will be rejected for further use, as a higher CV
value usually indicates a lower SNR (Piper et al., 2014).

The fNIRS data is preprocessed using NirSpark software
(Danyang Huichuang Medical Equipment Co., Ltd., China).
Motion artifacts caused by relative sliding of the scalp and
probe are corrected using moving standard deviation and
spline interpolation methods (SDThresh = 20, AMPThresh = 3,
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FIGURE 1

(A) Overall research process flowchart. (B) Experimental paradigm.

tMotion = 0.5 s, tMask = 1 s, and p = 0.99). Subsequently,
a bandpass filter with a cutoff frequency of 0.01–0.1 Hz
is used to eliminate systemic physiological noise (including
respiration, cardiac activity, and low-frequency signal drift).
The modified Beer–Lambert law is used to convert light
intensity into relative concentration changes of hemoglobin.

Data recorded 10 s before the start of the task is used
as a baseline for baseline correction. Considering that the
oxyhemoglobin (HbO) signal has a better SNR than the
deoxyhemoglobin (HbR) signal in fNIRS measurements, we
mainly focus on the HbO signal for data analysis of all
participants’ brain signals.
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2.6 Data analysis

For the HbO data, considering the 3–5 s delay in hemodynamic
response, it is necessary to include the 5 s following task completion
in the analysis when using the block averaging method to calculate
the mean HbO concentration changes over different time periods.
Additionally, we have taken into account the changes in the HbO
slope and standard deviation during various intervals of the task.
For the VFT, we calculated the average HbO concentration, slope,
and standard deviation within the 5–15, 20–60, and 60–70 s time
windows, respectively. Regarding the MemTrax task, to facilitate
analysis, we aligned the HbO data of all participants with that
of the participant with the shortest task duration and similarly
calculated the average HbO concentration, slope, and standard
deviation within the 5–15 s, 20–60 s, and 60-s to task completion
time windows. In the resting state, the FC strength of each pair
of measurement channel time series was calculated using Pearson
correlation analysis. A two-sample t-test and Chi-square test were
employed to examine differences between groups in demographic
variables, neuropsychological assessment performance, behavioral
performance on the MemTrax task, HbO data characteristics
under different task conditions, and FC strength in the resting
state. Furthermore, stepwise discriminant analysis was performed
to assess the factors influencing the differentiation of HbO
data between groups. This was followed by a refined analysis
using stepwise binary logistic regression to assess the specific
impact of each factor on the binary outcome. Subsequently,
receiver operating characteristic (ROC) analysis was performed.
All statistical analyses were conducted using SPSS 26.0 (IBM
Corporation, Armonk, NY, USA). Unless otherwise specified, all
tests were set at a significance level of 0.05 (two-tailed).

3 Results

3.1 Demographic information and
neuropsychological assessment
performance

Table 1 presents the demographic and neuropsychological
assessment performance of the SCD and MCI groups. There
were no significant differences between the SCD and MCI groups
in terms of gender, age, and education level (p = 0.462–0.858).
However, significant intergroup differences were observed in
various cognitive assessments. Specifically, in the category fluency
test (animal naming and alternate city-surname listing), the SCD
group had average scores of 17.69 (SD = 3.9) and 23.86 (SD = 7.16),
while the MCI group had average scores of 13.05 (SD = 3.56)
and 18.45 (SD = 7.42). These results indicate that the SCD group
performed significantly better than the MCI group in both category
fluency tests (t(31) = 3.525, p = 0.001; t(31) = 2.068, p = 0.047).
In the ACE-III test, the SCD group had an average score of 78.08
(SD = 7.44), whereas the MCI group had an average score of 69.8
(SD = 9.64). The SCD group’s performance was also significantly
better than that of the MCI group (t(31) = 2.623, p = 0.013).
Additionally, the SCD group outperformed the MCI group in
other neuropsychological tests, including the Boston Naming Test,
MMSE, and Montreal Cognitive Assessment. Furthermore, in the

Trail Making Test Part 1, the SCD group spent less time than
the MCI group, although these differences were not statistically
significant (p = 0.828–0.071).

3.2 Analysis of fNIRS data during
resting state

3.2.1 Analysis of functional connectivity during
resting state

An exhaustive analysis of fNIRS data in a resting state revealed
no statistically significant differences between the two study groups
in terms of average HbO concentration changes, HbO slope, and
standard deviation across different time windows. These results
suggest that the trends and variability of these physiological
parameters are similar across groups in a resting state. However,
when examining the FC between different channels in a resting
state, significant intergroup differences were found between the
SCD and MCI groups, as shown in Figure 2. The scale in the image
represents the range of values corresponding to the colors. The
color gradient transitions from blue to red, indicating a range from
low to high values. The numbers at the top and bottom of the scale
represent the maximum and minimum values, respectively. The
results indicated that the average FC strength values for the SCD
and MCI groups were 0.505 (SD = 0.212) and 0.472 (SD = 0.139),
respectively. Compared to the MCI group, the SCD group exhibited
a stronger pattern of FC. Combined with the neuropsychological
assessment results where the MCI group scored generally lower
than the SCD group, this suggests that the weaker connectivity
pattern may reflect a trend of brain network degeneration in the
progression of neurodegenerative diseases (Lopez-Sanz et al., 2017;
Hojjati et al., 2018). This is consistent with previous findings of
reduced frontal lobe resting-state FC in MCI patients, indicating
that changes in the FC pattern may be a potential mechanism for
determining the degree of illness.

After conducting a two-sample t-test to statistically analyze
the inter-channel connectivity strength between the SCD and MCI
groups, significant intergroup differences were found in the FC
strength of 29 channel pairs (p < 0.05) (Table 2). Of these, 20
pairs showed significantly higher FC strength in the SCD group
compared to the MCI group (p < 0.05, t = 2.09–3.16), while the
remaining 9 pairs had significantly lower connectivity strength in
the SCD group (p < 0.05, t = 2.99 to 2.04). Additionally, five
pairs of channels exhibited particularly significant differences in
FC strength (p < 0.01), namely CH1–CH11 (p = 0.006, t = -2.95),
CH1–CH12 (p = 0.005, t = 2.99), CH4–CH15 (p = 0.003, t = 3.12),
CH5–CH14 (p = 0.004, t = 3.15), and CH14–CH17 (p = 0.009,
t = 2.79). These findings suggest that changes in FC patterns
could potentially serve as biomarkers for determining the degree of
illness. In-depth study of resting-state brain FC could contribute to
the neurobiological basis of SCD and MCI and provide important
evidence for early diagnosis of the disease.

3.2.2 Discriminant analysis of SCD and MCI
during resting state

To evaluate the ability of fNIRS to distinguish between SCD and
MCI in a resting state, discriminant analysis was performed using
the connectivity strength of 29 channel pairs as features. To identify
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TABLE 1 Demographic information and neuropsychological assessment performance.

Characteristics SCD(N = 13) MCI(N = 20)

Variables Mean SD Mean SD p-Value Significance

Demographics

Gender (M/F) 7/6 9/11 0.619

Age (years) 69 7.27 69.4 5.46 0.858

Education (years) 12.31 2.53 11.3 4.41 0.462

Boston Naming Test

Spontaneous naming 23.08 3.4 21.4 4.62 0.27

Category fluency test

Animals 17.69 3.9 13.05 3.56 0.001 MCI < SCD

Cities and surnames 23.86 7.16 18.45 7.42 0.047 MCI < SCD

Shape Trail Test

Trails 1 completion time (s) 52.31 12.38 66.15 31.07 0.138

Trails 2 completion time (s) 182.23 46.24 157.65 53.47 0.184

MMSE 27.23 1.59 26.2 2.24 0.16

MOCA-B 24.31 2.93 22.1 3.54 0.071

ACE-III 78.08 7.44 69.8 9.64 0.013 MCI < SCD

Except for gender, all characteristics are represented by the mean ± standard deviation. Gender is denoted using the male/female format. The p values are obtained using the Chi-square test
for gender. All other p values are derived from independent samples t-tests.

FIGURE 2

(A) Functional connectivity heatmap for the SCD and MCI groups. (B) Schematic diagram of channels with significant functional connectivity
differences between the two groups. The scale in the image represents the range of values corresponding to the colors. The color gradient
transitions from blue to red, indicating a range from low to high values. The numbers at the top and bottom of the scale represent the maximum and
minimum values.

the optimal features and reduce the dimensionality of classification,
a preliminary selection was conducted among the channel pairs
with significant intergroup differences. The connectivity strength
values of the five channel pairs with the most significant differences
were used as input features for stepwise discriminant analysis.
This method aids in identifying the most influential features for
classification, thus enhancing the model’s predictive accuracy. It
was found that CH1–CH12 and CH4–CH15 had more significant
classification effects in differentiating between SCD and MCI.
Subsequent stepwise binary logistic regression tests of these two
channel pairs confirmed that CH1–CH12 and CH4–CH15 are
significant predictors in the SCD and MCI classification model,
explaining 21.9% and 24.9% of the variance in group membership,
respectively (Cox and Snell R2 = 0.219, 0.249). The classification
accuracy rates were 78.8% and 72.7%, respectively. Additionally,

the goodness of fit for CH1–CH12 (χ2(8) = 6.448, p = 0.597) and
CH4–CH15 (χ2(8) = 4.633, p = 0.796) was confirmed through the
Hosmer and Lemeshow test. The p values for the Hosmer and
Lemeshow test for both significant predictors were greater than
0.05, indicating that the model has a good fit and is suitable for this
classification task.

Further ROC analysis showed that the area under the ROC
curve (AUC) for CH1–CH12 was 0.7654 (p = 0.011), and for
CH4–CH15, it was 0.7885 (p = 0.006). The distribution of these
two significant factors across different groups is displayed in
Figure 3. FC refers to functional connectivity. The ROC analysis
also revealed cutoff values for the FC strength of CH1–CH12
(0.515, sensitivity = 0.9, specificity = 0.615) and CH4–CH15 (0.45,
sensitivity = 1, specificity = 0.55). Specifically, since the t-value of
the two-sample t-test for CH1–CH12 FC strength between the SCD
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TABLE 2 Different group mean HbO channel-to-channel connectivity strength.

Channel-to-channel Connectivity strength t-Value p-Value

SCD mean SCD SD MCI mean MCI SD

1–3 0.33 0.27 0.52 0.26 2.06 0.047

1–6 0.19 0.30 0.40 0.26 2.17 0.038

1–11 0.29 0.25 0.54 0.24 2.95 0.006*

1–12 0.24 0.25 0.51 0.25 2.99 0.005*

1–18 0.17 0.22 0.34 0.25 2.04 0.050

2–10 0.67 0.22 0.46 0.25 2.45 0.020

4–5 0.80 0.10 0.64 0.32 2.10 0.047

4–15 0.68 0.17 0.40 0.29 3.12 0.004*

4–17 0.66 0.14 0.50 0.29 2.19 0.037

5–14 0.69 0.14 0.38 0.40 3.16 0.004*

6–9 0.25 0.23 0.47 0.28 2.33 0.027

6–14 0.75 0.24 0.53 0.34 2.11 0.043

6–15 0.64 0.19 0.43 0.31 2.22 0.034

6–16 0.71 0.17 0.53 0.31 2.16 0.039

6–18 0.77 0.12 0.62 0.27 2.21 0.035

7–14 0.58 0.18 0.39 0.34 2.09 0.045

7–16 0.58 0.20 0.36 0.32 2.21 0.035

7–18 0.73 0.13 0.54 0.29 2.19 0.036

8–9 0.27 0.23 0.46 0.23 2.37 0.024

8–10 0.17 0.22 0.37 0.26 2.21 0.034

8–14 0.73 0.17 0.49 0.36 2.58 0.015

8–15 0.67 0.18 0.47 0.30 2.44 0.021

10–11 0.21 0.27 0.43 0.31 2.10 0.044

12–14 0.55 0.20 0.34 0.35 2.23 0.033

12–16 0.52 0.21 0.28 0.40 2.24 0.033

14–15 0.69 0.18 0.42 0.42 2.46 0.020

14–17 0.67 0.18 0.43 0.31 2.79 0.009*

14–19 0.63 0.24 0.38 0.33 2.41 0.022

15–18 0.66 0.19 0.44 0.30 2.33 0.026

SCD, subjective cognitive decline; MCI, mild cognitive impairment. *p < 0.01.

and MCI groups was negative, and for CH4–CH15, it was positive
(with SCD as the first group and MCI as the second group), it
can be inferred that the average FC strength in CH1–CH12 was
lower in the SCD group than in the MCI group, while in CH4–
CH15, it was higher in the SCD group. Consequently, when the FC
strength between CH1 and CH12 channels falls below the cutoff
value, participants are classified as SCD. Conversely, when the FC
strength between CH4 and CH15 channels exceeds the cutoff value,
participants are classified as SCD.

It is noteworthy that even after including demographic factors
such as age, gender, and education level in the statistical model, only
CH1–CH12 and CH4–CH15 were selected as significant predictors.
This result suggests that the FC strength between CH1–CH12 and
CH4–CH15 is independently associated with the differentiation
between SCD and MCI, beyond the influence of demographic
factors

3.3 Analysis of fNIRS data during Verbal
Fluency Task

3.3.1 Hemodynamic data analysis during VFT
In this study, we specifically examined the average HbO

concentration and its derivative features (slope and standard
deviation) within various time windows (5–15, 20–60, 60–
70, and 5–65 s) in the SCD and MCI groups to identify
physiological differences between these cognitive states. Through
meticulous comparative analysis, we aimed to uncover potential
mechanisms of cerebral hemodynamics during the VFT in patients
with SCD and MCI.

The division of time windows was primarily intended to
detect significant intergroup differences by examining the trends
and latency characteristics of hemodynamic responses during
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FIGURE 3

(A) Receiver operating characteristic curves of the two significant factors. (B) The distribution of the two significant factors within the MCI and SCD
groups. FC refers to functional connectivity.

different periods. Considering the 3–5 s latency in hemodynamic
responses, the time windows were categorized as follows: (1) initial
increase interval of average HbO concentration (5–15 s): this
phase reflects the preliminary rise in HbO concentration following
the commencement of the task; (2) plateau phase of average
HbO concentration during the task (20–60 s): in this interval,
HbO concentration tends to stabilize, indicating the influence of
sustained cognitive activity; (3) final decrease phase of average
HbO concentration post-task (60–70 s): after the task concludes,
HbO concentration gradually reverts to baseline levels; (4) average
HbO concentration throughout the task duration (5–65 s): this
comprehensive time window provides an overview of the overall
HbO concentration changes.

Analysis of the average HbO concentration and its derivative
features across the four time windows revealed that during the VFT,
there were no significant differences between the two groups in the
20–60, 60–70, and 5–65 s intervals. This suggests a certain similarity
in cerebral hemodynamic responses between the groups during
these stages. However, within the 5–15 s window, channels CH3
and CH7 exhibited slightly higher average HbO concentrations
compared to the MCI group, though not significantly different
(p > 0.05). In contrast, channel CH9 showed a significantly
higher average HbO concentration compared to the MCI group
(t(31) = 3.29, p = 0.02). This finding may indicate that, compared
to MCI patients, those with SCD exhibit stronger cerebral activity
at the onset of the task. Regarding standard deviation, there were
no significant intergroup differences in the 5–65 and 60–70 s
windows (p > 0.05). However, significant intergroup differences
were observed in the standard deviation of channel CH13 within
the 5–15 s window and channel CH8 within the 20–60 s window.
Specifically, the SCD group’s standard deviation was significantly
lower than that of the MCI group (t(31) = 2.353, p = 0.025;
t(31) = 2.381, p = 0.024), detailed in Figure 4. These results
suggest that in specific channels and timeframes, the cerebral
hemodynamic responses of SCD patients demonstrate greater
consistency and concentration. This may indicate that during
cognitive tasks, SCD patients have relatively smaller fluctuations in
HbO levels, showing higher stability, whereas MCI patients exhibit
larger fluctuations and less stability under the same conditions.

3.3.2 Discriminant analysis of SCD and MCI in VFT
In this study, we specifically investigated the ability of

fNIRS during the VFT to differentiate between SCD and MCI

by considering features that exhibited significant intergroup
differences. We evaluated the following features within specific
time windows: average HbO concentration in the 5–15 s window,
HbO standard deviation in the 5–15 s window, and HbO
concentration standard deviation in the 20–60 s window. Due to
the limited number of statistical features, a secondary selection
was not necessary.

The results indicated that the HbO standard deviation of
channel CH13 within the 5–15 s window had only a marginal
impact on classification (p = 0.055). However, the average HbO
concentration of channel CH9 in the 5–15 s window and the
HbO concentration standard deviation of channel CH8 in the 20–
60 s window emerged as significant predictors in the SCD-MCI
classification model (p < 0.05). These two significant predictors
explained 29.6% and 21.6% of the variance in group membership,
respectively (Cox and Snell R2 = 0.296, 0.216), with classification
accuracies of 75.8% and 66.7%.

The goodness of fit was confirmed through the Hosmer and
Lemeshow test for the average HbO concentration of channel
CH9 in the 5–15 s window (χ2(8) = 9.453, p = 0.306) and the
HbO concentration standard deviation of channel CH8 in the 20–
60 s window (χ2(8) = 11.391, p = 0.180). The p values for both
significant predictors were greater than 0.05, indicating a good fit
of the model for this classification task. Subsequent ROC analysis
revealed area under the curve (AUC) values of 0.8269 (p = 0.002)
and 0.7654 (p = 0.011) for the two predictors, respectively. The
ROC curves and the distribution of these significant factors across
different groups are illustrated in Figure 5.

Furthermore, the ROC analysis identified cutoff values for
the average HbO concentration of channel CH9 in the 5–15 s
window (0.519, sensitivity = 0.769, specificity = 0.75) and the HbO
concentration standard deviation of channel CH8 in the 20–60 s
window (0.515, sensitivity = 0.9, specificity = 0.615). Specifically,
since the t-value of the two-sample t-test for the average HbO
concentration of channel CH9 within the 5–15 s window was
positive, and for the HbO concentration standard deviation of
channel CH8 within the 20–60 s window, it was negative (with
SCD as the first group and MCI as the second group), we infer
that participants would be classified as SCD when the average
HbO concentration of channel CH9 exceeds the cutoff value in
the 5–15 s window, and as SCD when the HbO concentration
standard deviation of channel CH8 falls below the cutoff value in
the 20–60 s window.
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FIGURE 4

(A) Activation map of average HbO concentration for the SCD group (5–15 s). (B) Activation map of average HbO concentration for the MCI group
(5–15 s). (C) Topographic map of standard deviation for the SCD group (5–15 s). (D) Topographic map of standard deviation for the MCI group
(5–15 s). (E)Topographic map of standard deviation for the SCD group (20–60 s). (F) Topographic map of standard deviation for the SCD group
(20–60 s).

Notably, even after accounting for demographic factors such
as age, gender, and education level in the statistical model, only
the average HbO concentration of channel CH9 in the 5–15 s
window and the HbO concentration standard deviation of channel
CH8 in the 20–60 s window were selected as significant predictors.
This result suggests that these features have an independent
association with the differentiation between SCD and MCI beyond
demographic factors.

3.4 Behavioral performance and fNIRS
data analysis during the MemTrax task

3.4.1 Behavioral performance analysis of the
MemTrax task

In the MemTrax test, the MCI group exhibited overall poorer
performance in picture memory cognition (with a highest correct
rate of 98%, lowest correct rate of 52%, and average correct rate
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FIGURE 5

Receiver operating characteristic classification curve and the distribution of significant factors within groups. (A) HbO concentration in channel CH9
within 5–15 s. (B) Standard deviation in channel CH8 within 20–60 s. “Std” represents the standard deviation of HbO.

of 81.30%, SD = 13.2) compared to the SCD group. Interestingly,
the SCD group performed slightly better than the MCI group
(with a highest correct rate of 96%, lowest correct rate of 64%,
and average correct rate of 86.15%, SD = 8.06). Although the
MCI group’s average correct rate was lower than that of the
SCD group, a two-sample t-test revealed no significant intergroup
differences in correct rates (t(31) = 1.186, p = 0.245). However,
in terms of reaction time, the MCI group took slightly longer to
complete the same picture memory task compared to the SCD
group. Specifically, the SCD group had a maximum reaction time
of 1.689 s, a minimum reaction time of 0.855 s, an average reaction
time of 1.178 s, and a standard deviation of 0.074. In contrast, the
MCI group had a maximum reaction time of 1.865 s, a minimum
reaction time of 0.676 s, an average reaction time of 1.175 s, and a
standard deviation of 0.062. Despite the slightly better performance
of the SCD group in reaction time, the two groups did not show

significant intergroup differences in reaction time (t(31) = 0.033,
p = 0.974) based on the statistical analysis. Overall, while statistical
results may not indicate significant differences, from a clinical
perspective, MCI group members still exhibit inferior performance
in everyday life compared to the SCD group.

3.4.2 Hemodynamic data analysis during the
MemTrax task

In this study, we analyzed HbO concentration, slope, and
standard deviation for both the SCD and MCI groups during
the MemTrax task. Due to varying completion times among
participants, we uniformly selected the shortest duration of 80 s
as the endpoint for data processing. The time windows were still
defined according to the VFT standards, dividing the task into four
intervals: 5–15, 20–60, 60–80, and 5–80 s, corresponding to the
rising, plateau, falling, and overall phases of HbO concentration
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during the entire cognitive task. Analyzing the average HbO
concentration, slope, and standard deviation across these four time
windows for each channel, we found no significant intergroup
differences (p = 0.273–0.926) in these three features across the
19 channels between the SCD and MCI groups. Considering
the behavioral performance results during the MemTrax task, it
appears that there may be differences in actual daily cognitive
function between the two groups, but their performance in
these specific channels’ HbO responses did not show statistically
significant differences.

4 Discussion

The primary objective of this study is to assess the efficacy of
fNIRS in distinguishing between patients with SCD and MCI. The
study compared the activation patterns of the prefrontal cortex in
SCD and MCI patients during task performance under different
conditions. The results indicated that, relative to MCI patients,
SCD patients exhibited higher levels of FC in the prefrontal cortex
during rest. This suggests a relative preservation of cognitive
function in SCD. During the initial phase of the VFT, certain
prefrontal cortex channels in SCD patients showed significantly
higher levels of HbO compared to MCI patients. However, in the
latter phase of the task, the differences in HbO levels between the
two groups were not significant. Conversely, the standard deviation
was lower in SCD patients than in MCI patients within specific
channels during 5–15 and 20–60 s time windows. Unfortunately,
no distinct features with significant intergroup differences were
observed during the MemTrax task, which may be attributed to
task difficulty and type. Consequently, this study suggests that
fNIRS could serve as a valuable tool for identifying individuals with
early-stage dementia.

Previous studies have primarily focused on comparing the
hemodynamic activation patterns between normal cognition NC
and MCI individuals, with less attention paid to the differences
between SCD and MCI. In the existing literature, most studies have
focused on the comparison of single features (Niu et al., 2013;
Yeung et al., 2016; Yoon et al., 2019). This study, however, takes
into account multiple cognitive function indicators. Specifically,
the average HbO concentration changes of participants at rest are
relatively stable, which is consistent with the research of Yoo et al.
(2020) and Ho et al. (2022). But in terms of brain FC, the SCD group
showed a higher average FC value than the MCI group (Yeung and
Chan, 2020). This suggests that with the deepening of the disease
and the decline of cognitive ability, FC may have suffered varying
degrees of damage. This phenomenon indicates that changes in
FC can be detected in the early stages of AD. This is because
FC reflects the ability of different brain regions to work together,
and this ability may be impaired early in the pathological process.
Interestingly, in certain channels, the FC strength in the MCI
group was significantly higher than that in the SCD group, which
was contrary to our initial expectations. In studies comparing
SCD and NC, it was found that SCD patients exhibit a complex
pattern of compensatory neural activity in specific brain regions,
particularly in the prefrontal cortex, which is closely associated
with higher-order cognitive functions. During the SCD stage,
to maintain cognitive performance, some brain regions undergo

hyperactivation (Chen et al., 2020). This hyperactivation may,
on the one hand, increase the overall connectivity within certain
areas, but on the other hand, it may lead to adaptive changes in
specific connections related to the prefrontal cortex, manifesting
as decreased or disrupted connectivity, which becomes more
pronounced as the disease progresses (Lee D. et al., 2023). This
change reflects a mixed pattern, where some connections weaken
due to the redistribution of neural resources or the shifting of
task-related functions, while others may show enhanced activation.
Some researchers have also observed a similar contradictory trend
in their results, as we did (Lee T. L. et al., 2023). We hypothesize
that the functional connections in the SCD group with lower
connectivity strength compared to the MCI group likely follow
a similar compensatory mechanism. As SCD progresses to MCI,
patients in the MCI group exhibit more widespread abnormalities
in brain FC. At this stage, some regions continue to attempt
compensation for emerging deficits through compensatory activity,
potentially resulting in abnormally elevated connectivity values
that exceed those observed in the SCD group. Meanwhile, other
regions, due to disease progression, begin to show early signs of
functional impairment, leading to reduced brain FC strength. This
requires further experimental validation. Besides, no significant
group differences were found in the average HbO concentration
and its derived features. This may be because in the early stages of
the disease, the HbO signal has not yet mutated or the changes are
not obvious and are not easily detected.

During the VFT, there were large fluctuations in the frontal
lobe activation patterns of different group participants. This mainly
comes from the average HbO concentration and standard deviation
in the 5–15 s time window and the average HbO standard
deviation in the 20–60 s time window. Specifically, the average
HbO concentration of the SCD group on specific frontal lobe
channels was significantly higher than that of the MCI group,
and this difference was more obvious within 5–15 s of the task
start. This indicates that at the beginning of the VFT, the SCD
group can better mobilize cognitive resources when the cognitive
task starts, while the MCI group may lack sufficient cognitive
resources to quickly meet the cognitive demands of the cognitive
task (Yoon et al., 2019; Butters et al., 2023). But in the later stages
of the task, there was no significant group difference in the HbO
level between the SCD and MCI groups. Since the difficulty of
the task and the group will also have a certain interaction effect
on the HbO level (Yeung et al., 2016). We speculate that this
may be due to the insufficient difficulty of the task causing the
participants of the SCD and MCI groups to not reach a sufficient
level of difference, so there is no significant difference in the HbO
level. Task difficulty is an important factor for the sensitivity of
brain function measurement and needs to be given more attention
and discussion in future research. In addition, the HbO standard
deviation of the SCD group within 5–15 and 20–60 s is also lower
than that of the MCI group. This indicates that during the execution
of the task, the fluctuation of the HbO level of the SCD group
is smaller and more stable. The higher standard deviation of the
MCI group may reflect larger fluctuations in brain activity, resulting
in more unstable neural activity and hemodynamic responses.
The main reason for this situation is that a larger hemodynamic
response often increases the standard deviation of HbO in the time
window (Keles et al., 2021; Keles et al., 2022). Therefore, during
the cognitive task, frequent brain activity caused this phenomenon.
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Interestingly, the average HbO concentration in the 20–60 s time
window did not show any significant differences. We speculate
that this may be due to the large fluctuations in the HbO level in
the later stages of the task. Even if a large hemodynamic response
occurs, the average HbO value in the window is still close to a
certain constant value. Therefore, in addition to the analysis of
HbO concentration and FC, the standard deviation of HbO is
also a commonly used indicator in fNIRS signal research, which
helps to reveal the stability and variability of brain activity (Tai
and Chau, 2009; Holper and Wolf, 2011; Aghajani et al., 2017).
This information is crucial for understanding the differences in
brain function and hemodynamic responses of SCD and MCI
patients during cognitive tasks. Regrettably, in terms of MemTrax,
although the SCD group performed better than the MCI group in
the task, there was no significant group difference. We also have
not yet found any significant group difference features in terms
of hemodynamic responses. We speculate that this may be due
to the low difficulty setting of the task, which did not reach the
cognitive load of MCI patients. Therefore, the expected difference
cannot be observed at the HbO level. In addition, it may also
be related to the hemodynamic activation pattern of SCD and
MCI and the cognitive domain of the task undertaken. Therefore,
when designing future research, considering the importance of task
difficulty and type for identifying the cognition and hemodynamic
responses of SCD and MCI patients, it may be necessary to design
more diversified and challenging tasks. This needs further research
to explore. In summary, these findings suggest that individuals
with MCI may exhibit abnormal brain activation before objective
cognitive impairments become apparent. This indicates that SCD
may represent a pre-stage of MCI, providing important clues for
the early detection and intervention strategies of AD.

5 Conclusion

This study utilized fNIRS technology to reveal differences in
prefrontal cortex activation patterns between patients with SCD
and MCI within specific time windows. Comparative analysis of
hemodynamic activation patterns in the prefrontal cortex during
resting state and specific cognitive tasks (such as the Verbal Fluency
Test, VFT) revealed that SCD patients had higher average levels
of prefrontal FC during rest than MCI patients, suggesting a
relative preservation of cognitive functions in SCD. Additionally,
during the initial phase of the VFT, SCD patients exhibited
significantly higher average concentrations of HbO in certain
channels, indicating better mobilization of cognitive resources
at the onset of the task. However, as the task progressed, the
differences in HbO levels between the groups became insignificant,
which may be related to task difficulty and individual differences
in cognitive resources. Notably, the SCD group had lower
HbO standard deviation within specific time windows, indicating
smaller fluctuations in brain activity and more stable neural and
hemodynamic responses during task execution. Nevertheless, no
significant hemodynamic differences were observed between the
groups during the MemTrax task, which may be associated with
task design, difficulty settings, or relevance to specific cognitive
domains. Future research needs to design more challenging tasks
to more accurately identify SCD and MCI patients. This indicates
that fNIRS may be considered a potential biomarker for the early

detection of SCD, which is crucial for early identification and
intervention in AD.
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