
fnagi-16-1468246 January 3, 2025 Time: 14:42 # 1

TYPE Original Research
PUBLISHED 08 January 2025
DOI 10.3389/fnagi.2024.1468246

OPEN ACCESS

EDITED BY

Ian M. McDonough,
Binghamton University, United States

REVIEWED BY

Sudeshna A. Chatterjee,
Drexel University, United States
Lian Duan,
Shenzhen University, China

*CORRESPONDENCE

Yong Lin
txly1980@163.com

Donghong Cui
manyucc@126.com

†These authors have contributed equally to
this work

RECEIVED 21 July 2024
ACCEPTED 19 December 2024
PUBLISHED 08 January 2025

CITATION

Pu Z, Huang H, Li M, Li H, Shen X, Wu Q,
Ni Q, Lin Y and Cui D (2025) An exploration
of distinguishing subjective cognitive decline
and mild cognitive impairment based on
resting-state prefrontal functional
connectivity assessed by functional
near-infrared spectroscopy.
Front. Aging Neurosci. 16:1468246.
doi: 10.3389/fnagi.2024.1468246

COPYRIGHT

© 2025 Pu, Huang, Li, Li, Shen, Wu, Ni, Lin
and Cui. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

An exploration of distinguishing
subjective cognitive decline and
mild cognitive impairment based
on resting-state prefrontal
functional connectivity assessed
by functional near-infrared
spectroscopy
Zhengping Pu1,2†, Hongna Huang1†, Man Li2, Hongyan Li2,
Xiaoyan Shen2, Qingfeng Wu2, Qin Ni2, Yong Lin2* and
Donghong Cui1*
1Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong
University School of Medicine, Shanghai, China, 2Department of Psychogeriatrics, Kangci Hospital
of Jiaxing, Tongxiang, Zhejiang, China

Purpose: Functional near-infrared spectroscopy (fNIRS) has shown feasibility

in evaluating cognitive function and brain functional connectivity (FC).

Therefore, this fNIRS study aimed to develop a screening method for

subjective cognitive decline (SCD) and mild cognitive impairment (MCI) based

on resting-state prefrontal FC and neuropsychological tests via machine

learning.

Methods: Functional connectivity data measured by fNIRS were collected

from 55 normal controls (NCs), 80 SCD individuals, and 111 MCI individuals.

Differences in FC were analyzed among the groups. FC strength and

neuropsychological test scores were extracted as features to build classification

and predictive models through machine learning. Model performance was

assessed based on accuracy, specificity, sensitivity, and area under the curve

(AUC) with 95% confidence interval (CI) values.

Results: Statistical analysis revealed a trend toward compensatory enhanced

prefrontal FC in SCD and MCI individuals. The models showed a satisfactory

ability to differentiate among the three groups, especially those employing

linear discriminant analysis, logistic regression, and support vector machine.

Accuracies of 94.9% for MCI vs. NC, 79.4% for MCI vs. SCD, and 77.0% for SCD

vs. NC were achieved, and the highest AUC values were 97.5% (95% CI: 95.0%–

100.0%) for MCI vs. NC, 83.7% (95% CI: 77.5%–89.8%) for MCI vs. SCD, and 80.6%

(95% CI: 72.7%–88.4%) for SCD vs. NC.
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Conclusion: The developed screening method based on resting-state prefrontal

FC measured by fNIRS and machine learning may help predict early-stage

cognitive impairment.

KEYWORDS

subjective cognitive decline, mild cognitive impairment, functional near-infrared
spectroscopy, machine learning, prefrontal cortex, resting-state functional connectivity

1 Introduction

Neurocognitive disorders are a group of diseases characterized
by varying degrees of cognitive impairment (Cheng et al., 2017).
Dementia is the most advanced stage of cognitive impairment that
causes immense suffering and imposes a huge burden on patients
and their families (Mattap et al., 2022). Subjective cognitive decline
(SCD) and mild cognitive impairment (MCI) are considered early-
stage cognitive impairment and treated as potentially prodromal
stages of dementia (Langa and Levine, 2014). Individuals with MCI
and SCD typically present with the chief complaint of perceived
decline in cognitive function. The main difference between these
two conditions is that the impairments in objective cognitive
examinations are only detected in MCI and not in SCD (Petersen
et al., 2014; Rabin et al., 2017). Thus individuals with MCI have
worse cognitive function than those with SCD. In previous studies,
individuals with SCD or MCI were found to be at a much higher
risk of progressing to dementia than normal controls (NCs) (Vos
et al., 2015; Lee et al., 2020). However, it was estimated that timely
intervention for early-stage cognitive impairment can delay the
onset of dementia by 5 years, reducing the number of dementia
cases by nearly 57% and saving almost half of related annual
medical insurance costs (Brookmeyer et al., 2007). Thus, the
development of accurate tools for the detection of SCD and MCI
is imperative to help prevent the progression to dementia.

The existing methods to identify SCD or MCI have some
shortcomings and limitations such as the subjectivity of
neuropsychological tests, invasiveness of lumbar puncture,
high cost of molecular imaging, ionizing radiation exposure
with positron emission tomography (PET), confined space

Abbreviations: SCD, subjective cognitive decline; MCI, mild cognitive
impairment; NC, normal control; AD, Alzheimer’s disease; fNIRS, functional
near-infrared spectroscopy; FC, functional connectivity; PFC, prefrontal
cortex; ROI, region of interest; DLPFC, dorsolateral prefrontal cortex; RPFC,
rostral prefrontal cortex; MPFC, medial prefrontal cortex; OFC, orbitofrontal
cortex; VLPFC, ventrolateral prefrontal cortex; HbO, oxyhemoglobin;
HbR, deoxyhemoglobin; HbT, total hemoglobin; fMRI, functional
magnetic resonance imaging; PET, positron emission tomography;
EEG, electroencephalogram; MMSE, Mini-Mental State Examination; CDR,
clinical dementia rating; MoCA, Montreal Cognitive Assessment; FAQ,
Functional Activities Questionnaire; SCD-Q9, Subjective Cognitive Decline
Questionnaire 9; BNT, Boston Naming Test; HVLT, Hopkins Verbal Learning
Test; COH, coherence; PLV, phase locking value; ACC, accuracy; SPE,
specificity; SEN, sensitivity; AUC, area under the curve; CI, confidence
interval; EACC, empirical chance level accuracy; LDA, linear discriminant
analysis; LR, logistic regression; GNB, Gaussian Naive Bayes; SVM, support
vector machine; KNN, k-nearest neighbor; RF, random forest; XGBoost,
extreme gradient boosting; GBDT, gradient boosting decision tree;
RUSboost, random undersampling boosting; FDR, false discovery rate;
LSD-t, least-significant difference t.

for magnetic resonance imaging (MRI), and the instability of
electroencephalogram (EEG). Thus, there is a lack of simple
screening tools with high specificity and sensitivity for the
recognition of early-stage cognitive impairment. As a newly
emerging optical imaging method, functional near-infrared
spectroscopy (fNIRS) shows potential as an alternative modality
due to its unique advantages (Nguyen et al., 2019; Yoo et al.,
2020; Yu et al., 2020). It can help characterize brain activity by
detecting the dynamic changes in oxyhemoglobin (HbO) and
deoxyhemoglobin (HbR) according to the principle of neuro-
vascular coupling (Ehlis et al., 2014; Huang et al., 2024). fNIRS
provides higher spatial resolution than EEG, and higher temporal
resolution than functional MRI (fMRI), with lower sensitivity
to motion artifacts. It is a relatively less costly investigation that
can be performed in individuals with metallic foreign bodies and
those affected by claustrophobia. It also makes the experience
better because of the low noise and lack of requirement for
conductive paste. In addition, fNIRS does not entail exposure
to ionizing injury. fNIRS has been used to explore the brain
function in some neuropsychiatric diseases such as epilepsy (Rizki
et al., 2015), schizophrenia (Okada et al., 2023), bipolar disorder
(Aleksandrowicz et al., 2020), depression (Hu et al., 2021), anxiety
(Zhang et al., 2023), autism (Lin et al., 2023), and sleep disorders
(Mingming et al., 2024), and has shown satisfactory consistency
with fMRI, PET, and EEG studies. However, there is a paucity of
research on its applications in early-stage cognitive impairment (Li
et al., 2018; Nguyen et al., 2019; Yoo et al., 2020; Yu et al., 2020;
Kim et al., 2023).

The choice of indicator and the target encephalic region in
fNIRS studies is another key issue. With an increasing number
of studies on brain networks, atypical resting-state functional
connectivity (FC) is increasingly regarded as one of the state
markers in individuals with cognitive impairment (Li et al., 2016;
Lin et al., 2018; Joshi et al., 2020; Soman et al., 2020). For example,
patients with MCI were found to exhibit enhanced resting-state
FC and over-activation of the brain default mode network (DMN),
which was deemed as one of the compensatory mechanisms
for initial cognitive impairment (Rashidi-Ranjbar et al., 2023).
However, due to the antagonistic relationship between DMN
and task-positive network (TPN), the compensatory activation
of DMN will diminish the function of TPN, negatively affecting
the cognitive function when performing tasks (Melrose et al.,
2018). The prefrontal cortex (PFC) has extensive connections
with other brain regions including the hippocampus, medial
temporal lobe, and angular gyrus, which makes PFC an extremely
important and complex region involved in the transmission
and processing of information for mediating cognitive function

Frontiers in Aging Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnagi.2024.1468246
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-16-1468246 January 3, 2025 Time: 14:42 # 3

Pu et al. 10.3389/fnagi.2024.1468246

(Miller and Cohen, 2001; Acunzo et al., 2022). Some parts of the
PFC are the key components of DMN, which is now viewed as
the core network impaired in Alzheimer’s disease (AD) (Jones
et al., 2011). Some studies have found prefrontal dysfunction in
individuals with early-stage cognitive impairment; however, these
studies have yielded inconsistent or even contradictory results.
For example, the FC between PFC and some brain regions was
found to be weakened, while the prefrontal FC with other regions
was strengthened (Nguyen et al., 2019; Li et al., 2020; Yu et al.,
2020). Another limitation is the lack of focus on the FC between
subregions within the PFC.

Consequently, we adopted the prefrontal resting-state PFC as
the chief observation measure in this fNIRS study to unravel the
characteristic changes in early-stage cognitive impairment. For
more reliable results and to support the potential clinical diagnostic
value of fNIRS in early-stage cognitive impairment, we employed
machine learning to build models for screening MCI or SCD based
on prefrontal resting-state FC and neuropsychological tests.

2 Materials and methods

2.1 Study design

This was a prospective, cross-sectional study enrolling
individuals with SCD or MCI and matched healthy volunteers.
All subjects received a series of neuropsychological tests covering
the main cognitive domains and then underwent fNIRS scanning
at resting state. The differences between these three groups were
assessed. The second part of the study involved modeling to classify
and predict early-stage cognitive impairment (SCD or MCI) based
on near-infrared spectroscopic features of resting-state prefrontal
FC and neuropsychological tests through machine learning.

A board-certified psychogeriatrist first interviewed the
recruited participants and then a series of cognitive scales were
used to screen participants for eligibility. The recruited participants
were then divided into NC volunteers (NC group), SCD individuals
(SCD group), and MCI individuals (MCI group) according to the
inclusion and exclusion criteria. The common inclusion criteria
of all enrolled participants were: (1) male or female subjects aged
≥55 years; and (2) Mini-Mental State Examination (MMSE) score
>19 (for those with primary school education) or >24 (for those
with high school education or more) (Pu et al., 2020). Participants
in the MCI group were also required to qualify the following
criteria: (1) International Working Group diagnostic criteria for
MCI (Winblad et al., 2004); and (2) clinical dementia rating (CDR)
score ≤0.5 (Pu et al., 2020), Montreal Cognitive Assessment
(MoCA) score ranging from 18 (inclusive) to 26 (Nasreddine et al.,
2005; Roalf et al., 2013), and Functional Activities Questionnaire
(FAQ) score ≥9 (González et al., 2022). Participants in the
SCD group were required to qualify the following criteria: (1)
the diagnostic criteria of the SCD Initiative (SCD-I) Working
Group (Jessen et al., 2014); and (2) CDR score = 0 (Pu et al.,
2020), MoCA score ≥26 (Nasreddine et al., 2005; Roalf et al.,
2013), Subjective Cognitive Decline Questionnaire 9 (SCD-Q9)
score ≥5 (Hao et al., 2017), and FAQ score <9 (González et al.,
2022). The inclusion criteria for the NC group were as follows:
(1) no subjective feeling of cognitive decline; (2) normal results

of objective cognitive tests; and (3) CDR score = 0 (Pu et al.,
2020), MoCA score ≥26 (Nasreddine et al., 2005; Roalf et al.,
2013), SCD-Q9 score <5 (Hao et al., 2017), and FAQ score <9
(González et al., 2022). The common exclusion criteria were:
(1) severe cognitive impairment such as dementia or intellectual
disability; (2) serious neuropsychiatric disorders affecting cognitive
function; (3) use of medication or other therapeutic methods
that may affect cognitive function; (4) somatopathy that affects
cognitive function; (5) somatic conditions affecting cerebral
oxygen supply; and (6) inability to understand the instructions of
the neuropsychological tests. Finally, 246 participants including 55
NCs, 80 SCD individuals, and 111 MCI individuals were enrolled.

Written informed consent was obtained from each participant
or his/her legal guardian at the time of enrollment. This study
was approved by the ethics committees of the Kangci Hospital
of Jiaxing and Shanghai Mental Health Center. This study
is registered with the Chinese Clinical Trial Registry (registry
number: ChiCTR2300067594).

2.2 Neuropsychological tests

2.2.1 General cognitive function
The MMSE was adopted to assess the general cognitive

function. The scale consists of 30 questions with one point awarded
for each correct answer. This examination covers six domains,
i.e., orientation, immediate memory, attention and calculation,
short-term memory, language, and visuospatial skills. The cutoff
scores are set according to different educational levels. A score ≤19
in individuals with primary school education or a score ≤24 in
individuals with high school education or beyond is suggestive of
dementia (Pu et al., 2020).

2.2.2 Attention and processing speed
Part A of the Trail-making Test (TMT-A) was chosen to

appraise the attention and processing speed. In this test, the
participants are asked to draw a line to connect 25 consecutive
numbers (from 1 to 25) which are randomly distributed on an
A4-sized page. The time taken to complete this test (measured in
seconds) is recorded as the score. A score of ≥72.5 s is considered
indicative of possible impairment in attention and processing speed
(Wei et al., 2018).

2.2.3 Executive function
The Chinese version of part B of the Trail-making Test (TMT-

B) was used to assess executive function. In this test, the participants
are asked to draw a line to alternately connect 25 numbers
enclosed in circles or squares (——...—) which are randomly
distributed on an A4-size page. The time spent in accomplishing
this test (measured in seconds) is recorded as the score. A score
of ≥135.5 s is considered indicative of possible impairment in
executive function (Wei et al., 2018).

2.2.4 Language function
The Chinese version of the Boston Naming Test (BNT) was

employed to evaluate the language function, which has been
shown to have satisfactory validity for detecting naming skills in
Chinese-speaking populations. This test is composed of 30 pictures
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presented as line patterns, and the participants are required to name
each picture within 20 s. One point is awarded for each correct
answer. A score of ≤22 indicates possible impairment in language
function (Li et al., 2022).

2.2.5 Memory
The Hopkins Verbal Learning Test (HVLT) consists of

examinations of short-term memory, delayed memory, and
recognition which may take at least 30 min. For the purpose of
this study and to improve the compliance of participants, we only
assessed short-term memory. The examiner first read 12 nouns
aloud, with a 2-s time interval between each word. The participants
were then asked to recall all these nouns immediately with no
limitation of sequence. This procedure was repeated three times,
and one point was awarded for each correct recall. A score of
≤21.5 is considered indicative of possible impairment in short-term
memory (Shi et al., 2012).

2.2.6 Visuospatial skill
The Clock-Drawing Test (CDT) was used to assess visuospatial

skills. The subjects were required to draw a clock on a blank A4
paper according to this two-step instruction: first, draw a 10-cm
diameter clock face with all numbers (1–12) on it; second, place
the hour hand and minute hand in the correct positions to make
the clock show 11:10. The CDT was scored following the criterion
of Cahn et al. (1996) (10-point rating scale). The total score is 10
points: clock face (0–2 points), placement of the hands (0–4 points);
and placement of the numbers (0–4 points). Higher scores indicate
better visuospatial skills. A CDT score (criterion of Cahn et al.,
1996) ≤7 is considered indicative of impairment in visuospatial
skills (Yamamoto et al., 2004).

2.3 fNIRS measurement and data
reprocessing

A portable and multichannel fNIRS device named NIRSIT
(OBELAB, Seoul, Republic of Korea) was used to measure the
dynamic changes in HbO and HbR at wavelengths of 780 and
850 nm to reveal the strength of prefrontal FC (Figure 1). The
primary parameters of NIRSIT including the sampling rate, spatial
resolution, and time resolution were 8.138 Hz, 4 mm × 4 mm, and
125 ms/8 Hz, respectively. There were 24 sources and 32 detectors
in this device. The source and detector distance of NIRSIT was
3.0 cm which was considered the most representative observational
depth in the PFC and can optimally avoid the interference of blood
flow in the scalp and bone, corresponding to a total of 48 channels
in PFC (Funane et al., 2014; Brigadoi and Cooper, 2015; Yoo et al.,
2020). The NIRSIT was connected to a tablet computer (Galaxy Tab,
Samsung, Republic of Korea) through WLAN communication, and
the fNIRS data were recorded by a built-in program and software in
the tablet computer.

The fNIRS measurement was performed in a confined and quiet
room after the neuropsychological tests, with no interference from
other strong artificial light sources and electromagnetic signals. The
participants sat still in a comfortable chair with ease. Sweat and oil
secreted by the skin were first cleaned using medical alcohol swabs
before the placement of NIRSIT probes over the forehead. Due care

was taken to ensure that the probes were not blocked or interfered
with by hair on the forehead and temples. Then the built-in
program of gain calibration was automatically conducted to obtain
the optimal signals, and the program of eliminating motion artifacts
was initiated to improve the quality of measurement. Finally, all
participants underwent 5 min fNIRS measurement at resting state.

The Homer2 was employed to reprocess the fNIRS data.
Channels with the signal-to-noise power ratio <25 dB were
excluded as the bad channels. Then the near-infrared signals were
transformed into optical density using the “hmrIntensity2OD”
function. The functions of “hmrMotionArtifactByChannel”
(tMotion = 2, tMask = 4, STDEVthresh = 50, AMPthresh = 5)
and “hmrMotionCorrectSpline” (P = 0.99, turnon = 1) were
applied to remove and correct artifacts (Guerrero-Mosquera
et al., 2016; Nguyen et al., 2019). Subsequently, the optical density
data were bandpass filtered to eliminate the instrument and
global physiological noise using the “hmrBandpassFilt” function
(hpf = 0.01, lpf = 0.1) (Nguyen et al., 2019; Yu et al., 2020; Zhang
et al., 2022). To ensure data quality, the program of principal
component analysis (PCA), which is built into the software of
Homer2, was performed to further eliminate the artifacts and
superficial global physiological noise (Wilcox et al., 2005; Brigadoi
et al., 2014). Finally, the optical density data were transformed
into dynamic changes of HbO, HbR, and total hemoglobin (HbT)
using the “hmrOD2Conc” function (ppf = 6) (Hiraoka et al., 1993;
Herold et al., 2018).

2.4 Prefrontal FC

The 48 prefrontal fNIRS channels were divided into 10 regions
of interest (ROIs) according to the anatomical automatic labeling
(AAL) provided by the Montreal Neurological Institute (MNI),
and the locations of functional subregions in the PFC via NIRS-
SPM (Ye et al., 2009; Szczepanski and Knight, 2014; Akamatsu
et al., 2016), including the right dorsolateral prefrontal cortex
(DLPFC) (ROI 1), left DLPFC (ROI 2), right DLPFC (majority)
and right rostral prefrontal cortex (RPFC) (minority) (ROI 3),
left DLPFC (majority) and left RPFC (minority) (ROI 4), right
medial prefrontal cortex (MPFC) (ROI 5), left MPFC (ROI 6),
right orbitofrontal cortex (OFC) (ROI 7), left OFC (ROI 8), right
ventrolateral prefrontal cortex (VLPFC) (ROI 9), and left VLPFC
(ROI 10) (Figure 2).

In this study, the relative concentrations of HBO, HBR, and
HBT for all channels in each ROI were averaged to obtain time
series for HBO, HBR, and HBT. Then the methods of amplitude-
frequency-based coherence (COH) (Wang et al., 2014) and phase
locking value (PLV) (Zhang et al., 2016) were used to calculate the
FC between pairs of ROIs within the PFC, both with a value range
of 0–1. A value closer to 1 indicates a stronger correlation or phase
synchronization.

2.5 Classification and prediction models

Classification and prediction models were built through a
machine learning approach and based on the resting-state FC
under the time series for HbO, HbR, and HbT signals along with
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FIGURE 1

NIRSIT apparatus and tablet computer (cited from https://www.obelab.com/product/product_nirsit.php).

FIGURE 2

(A) The three-dimensional view of 48 prefrontal channels; (B) the arrangement of 10 ROIs; and (C) the distribution of 24 sources (red) and 32
detectors (blue) in NIRSIT. ROI 1 included channels 1, 2, 6, 7, 11, and 12; ROI 2 included channels 34, 35, 37, 38, 42, and 43; ROI 3 contained channels
3, 8, 13, 17, 21, and 25; ROI 4 contained channels 20, 24, 28, 33, 36, and 41; ROI 5 covered channels 18, 22, and 26; ROI 6 covered channels 19, 23,
and 27; ROI 7 involved channels 14, 15, 16, 29, and 30; ROI 8 involved channels 31, 32, 46, 47, and 48; ROI 9 included channels 4, 5, 9, and 10; and
ROI 10 covered channels 39, 40, 44, and 45. ROI, region of interest.

the scores of MMSE, TMT-A, TMT-B, BNT, HVLT, and CDT,
which generated 270 FC connections (2 × 3 × 10 × 9/2) and 6
neuropsychological features. To avoid overfitting and underfitting
during the training phase, and to ensure the generalizability
of models across different fold numbers and subject-specific
variations, 5-fold and 10-fold cross-validation were adopted
successively to train and test the classifier (Ding et al., 2022;
Kaliappan et al., 2023; Hakimi et al., 2024). We first used z-score

normalization for the training sets (Zhang et al., 2022); then,
features with variance ≤1 were removed and PCA dimensionality
reduction was applied to filter redundant and repetitive features
(Ringnér, 2008; Ding et al., 2022). Finally, the performance of the
models was assessed by calculating recognition accuracy (ACC),
specificity (SPE), sensitivity (SEN), and area under the curve (AUC)
with 95% confidence interval (CI) in the test set (Ding et al.,
2022).
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The linear discriminant analysis (LDA), logistic regression
(LR), Gaussian Naive Bayes (GNB), support vector machine
(SVM), k-nearest neighbor (KNN), random forest (RF), extreme
gradient boosting (XGBoost), gradient boosting decision tree
(GBDT), and random undersampling boosting (RUSboost) were
adopted as the models for classification and prediction. The
classification and prediction tasks involved SCD vs. NC, MCI vs.
NC, and MCI vs. SCD.

2.6 Statistical analysis

Differences among the three groups regarding demographic
features, neuropsychological scales, and FC strengths were first
evaluated by analysis of variance (ANOVA) using MATLAB 2021a
if the data were normally distributed or approximately normally
distributed. Non-normally distributed data were transformed to a
normal distribution by z-score normalization. The false discovery
rate (FDR) correction was then employed to rectify P values
(Singh and Dan, 2006; Glickman et al., 2014). Lastly, the post-
hoc pairwise comparison was performed by applying the least-
significant difference t (LSD-t) test if the corrected ANOVA
P < 0.05. P < 0.05 indicated a statistical difference, while P < 0.01
was considered indicative of a significant statistical difference.

As to the model construction, the permutation test was
performed to determine the empirical chance level accuracy
(EACC) (Ding et al., 2022). ACC > EACC means that the
performance of a given model is better than those built from
randomly shuffled datasets under equal conditions (Ding et al.,
2022). AUC ≥0.79 indicates better performance of the models
(de Hond et al., 2022).

3 Results

3.1 Demographic and cognitive features
at baseline

Fifty-five NC volunteers (NC group), 80 SCD patients (SCD
group), and 111 MCI patients (MCI group) were included in
this study. There were no significant between-group differences
with respect to age or sex (P > 0.05). The scores of MMSE,
TMT-A, TMT-B, BNT, HVLT, and CDT in the MCI group
were significantly lower than those in the NC and SCD
groups (F(2,243) = 76.52, P < 0.001; F(2,243) = 66.28, P < 0.001;
F(2,243) = 74.03, P < 0.001; F(2,243) = 95.55, P < 0.001;
F(2,243) = 189.57, P < 0.001; F(2,243) = 69.63, P < 0.001,
respectively). The general demographic information of the three
groups as well as the results of neuropsychological tests are
summarized in Table 1.

3.2 Resting-state FC results based on ROI

Among the 246 study participants, one did not complete the
fNIRS study due to an unbearable feeling of fullness in the head,
and 42 others were excluded from the final analysis due to the low

quality of their data. Consequently, 203 participants, including 48
NC volunteers (NC group), 65 SCD patients (SCD group), and 90
MCI patients (MCI group) were included in the FC analysis. The
following results represented the FC within the PFC as derived from
three types of hemodynamic responses (HbO, HbR, and HbT) at
the resting state.

When representing FC by COH, significant differences in
prefrontal FC were detected between ROI 1 and ROI 3, and
ROI 2 and ROI 7 (F(2,200) = 7.44, P = 0.029; F(2,200) = 6.88,
P = 0.029, respectively) from the time series for HbR. Post hoc
pairwise comparisons showed that the FC between ROI 1 and
ROI 3, and between ROI 2 and ROI 7 in MCI individuals was
stronger than that in NC volunteers (LSD-t = 2.76, P = 0.006; LSD-
t = 2.94, P = 0.004, respectively) and SCD individuals (LSD-t = 2.85,
P = 0.005; LSD-t = 2.58, P = 0.011, respectively) (Figure 3).

When representing FC by PLV, a significant difference
in prefrontal FC was detected between ROI 4 and ROI 7
(F(2,200) = 11.02, P = 0.001) from the time series for HbR. Post hoc
pairwise comparisons showed that the FC between ROI 4 and ROI
7 in SCD individuals was stronger than that in NC volunteers (LSD-
t = 3.61, P < 0.001) and SCD individuals (LSD-t = 3.91, P < 0.001)
(Figure 4).

Irrespective of COH or PLV, there was no statistical difference
between the three groups in prefrontal FC from the time series for
HbO and HbT (P > 0.05).

3.3 Performance of machine
learning-based models

3.3.1 Models only based on resting-state FC
For distinguishing SCD from NC, the ACC and AUC values for

all nine models were unsatisfactory (<65.0%). The GBDT showed
the best and most balanced performance, with an ACC of 68.1%, an
AUC of 62.6%, an SPE of 31.3%, and an SEN of 87.8%.

For distinguishing MCI from NC, the models with the best
and most balanced performance were the LDA (ACC: 68.8%; AUC:
70.8%; SPE: 43.8%; and SEN: 82.2%) and LR (ACC: 69.6%; AUC:
70.0%; SPE: 43.8%; and SEN: 83.3%).

For distinguishing MCI from SCD, the model with the best
and most balanced performance was the SVM (ACC: 71.0%; AUC:
70.5%; SPE: 41.7%; and SEN: 86.7%). The results for the abilities of
the nine models to perform classification and prediction tasks based
only on resting-state FC are presented in Figure 5 and Table 2.

3.3.2 Models based on FC and
neuropsychological tests

For distinguishing SCD from NC, the LR model had the best
ACC (77.0%) and the LDA had the largest AUC (80.6%). The
models with the most balanced performance were the LDA (ACC:
75.2%; AUC: 80.6%; SPE: 66.7%; and SEN: 81.5%), LR (ACC: 77.0%;
AUC: 79.1%; SPE: 64.6%; and SEN: 86.2%), and SVM (ACC: 75.2%;
AUC: 74.6%; SPE: 62.5%; and SEN: 84.6%).

For distinguishing MCI from NC, the LR had the best ACC
(94.9%) and the LDA had the largest AUC (97.5%). The models
with the most balanced performance were the LDA (ACC: 92.0%,
AUC: 97.5%, SPE: 91.7%, and SEN: 92.2%), LR (ACC: 94.9%, AUC:
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TABLE 1 General demographic data and results from neuropsychological tests.

Item Group F/χ 2 P

NC SCD MCI

Age (years) 61.44 ± 4.46 63.30 ± 6.54 64.80 ± 6.60 0.55 0.578

Sex (male/female) 24/31 41/39 58/53 1.17 0.557

MMSE score 28.91 ± 1.20 28.35 ± 1.30 25.49 ± 2.56 76.52 <0.001

TMT-A score (s) 40.73 ± 12.47 57.41 ± 19.85 98.22 ± 45.44 66.28 <0.001

TMT-B score (s) 59.51 ± 22.59 86.45 ± 28.51 186.31 ± 102.84 74.03 <0.001

BNT score 27.29 ± 1.65 25.41 ± 2.67 20.63 ± 4.04 95.55 <0.001

HVLT score 26.91 ± 3.27 21.85 ± 4.23 13.50 ± 5.13 189.57 <0.001

CDT score 9.33 ± 0.71 8.73 ± 1.10 7.50 ± 1.63 69.63 <0.001

MMSE, Mini-Mental State Examination; TMT-A, Trail-making Test A; TMT-B, Trail-making Test B; BNT, Boston Naming Test; HVLT, Hopkins Verbal Learning Test; CDT, Clock-Drawing
Test; NC, normal control; SCD, subjective cognitive decline; MCI, mild cognitive impairment.

FIGURE 3

Resting-state prefrontal FC from the time series of HBR calculated by COH. Heat map of FC matrix in the three groups, where warmer color
indicates stronger FC. FC, functional connectivity; HBR, deoxyhemoglobin; ROIs, regions of interest; COH, coherence; FDR, false discovery rate; NC,
normal control; SCD, subjective cognitive decline; MCI, mild cognitive impairment; ROI 1, right DLPFC; ROI 2, left DLPFC; ROI 3, right DLPFC
(majority) and right RPFC (minority); ROI 4, left DLPFC (majority) and left RPFC (minority); ROI 5, right MPFC; ROI 6, left MPFC; ROI 7, right OFC; ROI
8, left OFC; ROI 9, right VLPFC; ROI 10, left VLPFC.

FIGURE 4

Resting-state prefrontal FC from the time series of HBR calculated by PLV. Heat map of FC matrix in the three groups, where warmer color indicates
stronger FC. FC, functional connectivity; HBR, deoxyhemoglobin; PLV, phase locking value; ROIs, regions of interest; FDR, false discovery rate; NC,
normal control; SCD, subjective cognitive decline; MCI, mild cognitive impairment; ROI 1, right DLPFC; ROI 2, left DLPFC; ROI 3, right DLPFC
(majority) and right RPFC (minority); ROI 4, left DLPFC (majority) and left RPFC (minority); ROI 5, right MPFC; ROI 6, left MPFC; ROI 7, right OFC; ROI
8, left OFC; ROI 9, right VLPFC; ROI 10, left VLPFC.

97.2%, SPE: 87.5%, and SEN: 98.9%), and SVM (ACC: 90.6%, AUC:
97.2%, SPE: 87.5%, and SEN: 92.2%).

For distinguishing MCI from SCD, the LDA showed the best
ACC (79.4%) and the LR had the largest AUC (83.7%). The
models showing the most balanced performance were the LDA
(ACC: 79.4%, AUC: 82.9%, SPE: 78.5%, and SEN: 80.0%) and
LR (ACC: 77.4%, AUC: 83.7%, SPE: 73.8%, and SEN: 80.0%).
The performance results of the nine models for classification and

prediction tasks based on both FC and neuropsychological tests are
shown in Figure 6 and Table 3.

4 Discussion

Our results revealed the characteristic differences of resting-
state prefrontal FC between NC and individuals with SCD and
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FIGURE 5

Receiver operating characteristic (ROC) curves for the abilities of the nine models to complete classification tasks based on resting-state prefrontal
functional connectivity alone.

TABLE 2 Performance metrics for nine models for classification tasks based on resting-state prefrontal FC alone.

Task Model ACC EACC SPC SEN AUC 95% CI of AUC

SCD (positive class) vs. NC
(negative class)

LDA 0.652 0.638 0.375 0.800 0.602 0.506–0.699

LR 0.623 0.638 0.333 0.778 0.601 0.505–0.698

GNB 0.638 0.638 0.313 0.811 0.616 0.521–0.713

SVM 0.616 0.638 0.354 0.756 0.448 0.347–0.551

KNN 0.616 0.638 0.188 0.844 0.599 0.502–0.696

RF 0.630 0.667 0.063 0.933 0.575 0.477–0.674

XGBoost 0.652 0.645 0.354 0.811 0.596 0.497–0.692

GBDT 0.681 0.652 0.313 0.878 0.626 0.532–0.721

RUSBoost 0.580 0.601 0.542 0.600 0.571 0.471–0.669

MCI (positive class) vs. NC
(negative class)

LDA 0.688 0.638 0.438 0.822 0.708 0.621–0.794

LR 0.696 0.645 0.438 0.833 0.700 0.614–0.788

GNB 0.652 0.638 0.250 0.867 0.679 0.589–0.769

SVM 0.674 0.638 0.375 0.833 0.663 0.572–0.755

KNN 0.638 0.645 0.146 0.900 0.638 0.544–0.732

RF 0.645 0.667 0.104 0.933 0.646 0.552–0.739

XGBoost 0.630 0.645 0.292 0.811 0.621 0.526–0.716

GBDT 0.645 0.652 0.250 0.856 0.618 0.521–0.713

RUSBoost 0.601 0.601 0.354 0.733 0.539 0.439–0.639

MCI (positive class) vs. SCD
(negative class)

LDA 0.681 0.638 0.375 0.844 0.701 0.615–0.789

LR 0.674 0.638 0.396 0.822 0.696 0.610–0.784

GNB 0.674 0.638 0.229 0.911 0.695 0.608–0.784

SVM 0.710 0.638 0.417 0.867 0.705 0.619–0.793

KNN 0.674 0.645 0.146 0.956 0.696 0.609–0.784

RF 0.696 0.667 0.208 0.956 0.685 0.597–0.775

XGBoost 0.652 0.638 0.292 0.844 0.684 0.596–0.774

GBDT 0.652 0.652 0.271 0.856 0.643 0.550–0.737

RUSBoost 0.630 0.601 0.396 0.756 0.656 0.563–0.747
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FIGURE 6

Receiver operating characteristic (ROC) curves for the abilities of the nine models to complete classification tasks based on resting-state prefrontal
functional connectivity and neuropsychological tests.

TABLE 3 Performance metrics for nine models for classification tasks based on resting-state prefrontal FC and neuropsychological tests.

Task Model ACC EACC SPC SEN AUC 95% CI of AUC

SCD (positive class) vs. NC
(negative class)

LDA 0.752 0.592 0.667 0.815 0.806 0.727–0.884

LR 0.770 0.592 0.646 0.862 0.791 0.710–0.872

GNB 0.717 0.592 0.667 0.754 0.785 0.702–0.867

SVM 0.752 0.592 0.625 0.846 0.746 0.657–0.835

KNN 0.584 0.592 0.563 0.600 0.618 0.515–0.721

RF 0.611 0.602 0.375 0.785 0.668 0.569–0.767

XGBoost 0.619 0.592 0.458 0.738 0.683 0.587–0.781

GBDT 0.566 0.592 0.333 0.738 0.611 0.507–0.714

RUSBoost 0.575 0.584 0.479 0.646 0.637 0.535–0.738

MCI (positive class) vs. NC
(negative class)

LDA 0.920 0.638 0.917 0.922 0.975 0.950–1.000

LR 0.949 0.638 0.875 0.989 0.972 0.944–1.000

GNB 0.891 0.638 0.875 0.900 0.956 0.926–0.986

SVM 0.906 0.638 0.875 0.922 0.972 0.943–1.000

KNN 0.797 0.652 0.708 0.844 0.843 0.780–0.906

RF 0.833 0.667 0.563 0.978 0.904 0.855–0.952

XGBoost 0.819 0.645 0.729 0.867 0.922 0.880–0.964

GBDT 0.826 0.652 0.667 0.911 0.908 0.860–0.955

RUSBoost 0.862 0.601 0.833 0.878 0.924 0.882–0.966

MCI (positive class) vs. SCD
(negative class)

LDA 0.794 0.587 0.785 0.800 0.829 0.766–0.891

LR 0.774 0.587 0.738 0.800 0.837 0.775–0.898

GNB 0.684 0.587 0.662 0.700 0.739 0.662–0.816

SVM 0.742 0.587 0.646 0.811 0.830 0.767–0.892

KNN 0.600 0.587 0.585 0.611 0.627 0.539–0.714

RF 0.697 0.600 0.431 0.889 0.786 0.716–0.856

XGBoost 0.729 0.587 0.646 0.789 0.795 0.726–0.863

GBDT 0.697 0.587 0.585 0.778 0.770 0.697–0.842

RUSBoost 0.729 0.574 0.646 0.789 0.788 0.718–0.858
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MCI. First, the resting-state prefrontal FCs in early-state cognitive
impairment were stronger than those in NCs. Secondly, individuals
with early-stage cognitive impairment exhibited more atypical
cross-hemisphere FCs than those confined within the ipsilateral
cerebral hemisphere. Thirdly, the most atypical regions of the
prefrontal FC in individuals with early-stage cognitive impairment
were the DLPFC (ROIs 1, 2, 3, and 4) and the OFC (ROI
7). Finally, all atypical prefrontal FCs were found under the
time series for HbR.

To develop an optimal classification and predication model
for early-stage cognitive impairment, we employed nine widely
used models including LDA, LR, GNB, SVM, KNN, RF, XGBoost,
GBDT, and RUSboost to perform the classification and prediction
tasks. We also took the general trend into account rather than
only features showing statistical differences between groups. We
built models from two methods, one was based on resting-state FC
alone, while the other was based on the combination of FC and
neuropsychological tests. The models only based on FC showed
unsatisfactory performance in classification tasks, especially for the
task of SCD vs. NC. Both ACC and AUC were close to 70.0%
when performing tasks of MCI vs. NC and MCI vs. SCD. These
indices were much improved when a combination of FC and
neuropsychological tests was used. The best accuracies of 94.9% for
MCI vs. NC, 79.4% for MCI vs. SCD, and 77.0% for SCD vs. NC
were achieved, and the highest AUC values were 97.5% (95% CI:
95.0%–100.0%) for MCI vs. NC, 83.7% (95% CI: 77.5%–89.8%) for
MCI vs. SCD, and 80.6% (95% CI: 72.7%–88.4%) for SCD vs. NC.

As the key subregions involved in cognitive function, the
DLPFC and OFC are the important components of resting-
state intrinsic connected networks (Kazemi et al., 2018; Jin
et al., 2019), which have close connections with many other
cerebral areas, such as the parietal cortex, intraparietal sulci, and
sensory-motor cortex (Zhou et al., 2020; Jung et al., 2022). Such
connections provide anatomic and histological foundations for
these prefrontal subregions to mediate cognitive function including
working memory, learning, planning, attention, motive, behavioral
inhibition, behavioral decision-making, emotion, and social control
(Miller and Cohen, 2001).

The human brain is increasingly considered as a network
(Yu et al., 2020). The connected mode of each brain region
or subregion is just like its unique fingerprint to distinguish
itself from others, which also endows specific functions (Luo
et al., 2024). Thus, FC analysis is an effective method to explore
cognitive function. Previous studies have demonstrated atypical
resting-state FC in both early-stage cognitive impairment and
dementia (Teipel et al., 2018; Zhang et al., 2022). Thus, as
the core cerebral region associated with cognitive function, the
exploration of prefrontal FC at the resting state is of great
significance. Previous fMRI and EEG studies have shown atypical
FCs between the MPFC and hippocampus, the left OFC and
left dorsal preinsular lobe, the PFC and parietal lobe, and the
PFC and posterior areas in individuals with SCD (Lazarou et al.,
2020; Viviano and Damoiseaux, 2021; Ulbl and Rakusa, 2023).
There were more atypical prefrontal FCs in MCI individuals,
such as between the right OFC and other regions including left
superior temporal gyrus, precentral gyrus, right thalamus, left
fusiform gyrus, right precuneus, and right cuneus; between the
DLPFC and other regions including the hippocampus, left posterior
cingulate, and bilateral anterior insula; and between subregions

within PFC (Zhen et al., 2018; Min et al., 2019; Liang et al., 2020;
Chen et al., 2022). These resting-state FCs in SCD and MCI
individuals are usually enhanced to compensate for cognitive
impairment (Behfar et al., 2020).

Only a few studies have investigated resting-state FC using
fNIRS in SCD individuals. However, these studies showed over-
activated PFC in SCD, which might indicate some compensatory
mechanism in SCD individuals (Teo et al., 2021; Salzman et al.,
2023; Lee et al., 2024). There were relatively more studies
investigating resting-state FC using fNIRS in MCI individuals and
these studies have not only found atypical long-range connections
of PFC with the parietal lobe, occipital lobe, and right temporal
lobe (Yeung and Chan, 2020), but also revealed over-activation
in FC between the subregions within PFC (Nguyen et al., 2019;
Behfar et al., 2020; Liang et al., 2020). Effective connectivity was also
found to be significantly lower between the bilateral PFC (Bu et al.,
2019). Notably, recent fNIRS studies suggested the potential of this
technology to identify MCI based on atypical FCs between the
right DLPFC and left parietal lobe, with an ACC of 73.86% (Zhang
et al., 2022). However, there is a paucity of fNIRS studies focusing
on changes in FC among prefrontal subregions. Our results are
consistent with those of previous studies and also display atypical
FCs among prefrontal subregions.

As a rapidly advancing automatic learning method, machine
learning can help identify complex non-linear correlations in high-
latitude data, and this approach can facilitate early identification
of cognitive impairment (Merkin et al., 2022). Several recent
studies have employed machine learning to build models for
the classification and prediction of various kinds of cognitive
impairment based on neuroimaging data. Two recent resting-state
EEG studies reported ACC values ranging from 63.95% to 93.88%
for the classification task of MCI vs. NC by machine learning
(Ding et al., 2022; Perez-Valero et al., 2022). According to a meta-
analysis, the ACC of resting-state fMRI through machine learning
ranged from 62.00% to 93.29% for MCI vs. NC (Ibrahim et al.,
2021). A recent resting-state fNIRS study using machine learning
reported ACC values ranging from 71.59% to 73.86% for MCI vs.
NC (Zhang et al., 2022). Recent studies using neuropsychological
tests as features to distinguish MCI reported ACC values ranging
from 66.22% to 91.30% and AUC values ranging from 65.00% to
95.00% (Dong et al., 2022; Kurbalija et al., 2023; Gómez-Valadés
et al., 2024). A recent meta-analysis revealed that the ACC and
AUC of fluid biomarkers to identify MCI ranged from 61.00% to
97.00%, and 75.00% to 97.00%, respectively (Blanco et al., 2023).
Similar to our study, the ACC and AUC values in the above-cited
studies were lower when only based on one kind of feature such as
EEG, fMRI, fNIRS, neuropsychological tests, and fluid biomarkers
alone. However, the ACC and AUC values became much higher
when integrating multiple-modality features. In addition, the
above studies shared some common limitations. For example,
the classification of individuals with SCD was overlooked, and
most of the studies did not include neuropsychological test results
as extracted features that play a much more fundamental role
than other methods in screening cognitive impairment. Another
important flaw was that most of these studies only extracted
features with obvious statistical differences, but ignored general
trends. This approach may result in overfitting and an artificially
inflated ACC. In contrast, the classification tasks in our study
included SCD individuals and we employed neuropsychological
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test scores covering major cognitive domains as extracted features.
Moreover, we took the general trends of FC into account to reduce
the possibility of overfitting.

Some limitations of this study should be considered and
addressed in future research. The foremost limitation is the cross-
sectional nature of the study. A longitudinal study for predicting
the progression of SCD or MCI to dementia is required to prove
the clinical value of fNIRS. The process of participant selection is
another problem. SCD and MCI can result from multiple etiologies
including AD-related and non-AD-related causes. Despite the
relatively strict inclusion and exclusion criteria in this study, we
did not assess etiological factors. A longitudinal study with a 3- to
5-year follow-up based on the present study and more etiological
investigations such as apolipoprotein E genotyping, 18F-florbetaben
PET amyloid or tau protein imaging, or lumbar puncture should be
performed to obtain more robust evidence. A combination of other
objective parameters and more advanced deep learning methods
can be introduced to build more optimal models.

5 Conclusion

The present study demonstrated the potential value of
fNIRS for discriminating SCD and MCI based on resting-
state prefrontal FC and neuropsychological tests. To build upon
these results, longitudinal studies with larger sample sizes,
etiological examinations, more comprehensive parameters, and
more advancing learning methods are warranted.
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