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Background and objectives: Observational studies have established a

connection between body mass index (BMI) and an increased risk of cognitive

decline. However, a comprehensive investigation into the causal relationships

between BMI and cognitive function across diverse age groups, as well as

the genetic underpinnings of this relationship, has been notably lacking. This

study aims to investigate causality and the shared genetic underpinnings of

between BMI and cognitive function by conducting a thorough genome-

wide analysis, thereby provide valuable insights for developing personalized

intervention strategies to promote cognitive health.

Methods: Genetic associations between BMI and cognitive function were

thoroughly investigated through covariate genetic analysis and chained

imbalance score regression, utilizing data from genome-wide association

studies (GWAS). Bi-directional Mendelian Randomization (MR) was employed to

uncover associations and potential functional genes were further scrutinized

through Cross-trait meta-analysis and Summary-data-based MR (SMR).

Subsequently, a detailed examination of the expression profiles of the identified

risk SNPs in tissues and cells was conducted.

Results: The study found a significant negative correlation between BMI and

cognitive function (β = −0.16, P = 1.76E-05), suggesting a causal linkage where

higher BMI values were predictive of cognitive impairment. We identified 5

genetic loci (rs6809216, rs7187776, rs11713193, rs13096480, and rs13107325)

between BMI and cognitive function by cross-trait meta-analysis and 5 gene-

tissue pairs were identified by SMR analysis. Moreover, two novel risk genes

TUFM and MST1R were shared by both cross-trait analysis and SMR analysis,

which had not been observed in previous studies. Furthermore, significant

enrichment of single nucleotide polymorphisms (SNPs) at tissue- and cell-

specific levels was identified for both BMI and cognitive function, predominantly

within the brain.
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Conclusion: This study uncovers a causal relationship between BMI and

cognitive function, with the discovery of TUFM and MST1R as shared genetic

factors associated with both conditions. This novel finding offers new insights

into the development of preventative strategies for cognitive decline in

obese individuals, and further enhances our understanding of the underlying

pathophysiology of these conditions. Furthermore, these findings could serve as

a guide for the development of innovative therapeutic approaches to address

cognitive decline in obese individuals.

KEYWORDS

cognitive function, body mass index, bi-directional Mendelian randomization,
summary-data-based Mendelian randomization, genome-wide cross-trait analysis

1 Introduction

The global population is experiencing an demographic shift
towards older age groups, prompting a heightened concern for
cognitive decline among the elderly population (Alberini and Chen,
2012). Dementia and mild cognitive impairment (MCI) are among
the most diagnosed forms of cognitive impairment (Biessels and
Despa, 2018). Estimates suggest that there were approximately
47 million individuals living with dementia worldwide in 2015, a
number that is projected to triple by 2050 (Livingston et al., 2017).
This anticipated growth will impose a substantial financial and
healthcare burden on individuals, their families, and public health
services (Petersson and Philippou, 2016). Moreover, the World
Health Organization reports that the prevalence of obesity, defined
as a body mass index (BMI) of 30 kg/m2 or higher, has nearly tripled
globally since 1975 (Cirulli et al., 2019), which also presents a
substantial public health challenge. Therefore, the population aging
and obesity crisis have been two major concerns for public health
organizations worldwide.

Previous studies have suggested a causal relationship between
BMI and cognitive function; however, the conclusions drawn from
these studies have been inconsistent, particularly when examining
different age populations. In one hand, some studies have indicated
a correlation between higher BMI and a potentially reduced risk
of cognitive decline among older adults across various ethnic
groups, suggesting that overweight older adults might have a
lower propensity for cognitive impairment (Parker et al., 2018;

Abbreviations: BMI, Body mass index; SNP, Single nucleotide polymorphism;
MCI, Mild cognitive impairment; GWAS, Genome-wide association
study; GTEx, Genotype-tissue expression; scRNA, Single-cell RNA
sequence; LDSC, Linkage disequilibrium score regression; S-LDSC,
Stratified Linkage Disequilibrium Score Regression; DGFs, Dnazyme digital
genomic imprinted regions; ρ-HESS, Heritability Estimation from Summary
Statistics; MTAG, Multi-trait analysis of GWAS; CPASSOC, Cross-Phenotype
Association; SHet, Estimates the crosstrait statistic heterogeneity; LD,
Linkage disequilibrium; SNPs, Single-nucleotide polymorphisms; FUMA,
Functional Mapping and Annotation; PPH4, Posterior probability for H4;
GSMR, Mendelian randomization based on generalized pooled data;
IVW, Inverse variance weighting; eQTL, Expression quantitative trait loci;
HEIDI, Instrument-dependent heterogeneity; SMR, Summary-data-based
Mendelian randomization; lncRNAs, Long non-coding RNAs; NEAT1,
Nuclear paraspeckle assembly transcript 1; AD, Alzheimer’s disease; PD,
Parkinson’s disease; HD, Huntington’s disease; ALS, Amyotrophic lateral
sclerosis.

Schmeidler et al., 2019; Wu et al., 2021; Dong et al., 2023; Nicolas
et al., 2024). For instance, a community-based prospective cohort
study revealed that overweight older adults had a decreased risk of
cognitive impairment, whereas significant weight loss was linked to
an elevated risk of cognitive decline (Wu et al., 2021). Moreover,
two more studies have demonstrated that being underweight is
associated with an increased risk of cognitive impairment in older
adults (Dong et al., 2023; Nicolas et al., 2024). In the other hand,
higher BMI was found to be associated with cognitive decline in
younger and mid-life populations (Meo et al., 2019; West et al.,
2021; Albanese et al., 2012; Li et al., 2021; Dahl et al., 2013; Smith
et al., 2022). For instance, the research conducted by Albanese et al.
revealed that an increase in BMI between the ages of 26 and 36 is
correlated with lower memory scores (Albanese et al., 2012). Li et al.
discovered that obesity is linked to an elevated risk of dementia
in the 40–49-year age populations (Li et al., 2021). Another
investigation involving individuals aged 50–64 years showed a
significant association between BMI and an increased likelihood of
MCI (Smith et al., 2022). Therefore, the relationship between BMI
and cognitive function remains elusive across diverse age groups.

Importantly, the interplay between BMI and cognitive function
has been revealed as bidirectional. One study indicates that a
higher BMI adversely affects cognitive function in middle age
and beyond, while individuals with better cognitive function tend
to maintain a stable weight and avoid weight loss (Karlsson
et al., 2021). Additionally, research has identified that patients
experiencing cognitive dysfunction often undergo significant
weight loss, which is related to the degree of cognitive dysfunction.
Notably, this weight loss phenomenon appears to be more
pronounced in women than in men (Wirth et al., 2007).
However, a study by Norris T et al. found no association
between cognitive dysfunction and BMI (Norris et al., 2023).
Despite these findings, the existing literature presents limited
evidence regarding the reverse causal relationship between BMI
and cognitive function, thus leaving uncertainty about the mutual
influence between the two. Furthermore, the contribution of
genetic factors in determining the overlapping risk profiles of
BMI and cognitive function is still largely unexamined. In an
effort to fill this gap in our knowledge, we have undertaken
an extensive genome-wide analysis to explore these intricate
connections.
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The hypothesis of the study is that there is a causal relationship
between BMI and cognitive function, which is likely mediated by
shared genetic factors. To explore this connection, this research
focused on investigating the possible causal pathways and genetic
associations linking BMI and cognitive function by conducting a
thorough analysis of an extensive genome-wide association study
(GWAS) dataset. We initiated our study by leveraging genetic
correlation and local genetic correlation methodologies to evaluate
the extent of shared genetic influences on cognitive function
and BMI. To further refine our understanding of specific genetic
associations, we engaged in cross-trait meta-analyses. Moving
forward, we employed a bidirectional two-sample Mendelian
Randomization (MR) analysis to investigate any potential causal
relationships between the two traits. In the final analysis, we
utilized the genotype-tissue expression (GTEx) and single-cell RNA
sequence (scRNA) databases to delve into tissue-specific and cell-
type-specific functions. This allowed us to explore the potential
genetic pathways that might connect cognitive function and BMI.
Ultimately, this comprehensive approach would shed light on the
intricate interplay between BMI and cognitive function, providing
critical insights into the relationship between these two vital
health indicators.

2 Materials and methods

2.1 Study design, data summary and
quality control

The overall study design is illustrated in Figure 1. We
extracted summary statistical data for BMI (n = 68,1275) and
cognitive function (n = 257,841) from the MRC Integrative
Epidemiology Unit OpenGWAS database, accessible at
https://gwas.mrcieu.ac.uk/.

The BMI data utilized in this investigation were sourced
from the GWAS meta-analysis conducted by the Genetic
Investigation of Anthropometric Traits (GIANT) Consortium. This
Consortium’s dataset provided impact estimates for BMI-associated
single nucleotide polymorphisms (SNPs), which were derived by
integrating participants’ weight and height information (Yengo
et al., 2018). The Body Mass Index (BMI) values in this study
spanned a range from 13.65 to 50.41 kg/m2, with an average of
24.89 ± 3.81 kg/m2.

The GWAS summary statistics for cognitive function utilized
in this investigation were sourced from the MRC Integrative
Epidemiology Unit’s OpenGWAS database. These data were
obtained through a meta-analysis of several cognitive function-
related metrics, including self-reported math ability (N = 564,698
participants), highest math ability (N = 430,445 participants),
cognitive ability (N = 35,298 participants), and cognitive
performance (N = 222,543 participants), as reported by Lee
et al (Lee et al., 2018). The GWAS for self-reported math ability
and highest math ability phenotype was carried out exclusively
with participants from the personal genomics company 23andMe,
who provided survey responses detailing their mathematical
proficiency. Cognitive ability data were extracted from published
research on general cognitive ability, conducted by the COGENT
Consortium, and cognitive performance data was gathered from

genome-wide association analyses of cognitive performance by the
UK Biobank. Participants ranged in age from 39 to 97 years, with
an average age of 64 ± 7 years. This is documented in more detail
in Supplementary Table 1.

2.2 Heritability and genetic correlation

We used linkage disequilibrium score regression (LDSC) as
a valuable method for estimating genetic correlations between
multiple traits or diseases (Ni et al., 2018). In order to achieve
this goal, we made use of pre-calculated linkage disequilibrium
(LD) scores obtained from the 1000 Genomes Project. Additionally,
we calculated SNPs using the HapMap 3 SNP set and eliminated
SNPs that did not align with the reference panel. Using GWAS
summary statistics and LD scores from the 1000 Genomes
Project’s European Ancestry Reference Data, we applied LDSC to
calculate the heritability of an individual trait and to determine
the genetic strength of two genetic correlations between traits.
Genome-wide genetic correlations (rg) quantify the average
shared genetic effect between two traits that are not affected
by environmental confounders, with estimates ranging from −1
(negative correlation) to 1 (positive correlation). Importantly,
LDSC can provide accurate estimates even in cases where test
statistics may be inflated due to polygenicity.

Our research uses stratified LDSC (S-LDSC) to analyze the
impacts of different genomic functional components in order to
shed light on the genetic connections between cognition and BMI,
which functions by categorizing SNPs into different functional
groups and then calculating LD scores for each SNP within a
specific category (Gazal et al., 2019). These LD scores are then
used to estimate genetic correlations within specific functional
categories. To further investigate the functions of genomic
components, we conducted a comprehensive LDSC analysis to
explore the genetic correlations in a hierarchical manner. We
considered several functional categories including coding regions,
conserved regions, DNA zyme digital genomic imprinted regions
(DGFs), DNA zyme I hypersensitive sites (DHSs), fetal DHSs,
intronic regions, promoters, repressor regions, super-enhancers,
transcribed regions, and histone marks (Mize and Evans, 2022).
By using this approach, we were able to calculate the genetic
correlations for each of the different functional categories, thereby
revealing the influence of several genomic components on the
overall genetic correlation between cognitive function and BMI.

2.3 Local genetic correlation analysis

Summary statistical heritability estimation (ρ-HESS) (Shi
et al., 2017) was used to estimate local SNP heritability and
genetic correlation. ρ-HESS allows us to determine whether BMI
and cognitive function are linked genetically in distinct, locally
independent regions of the genome. This approach identified 1,703
potential regions that are approximately non-LD related, with an
average size of nearly 1.5 MB. We then utilized the 1000 Genomes
Project as a reference, as suggested on the ρ-HESS webpage,
to ascertain the genetic correlation between BMI and cognitive
function and to estimate the local SNP heritability of these traits.

Frontiers in Aging Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fnagi.2024.1466799
https://gwas.mrcieu.ac.uk/
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-16-1466799 October 15, 2024 Time: 11:10 # 4

Chen et al. 10.3389/fnagi.2024.1466799

FIGURE 1

Overview of the experimental design. The genome-wide cross-trait analysis and bi-directional Mendelian randomization were used for identifying
shared genetic etiology and causality between BMI and cognitive function. BMI, body mass index; GWAS, Genome-wide Association Study; S-LDSC,
Stratified Linkage Disequilibrium Score Regression; MAGMA, Multi-marker Analysis of GenoMic Annotation; MR, Mendelian Randomization; SMR,
Summary-databased Mendelian Randomization; GSMR, Generalized Summary-data-based Mendelian Randomization; MTAG, multi-trait analysis of
GWAS; CPASSOC, Cross-phenotype association analysis.

Subsequently, to manage the risks associated with multiple testing,
we applied the Bonferroni correction, adjusting the significance
threshold to account for the number of regions under investigation.

2.4 Cross-trait GWAS meta-analysis

To identify common risk SNPs associated with both BMI and
cognitive function, we employed two cross-trait meta-analyses: the
multi-trait analysis of GWAS (MTAG) (Turley et al., 2018) and
the Cross-Phenotype Association analysis (CPASSOC) (Liu et al.,
2021). MTAG benefits from incorporating a diverse array of related
traits, which enhances the accuracy of SNP effect size estimations
for each trait. MTAG is applicable when the SNP heritability is
assumed to be equal across traits and when genetic covariance
between traits is fully characterized. We determined the upper
bound of the error discovery rate using "maxFDR." Furthermore,
we employed the CPASSOC to conduct a pairwise cross-trait
meta-analysis, considering the varying heritability estimates across
the two CPASSOC traits. This approach involved calculating
the Statistical Heterogeneity (SHet) and P-values between traits
through a meta-analysis of GWAS aggregated data. It incorporates
the inter-trait effect diversity, utilizing sample size weights to
appropriately account for it. This method is designed to address
the varying effects among traits, offering an advantage over the
SHom (fixed effects meta-analysis method), which is less effective
at handling such heterogeneous effects. SHet has been shown
to provide superior and more robust statistical power. For our
analysis, we utilized SHet to integrate summary data for cognitive
function and BMI.

Relevant SNPs were those demonstrating a strong association
with both BMI and cognitive function (P < 5 x 10ˆ−8 in
both MTAG and CPASSOC). To combine the summary statistics
for BMI and cognitive function, we utilized the SHet method,
which accounts for statistical heterogeneity. This was followed by
clumping in PLINK (version 1.9) to identify independent SNPs
most significantly associated with the phenotype. The PLINK
"clumping" function was applied with the following parameters: -
clump-p1 5e-8 -clump-p2 1e-5 -clump-r2 0.2 -clump-kb 500. Novel
loci were defined as independent SNPs that were not in LD with
significant SNPs, as determined by the cross-trait GWAS meta-
analysis. Specifically, we considered SNPs that were not in LD
(r2 > 0.2) within a 1000 kb window with significant SNPs from the
cross-trait GWAS meta-analysis, which included the two GWAS
studies on BMI and cognitive function conducted in this research.

2.5 SNP Annotation

To identify significant and lead SNPs, we annotated the MTAG
summary data using the online platform functional mapping and
annotation (FUMA).1 SNPs were considered to be independent
when P < 5x10−8 and r2 < 0.6. Notably, lead SNPs, which
are characterized by an r2 value of less than 0.1, indicate
distinct genetic variants. We employed the default parameters
for the Functional Mapping and Annotation within FUMA and
referenced the 1000 Genomes Project Phase 3 data, specifically
using the European ancestry population as our reference panel.

1 https://fuma.ctglab.nl/
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This approach was designed to capitalize on our European heritage
as a starting point for annotation. To elucidate tissue-specific
associations, we conducted a tissue enrichment analysis, leveraging
the GENE2FUNC process within FUMA. This analysis utilized
data from 54 tissue types, as provided by the Genotype-Tissue
Expression project, version 8 (GTEx v8).

2.6 Colocalization analysis

To identify the common genetic basis of cross traits, it is also
possible to examine if two GWAS signals are due to separate genetic
variants that are close to one another or to the same variants. We
employed the coloc package (Wu et al., 2019) to conduct a thorough
colocalization examination. Five mutually exclusive hypotheses are
identified by Colco: H0 (no association), H1 or H2 (relationship
to one trait alone), H3 (association to both traits, two different
SNPs), and H4 (connection to both characteristics, one shared
SNP). Utilizing a Bayesian algorithm, coloc calculates the posterior
probabilities for each of these hypotheses. We received summarized
information regarding changes within a 1.0 Mb radius of the index
SNP for every shared locus and calculated the posterior probability
for H4 (PPH4). At these shared loci, we also retrieved summary
statistics for variants located less than 0 Mb from the index SNP
and determined the posterior probabilities for both H4 (PPH4) (Lin
et al., 2023) and H3 (PPH3). A locus was deemed colocalized if
either the PPH4 or PPH3 value exceeded 0.95.

2.7 Mendelian randomization analysis

We employed five prominent MR methods—MR-Egger
(Bowden et al., 2017), inverse variance weighting (IVW) (Peng
et al., 2022), weighted median, weighted model, and Mendelian
randomization analysis based on generalized aggregated data
(GSMR) (Zhu et al., 2018)—to conduct multiple hypothesis tests
for horizontal pluripotency in relation to the causal connection
between body mass index BMI and cognitive function. The R
software packages "TwoSampleMR" and "GSMR" were utilized to
identify any potentially significant associations (P < 0.05). The
Wald test was applied to assess the causative link between a
single genetic variable and the exposure-outcome relationship.
The IVW method facilitated the estimation of causal effects for
both phenotypes through meta-analysis. The MR-Egger technique
leveraged weighted linear regression to elucidate the presence and
direction of unmeasured horizontal pleiotropy, providing insights
into potential confounding factors. Cochran’s Q statistic and the
MR-Egger intercept test were conducted to evaluate heterogeneity
and pleiotropy. To detect pleiotropy and multivalence, as well as
potential outliers, we utilized MR-PRESSO analysis and single SNP
effect analysis.

The selection of variants for our analysis was guided by
three key assumptions: (1) the variants must be associated with
the exposure variable; (2) they should not be influenced by
confounding factors; and (3) they should not directly affect the
outcome variable. To ensure the validity of these assumptions,
we focused on identifying SNPs that exhibited genome-wide
significance for the exposure traits, with a stringent threshold

of P ≤ 5 × 10ˆ−8, serving as instrumental variables. The F
statistic for each SNP instrument was calculated using the formula
F = [(N−k−1)/k] ∗ [Rˆ2/(1−Rˆ2)], where N represents the total
number of individuals, k is the number of SNPs, and Rˆ2 is
the variance explained by the instrumental variable. SNPs with
an F statistic below 10 were considered to provide insufficient
information for meaningful analysis and were accordingly
excluded. To assess the heterogeneity across studies, the Cochran’s
Q statistic was computed. Additionally, sensitivity analyses were
conducted using a leave-one-out method to evaluate the robustness
of our findings. This involved removing one study at a time and re-
calculating the statistics to ensure that the results were not driven
by any single outlier.

2.8 Tissue specific enrichment of SNP
heritability

2.8.1 Large-scale data- sharing consortium
(LDSC) analysis

To determine the tissues most significantly associated with
shared genes, we conducted a GTEx (Genotype-Tissue Expression)
tissue enrichment analysis utilizing the S-LDSC (Sparse Linear
Discriminant Analysis with an Enhanced R Package) method
("Human genomics. The Genotype-Tissue Expression (GTEx)
pilot analysis: multitissue gene regulation in humans" GTEx
Consortium, 2015; Battle et al., 2017). GTEx version 8 provides
comprehensive data on 53 distinct tissue types. S-LDSC was
applied to evaluate the enrichment of SNP heritability for cognitive
function and BMI across various tissues. We analyzed the z-fraction
p-value of the regression coefficient to modify the initial model
and the entire gene set, assessing the significance of each SNP’s
genetic effect richness estimate. Subsequent tissue-specific analyses
estimated the associations between genes specifically expressed
in each tissue and their impact on cognitive function and BMI.
To account for the multiple testing involved, we employed the
Bonferroni correction algorithm, setting the significance threshold
at 0.05 divided by the number of tissue types (0.05/53).

2.8.2 Multi-marker analysis of genomic
annotation (MAGMA) analysis

As a sensitivity analysis complementing the S-LDSC results,
we utilized MAGMA (de Leeuw et al., 2015) to conduct tissue-
specific enrichment and gene set enrichment analyses. This
involved performing gene-level association studies using GWAS
pooled data. MAGMA estimates gene-phenotype associations by
aggregating the P of SNPs in close proximity to the target genes.

2.9 Mendelian randomization (MR) based
on aggregated data

Summary-data-based MR (SMR) was used to identify
potentially statistically significant functional genetic variants that
may be associated between cognitive function and BMI. identify
functional genes that may be statistically associated between
cognitive function and BMI. SMR is an approach that integrates
summary statistics from GWAS and expression quantitative trait
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loci (eQTL) studies within an instrumental variable framework to
detect associations between gene expression and target phenotypes
(Bowden et al., 2017; Krishnamoorthy et al., 2023). SMR was
performed in tissues significantly enriched for cognitive function
and BMI SNP heritability. Genome-wide significant SNPs
were used as instrumental variables to perform an instrument-
dependent heterogeneity (HEIDI) test to assess the presence
or absence of a causal link in the observed associations (Wang
et al., 2021; Shadrina et al., 2020). An additional step involved
using the HEIDI-outlier test to differentiate between causality
or multiplicity and linkage. Significantly shared functional genes
between cognitive function and BMI were defined as those genes
that passed a Benjamini-Hochberg false discovery rate (FDR) test
and a HEIDI outlier test for functional genes with a significance
level of P < 0.05, with a requirement of 10 SNPs for SMR analysis
for both traits.

2.10 Cell-type enrichment analysis using
scRNA-seq data

We performed MAGMA cell typing using scRNA-seq (Zhang
et al., 2023) datasets to assess cell type expression-specific gene
height genetic correlations between BMI and cognitive function.
For this purpose, we calculated regression coefficient z-scores
for all genes. Subsequently, we used functional localization and
annotation (FUMA) processing of SNP genes on GTEx tissue
to assess the significance of each gene’s heritability enrichment
estimate. Only scRNA-seq datasets of tissues enriched for both
cognitive function and BMI were included in the cell-type specific
analysis. We used the Bonferroni program to correct for multiple
testing, and only significantly correlated cell types were identified
by correcting the average gene expression in the preprocessed
scRNA-seq dataset and combining it with the MAGMA results for
each trait.

3 Results

3.1 Genetic correlations

We included a comprehensive dataset consisting of 2,336,260
SNPs associated with cognitive function and 10,066,414 SNPs
related to BMI (Supplementary Table 2). The single trait LDSC
s analysis revealed GWAS-based estimates of heritability for
cognitive function (GWAScognitive function) to be 0.2002 (SE = 0.007)
and for BMI (GWASBMI) to be 0.2126 (SE = 0.0069), with
mean statistics of 2.0299 and 3.9461 for GWAScognitive function
and GWASBMI, respectively. Pairwise LDSC analysis indicated
a genome-wide negative correlation between BMI and cognitive
function (rg = −0.1237, SE = 0.0151, P-LDSC = 3.1453 x 10ˆ−16),
as presented in Supplementary Table 3. The genetic covariance
intercept was estimated to be approximately 0.01. Considering
the minor overlap in sample sets, we conducted a constrained-
intercept LDSC analysis without assuming overall stratification,
which showed a slightly weaker but still statistically significant
genetic correlation (Supplementary Table 3).

3.2 Local genetic correlation analysis

We conducted a genome-wide analysis to assess localized
genetic correlations between BMI and cognitive function, utilizing
summary statistics-based heritability estimates. Following multiple
correction procedures, we identified strong genetic correlations
in 18 distinct regions that emerged as the most significant
(Supplementary Figure 1 and Supplementary Table 4).

3.3 Partitioned genetic analysis

In our study, SNPs linked to BMI were found to be
enriched in 48 out of 97 functional categories, with the most
significant enrichment observed in the MAF_Adj_ASMCL2_0
category (Enrichment = 1.94025 x 10ˆ13, P = 7.51 x 10ˆ−24).
Similarly, SNPs associated with cognitive function showed
enrichment in 48 out of 97 functional categories, with the
MAF_Adj_ASMCL2_0 category again displaying the highest level
of enrichment (Enrichment = 2.24 x 10ˆ13, P = 8.55 x 10ˆ−25)
(Supplementary Tables 5–6). Additionally, 39 functional regions
were significantly enriched for both BMI and cognitive function,
as shown in Supplementary Table 7.

3.4 Causal relationship between BMI and
cognitive function

We conducted bi-directional MR analyses to delineate the
causal relationships between the variables of interest and to
ascertain whether the underlying genetic architecture exhibited
heterogeneity and pleiotropy. Instrumental variables (IVs)
were chosen in accordance with three a priori hypotheses
(Supplementary Table 8), and subsequent using a bi-directional
MR framework was employed to assess the consistency and stability
of the inferred causal associations. Our investigation encompassed
five distinct MR methodologies, which collectively provided
evidence supporting a causal link between BMI and cognitive
function (IVW β = −0.16, P < 0.05; GSMR β = −0.05, P < 0.05), as
depicted in Figure 2, Supplementary Figure 2, and Supplementary
Table 8, with negligible indication of substantial heterogeneity
or pleiotropy. In the converse causal direction, examining
the influence of cognitive function on BMI, all employed MR
techniques except for GSMR failed to reach statistical significance
(GSMR β = −0.05, P < 0.05), as illustrated in Figure 2.

3.5 Cross-trait meta-analysis

Drawing on genetic correlations and causal outcome effects,
there is evidence of a genetic mechanism underlying the
relationship between BMI and cognitive function. Utilizing the
MTAG methodology, we conducted an analysis of GWASBMI
and GWAScognitive function, identifying 1141 SNPs that exhibited
genome-wide significance (P < 5 x 10ˆ−8). To corroborate the
findings in the MTAG, we employed CPASSOC for multiplicity
analysis, integrating the results of both MTAG and CPASSOC
to refine the selection of the 1141 SNPs (P < 5 x 10ˆ−8).
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FIGURE 2

Bi-directional MR analysis and GSMR effect size plots for the relationship Between cognitive Function and BMI. (A) Bi-directional MR Forest Plot: The
upper panel illustrates the causal effect of cognitive function on BMI, while the lower panel depicts the causal effect of BMI on cognitive function;
(B) GSMR effect size plot for the impact of BMI on cognitive function; (C) GSMR effect size plot for the impact of cognitive function on BMI. Each
dot corresponds to a SNP. The effect estimates and their 95% confidence intervals (CI) are shown with squares and whiskers, respectively. BMI: body
mass index; SNP: single-nucleotide polymorphism.

Subsequently, we used PLINK to extract 44 SNPs from the
CPASSOC results. Furthermore, by consolidating the SNPs from
the ρ-HESS significant regions with the novel SNPs, we identified
seven novel SNPs, which are associated with the combined
phenotype of BMI-cognitive function (Table 1). Furthermore, co-
localization analysis revealed that five of these SNPs including
rs6809216, rs7187776, rs11713193, rs13096480, and rs13107325,
demonstrate co-localization between BMI and cognitive function
(PH4 > 0.95) (Figure 3 and Table 2).

3.6 Summary statistics-based Mendelian
randomization (SMR)

Through the concurrent analysis of GWAS data from the GETx
consortium and eQTLGen, we employed the SMR approach to
infer the causal relationship between BMI and cognitive function,

as well as to identify putative functional genes that passed the
HEIDI outlier test. Our investigation uncovered genes that exhibit
shared associations with BMI and cognitive function in the
cerebellar hemisphere, frontal cortex, hypothalamus, basal ganglia,
and pituitary gland (Figure 4 and Table 3). Notably, TUFM
(PSMR = 4.94E-11, PHEIDI = 0.32) and MST1R (PSMR = 8.15E-11,
PHEIDI = 0.06) were identified as two novel significant candidates
by cross-trait analysis.

3.7 LDSC-SEG and MAGMA tissue
enrichment

Utilizing publicly available GWAS data, which were enhanced
with SNP GTEx data, we applied LDSC Squared Error Gain (LDSC-
SEG) method to pinpoint tissues with heightened gene expression
due to shared SNPs. By modifying the baseline model, we detected
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significant SNP heritability enrichment in 53 tissues associated with
BMI, with the cerebral frontal cortex showing the most pronounced
enrichment (P = 0.001). In terms of cognitive function, 49 tissues
demonstrated significant enrichment, and the frontal cortex of the
brain emerged as the most highly enriched tissue (P = 4.83x10ˆ−8;
Supplementary Table 9).

To conduct a sensitivity analysis of the S-LDSC method, we
used MAGMA, a tool designed to analyze GWAS data. The
analysis revealed that BMI-related SNPs were particularly enriched
in eight distinct brain regions, with the cerebellum being the
predominant region. For cognitive function, we observed specific
enrichment of SNPs in 14 different brain regions, again, with the
cerebellar hemisphere showing the most significant enrichment
(Supplementary Figures 3–4). These findings provide insights into
the tissues and brain regions where shared SNPs associated with
both BMI and cognitive function are most active, highlighting the
complex interplay between genetic factors and these traits. The
results underscore the importance of considering both genetic and
tissue-specific factors when investigating the etiology of complex
traits such as BMI and cognitive function.

3.8 Cell-specific SNP heritability
enrichment

To further explore the potential role of shared SNPs
within different specific cell types, cell-specific SNP heritability
enrichment was performed. In this study, the prefrontal cortex,
hippocampus, and midbrain are three key brain regions where
SNPs associated with both BMI and cognitive function were
found to be particularly enriched within neuronal populations
(Supplementary Figure 5). First, in the prefrontal cortex, a region of
the brain involved in higher cognitive functions such as decision-
making, planning, and social behavior, GABAergic neuronal cells
play a crucial role in the regulation of both cognitive function and
BMI. Second, in the hippocampus, a region of the brain involved
in learning and memory, the GABA2 neuronal cells emerges as a
potential significant factor contributing to the interplay between
BMI and cognitive function. Last, in the midbrain, SNPs related to
BMI and cognitive function were significantly enriched in neuronal
subsets, with a notable enrichment observed in certain neuron
types, including Gaba, NbGaba, NbML5, and DA1. Overall, the
findings provide insights into the roles of GABAergic neurons in
the regulation of cognitive function and BMI and suggest that
genetic variations within these neurons may contribute to the
interplay between these traits. Further research is needed to fully
understand the mechanisms by which these genetic variations
contribute to the regulation of cognitive function and BMI,
and to explore the potential implications for the development
of interventions to improve cognitive function and reduce the
risk of obesity.

4 Discussion

In this study, we provide evidence indicating a causal link
between BMI and cognitive function. We also emphasize the
convergence in the genetic architecture that underpins both BMI
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FIGURE 3

Colocalization analysis of shared SNPs between BMI and cognitive function. (A) rs6809216, (B) rs7187776, (C) rs11713193, (D) rs13096480, and (E)
rs13107325 are five identified shared SNPs between BMI and cognitive function. In each panel, the diamond-shaped purple points indicate the SNPs
that exhibit the minimal sum of P-value in corresponded BMI and cognitive function.
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TABLE 2 Posterior probability test of shared loci between BMI and
cognitive function.

SNP GENE PPH4

rs2196172 PLCL1 0.050834901762781

rs6809216 RHOA 0.997655251941814

rs13096480 BSN 0.991551932510143

rs11713193 MST1R 0.991374521631222

rs13107325 SLC39A8 0.999999956976809

rs7124681 CELF1 0.708825902651126

rs7187776 TUFM 0.95629072739858

SNP, single-nucleotide polymorphism; PPH4, the posterior probability of hypothesis 4.
Bold values: colocalized SNPs.

and cognitive function. Our research, which are based on results
spanning various age cohorts, advances our comprehension of
the intertwined complexities associated with these conditions.
These insights may prove valuable in enhancing diagnostic
accuracy, predicting outcomes, and devising targeted therapeutic
interventions for related disorders.

Through the application of cross-trait meta-analysis, including
MTAG and the CPASSOC, we identified 44 SNPs that were
significantly associated with both BMI and cognitive function.
Within these, we pinpointed five loci that reside in highly
significant regions: RHOA, BSN, MST1R, SLC39A8, and TUFM.
Notably, RHOA, BSN, and SLC39A8 have previously been
implicated in the association between cognitive function and BMI
(Xiang et al., 2022; Iyer et al., 2021; Zhu et al., 2023; Liu et al., 2023).
Importantly, to mitigate potential errors associated with sample
overlap, we employed both MTAG and CPASSOC methods, and
further investigated the SNPs discovered by MTAG in relation to
CPASSOC risk findings. The convergence of SNPs identified via
MTAG with those from CPASSOC analysis enhanced the reliability
of our results, reinforcing the validity of our findings.

In addition to the cross-trait meta-analysis, we integrated
GWAS data from GTEx and eQTLGen to identify shared risk genes
that might underlie the correlation between BMI and cognitive
function. Among these shared risk genes, TUFM and MST1R were
identified. Previous research by Lin J et al. has uncovered a novel
pathway for the regulation of mitochondrial autophagy, mediated
by PINK1 and its kinase substrate TUFM (Lin et al., 2020). TUFM
has been implicated in Alzheimer’s disease (AD) pathology by
regulating BACE1 translation, apoptosis, and Tau phosphorylation
(Zhong et al., 2021). Additionally, TUFM has been associated with
obesity (Lee et al., 2016; Gutierrez-Aguilar et al., 2012). MST1R,
on the other hand, has primarily been detected in various tumors,
including pancreatic cancer (Babicky et al., 2019), nasopharyngeal
carcinoma (Dai et al., 2016), prostate cancer (Batth et al., 2021), and
breast cancer (Millar et al., 2020). By the cross-trait analysis and
SMR analysis, TUFM and MST1R are identified to have a potential
relationship with both BMI and cognitive function, which indicates
a novel perspective on the shared genetic mechanisms that could
contribute to the co-occurrence of these conditions. This provides
a novel direction for future prevention and intervention strategies
targeting cognitive function decline in obese individuals.

In this study, MR analysis have provided a definitive causal
association between BMI and cognitive function, suggesting a

positive correlation (Mina et al., 2023). Our investigation revealed
a causal effect of BMI on cognitive function, with an inverse
relationship between BMI increase and the risk of cognitive
impairment onset, thus positioning BMI as a protective factor—
aligning with earlier research findings (Veronese et al., 2017; Siervo
et al., 2011; Grapsa et al., 2023; Aiken-Morgan et al., 2020).
Although we observed some correlation in GSMR analysis in the
opposite direction, we are unable to ascertain at this juncture
whether this relationship holds significance. These findings imply
that individuals with cognitive impairment might benefit from
increasing their BMI to mitigate the risk of disease progression.
However, the potential for BMI alterations among those already
experiencing cognitive impairment needs to be further explored.
Moreover, to evaluate the validity of our results, we adopted
multiple MR techniques in conjunction with standard MR
methodologies. The lower and weighted median approaches were
found to provide smaller effect estimates yet higher type I error
rates in comparison to the IVW method. Conversely, MR-Egger
regression produced less biased estimates across the board. The
GSMR method, which employs a generalized least squares strategy
for estimation, differs from the IVW approach. Given that the
causal relationship between BMI and cognitive function remained
significant across all three analytical methods, the observed effects
are considered plausible within the context of this study.

Utilizing the GTEx dataset, we conducted an extensive analysis
of the tissue-specific SNP genetic power enrichment concerning
the relationship between BMI and cognitive function via the
S-LDSC and MAGMA methods. Our investigation revealed eight
prevalent regions of enrichment, with the cerebral cortex emerging
as the predominant site. The suggestion is that BMI-related
alterations in the brain may precipitate common lesion areas,
potentially influencing brain structural changes that are linked to
BMI (Willeumier et al., 2011; Opel et al., 2021; Medawar and
Witte, 2022). Furthermore, evidence suggests that an overweight
BMI alters brain chemistry, thereby impacting cognitive function
(Xu et al., 2023; Asch et al., 2022). These findings underscore a
shared pathophysiological framework involving brain anatomy and
BMI in the realm of cognitive function. In particular, our study
highlighted significant enrichment for BMI and cognitive function
in the hippocampus, midbrain, and cerebral cortex. Previous
research has indicated that GABA neurons in the hippocampus
are integral to synaptic plasticity (He and Bausch, 2014), while
chronic activation of GABA cells in the midbrain has been shown
to ameliorate obesity induced by a high-fat diet in mice (Wang
et al., 2023). Conversely, inhibition of GABAergic transmission in
the cerebral cortex and hippocampus is associated with cognitive
impairments (Bast et al., 2017). Additionally, the loss of dopamine
neurons within the substantia nigra pars compacta is a hallmark
feature of Parkinson’s disease (PD) (Kamath et al., 2022). The
influence of leptin on GABA neurons in the cerebral cortex has also
been implicated in the prevention of obesity (Vong et al., 2011).
The role of NbML5 cells in the midbrain in the context of BMI
and cognitive function needs further investigation to elucidate its
mechanisms.

The present study offers several notable strengths. Firstly,
e meticulously identified genes linked with both BMI and
cognitive function through a rigorous cross-trait analysis and SMR
results. This approach significantly enhanced the methodological
robustness of our investigation. Secondly, to further ascertain
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FIGURE 4

Summary statistics-based Mendelian Randomization (SMR) analysis based on aggregated data. Candidate genes that exhibit shared associations with
BMI and cognitive function are found in (A) Brain cerebellar hemisphere, (B) Brain frontal cortex BA9, (C) Brain hypothalamus, (D) Brain nucleus
accumbens basal ganglia, and (E) Pituitary gland. The shade of green indicates the number of genes shared between the BMI and cognitive function
traits in each brain region.

the causal connection between BMI and cognitive function, we
incorporated GSMR into our analytical framework, as opposed
to the previous single MR approach to reinforce the reliability
of our findings. Lastly, we conducted detailed tissue and
cellular enrichment analyses for both conditions, providing a
comprehensive elucidation of the interplay between BMI and
cognitive function at the tissue-cell-gene level.

Meanwhile, we acknowledge the inherent limitations of our
research. Firstly, our findings are primarily drawn from European
populations, underscoring the need for future studies to broaden

their scope to encompass other ancestral groups. This expansion
is crucial for a comprehensive understanding of the biological
mechanisms governing the relationship between the two traits.
Secondly, due to the absence of detailed demographic information
on our study population, we were unable to assess disease
risk disparities across genders and ethnicities. Moreover, our
investigation did not explore the etiology of cognitive function,
indicating a requirement for larger GWAS datasets focused on
both BMI and cognitive function to corroborate our findings
across different ethnicities. Lastly, we did not explore whether
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similar associations exist between BMI and neurodevelopmental
disorders within younger populations, despite our results suggest
a causal link between BMI and cognitive function across various
age groups. Future studies should explore this potential connection,
as current literature suggests that children and adolescents with
autism spectrum disorder often exhibit higher BMI (Sammels et al.,
2022), altered prefrontal cortex GABA balance (Maier et al., 2022),
cognitive difficulties (Masedu et al., 2021), and challenges in social
functioning (Pino et al., 2020). It would be interesting to explore
them as well. Exploring these inter relationships could provide
valuable insights into the complex interplay between BMI and
neurodevelopmental conditions.

In summary, this is a comprehensive and systematic study
applying genome-wide association data to explore the causal
relationship and shared genetic architecture between BMI and
cognitive function. Our research leverages extensive GWAS
datasets and tissue-specific cell type expression data to present
new evidence suggesting a genetic correlation between BMI and
cognitive function.

5 Conclusion

In conclusion, this study has unveiled a negative correlation
between BMI and cognitive function across different age
populations, identifying TUFM and MST1R as novel genetic
markers that influence both BMI and cognitive function. This
critical discovery not only enriches our understanding of the
physiological underpinnings of both obesity and cognitive
decline, but also offers crucial insights for the development of
preventive strategies to counteract cognitive deterioration in
individuals with obesity.
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