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Objective: Age-related hippocampal atrophy is associated with memory loss 
in older adults, and certain hippocampal subfields are more vulnerable to 
age-related atrophy than others. Cardiorespiratory fitness (CRF) may be  an 
important protective factor for preserving hippocampal volume, but little is 
known about how CRF relates to the volume of specific hippocampal subfields, 
and whether associations between CRF and hippocampal subfield volumes are 
related to episodic memory performance. To address these gaps, the current 
study evaluates the associations among baseline CRF, hippocampal subfield 
volumes, and episodic memory performance in cognitively unimpaired older 
adults from the Investigating Gains in Neurocognition Trial of Exercise (IGNITE) 
(NCT02875301).

Methods: Participants (N = 601, ages 65–80, 72% female) completed 
assessments including a graded exercise test measuring peak oxygen 
comsumption (VO2peak) to assess CRF, cognitive testing, and high-resolution 
magnetic resonance imaging of the hippocampus processed with Automated 
Segmentation of Hippocampal Subfields (ASHS). Separate linear regression 
models examined whether CRF was associated with hippocampal subfield 
volumes and whether those assocations were moderated by age or sex. 
Mediation models examined whether hippocampal volumes statistically 
mediated the relationship between CRF and episodic memory performance. 
Covariates included age, sex, years of education, body mass index, estimated 
intracranial volume, and study site.
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Results: Higher CRF was significantly associated with greater total left (B = 5.82, 
p = 0.039) and total right (B = 7.64, p = 0.006) hippocampal volume, as well 
as greater left CA2 (B = 0.14, p = 0.022) and dentate gyrus (DG; B = 2.34, 
p = 0.031) volume, and greater right CA1 (B = 3.99, p = 0.011), CA2 (B = 0.15, 
p = 0.002), and subiculum (B = 1.56, p = 0.004) volume. Sex significantly 
moderated left DG volume (B = −4.26, p = 0.017), such that the association was 
positive and significant only for males. Total left hippocampal volume [indirect 
effect = 0.002, 95% CI (0.0002, 0.00), p = 0.027] and right subiculum volume 
[indirect effect = 0.002, 95% CI (0.0007, 0.01), p = 0.006] statistically mediated 
the relationship between CRF and episodic memory performance.

Discussion: While higher CRF was significantly associated with greater total 
hippocampal volume, CRF was not associated with all underlying subfield 
volumes. Our results further demonstrate the relevance of the associations 
between CRF and hippocampal volume for episodic memory performance. 
Finally, our results suggest that the regionally-specific effects of aging and 
Alzheimer’s disease on hippocampal subfields could be mitigated by maintaining 
higher CRF in older adulthood.
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Introduction

Aging is associated with progressive decline in the size of the 
hippocampus, a medial temporal lobe structure supporting episodic 
and relational memory processes (Burgess et al., 2002). Normative 
aging is associated with 1–2% annual decline in the size of the 
hippocampus starting around age 50–55 (Raz et  al., 2005), while 
individuals with mild cognitive impairment (MCI) or Alzheimer’s 
disease (AD) demonstrate more precipitous rates of deterioration 
(Jack et al., 1998). This decline in total hippocampal volume is related 
to the age-related decline in episodic memory, or memory of past 
events and experiences (Tulving, 2002; Head et al., 2008). Yet, the 
hippocampus is not a homogenous structure; it is made up of several 
primary subfields (CA1-4, dentate gyrus (DG), and subiculum), which 
have distinct structural and functional characteristics (Zeidman and 
Maguire, 2016; Paxinos and Mai, 2004).

Hippocampal subfields differentially support episodic memory 
processes (Dimsdale-Zucker et al., 2018; Kesner and Rolls, 2015). 
Evidence from both animals and humans suggests that the subfields 
play distinct but complementary roles in episodic memory. For 
example, CA3/DG supports pattern separation (Jonas and Lisman, 
2014; Yassa et al., 2011) and memory encoding (Hainmueller and 
Bartos, 2020; Hrybouski et al., 2019), whereas CA1 supports pattern 
completion (Lacy et al., 2011) and autobiographical memory retrieval 
(Bartsch et al., 2011). The subiculum has a number of functions but 
may be particularly important for spatial memory (de Melo et al., 
2023; O’Mara et al., 2009). Notably, these subfields undergo aging- and 
AD-related atrophy at different rates (Small et al., 2011; Adler et al., 
2018; Nadal et  al., 2020). For example, the CA1 and subiculum 
subfields shrink disproportionately in individuals with MCI and early 
AD, and this distinctive subfield atrophy pattern is associated with 
later conversion from MCI to AD (de Flores, De Flores et al., 2015).

Age-related hippocampal atrophy and its consequences for 
memory performance have led to a search for measures and 
approaches that could predict individual variability in hippocampal 
atrophy, as well as mitigate the rate of decline. One such factor is 

cardiorespiratory fitness (CRF), a physiological measure of aerobic 
capacity that influences risk for age-related cognitive decline and 
dementia (Tari et al., 2019), is associated with better episodic memory 
performance (Rigdon and Loprinzi, 2019; Hayes et al., 2014), and is 
modifiable by regular participation in aerobic physical activity (Lin 
et al., 2015). There have been a number of studies indicating that 
higher CRF is associated with larger total hippocampal volumes in 
older adults (Bugg et al., 2012; Erickson et al., 2009; Fletcher et al., 
2016; McAuley et al., 2011; Szabo et al., 2011), but there have been 
others that have failed to detect statistically significant associations 
(Cole et al., 2020; Dougherty et al., 2017; Engeroff et al., 2018; Honea 
et al., 2009; Niemann et al., 2014; Raichlen et al., 2020).

One possible reason for the heterogenous findings is that these 
prior studies have used approaches that focus on total hippocampal 
volume rather than subfield volumes. If some subfields are more 
sensitive to CRF than others, then aggregating across subfields to 
measure total hippocampal volume may mask significant associations 
between CRF and particular subfields. Results from rodent studies 
support the argument that the effects of aerobic exercise on 
hippocampal morphology are subfield-specific, with the most 
consistent evidence for effects on the volume of the DG via increased 
neurogenesis (Biedermann et al., 2016; Farmer et al., 2004; Pereira 
et  al., 2007), although the limited human literature on this is less 
consistent (Rosano et al., 2017; Rehfeld et al., 2017; Pani et al., 2021; 
Sakhare et al., 2021). To our knowledge, there has been only one other 
study in healthy older adults that examined the association between 
CRF and subfield volumes. Kern and colleagues demonstrated that in 
their sample (n = 34), higher CRF was associated with larger bilateral 
subiculum volume in females but not males (Kern et al., 2021).

In addition to subfield specificity, other factors such as sex and age 
might also explain heterogeneity within and between studies. Sex 
differences might modify the relationship between CRF and 
hippocampal volume metrics, possibly due to differences in 
glucometabolic and hypothalamic–pituitary–adrenal axis response to 
aerobic exercise (Baker et al., 2010), as well as the impact of changes 
in sex hormones in postmenopausal females, (Braden et al., 2017; 
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Erickson et al., 2005; Rehbein et al., 2021). Age might also moderate 
the associations between CRF and hippocampal volume. For example, 
one study found that age moderated the association between CRF and 
tissue density (Colcombe et al., 2003), suggesting that higher CRF 
might become more important for mitigating brain atrophy among 
the oldest older adults.

Collectively the evidence we have reviewed indicates that although 
there are known associations among age-related hippocampal atrophy, 
memory performance, and aerobic exercise or CRF, there is a 
significant gap in the literature regarding whether these findings are 
driven by underlying hippocampal subfields, and whether such 
associations may depend on sex or age. To address these gaps in the 
literature, we examined associations among CRF, hippocampal total 
and subfield volumes, and episodic memory in a large and well-
characterized sample of cognitively normal older adults. 
We hypothesized that higher CRF would be associated with larger 
total hippocampal volumes, and that the associations with underlying 
subfield volumes would be regionally-specific, such that CRF would 
be  associated with the volume of some subfields but not all. In 
addition, we hypothesized that associations between hippocampal 
subfield volumes and CRF would be moderated by both age and sex, 
such that the associations would be weaker in younger ages and in 
males. Lastly we hypothesized that the association between CRF and 
episodic memory would be mediated by hippocampal subfield volume.

Methods

Participants and procedure

Participants were cognitively unimpaired older adults who were 
enrolled in a randomized controlled trial of aerobic exercise 
(Investigating Gains in Neurocognition in an Intervention Trial of 
Exercise (IGNITE): NCT02875301, R01AG053952). Participants were 
enrolled on a rolling basis between 2017 and 2022 with recruitment 
of racially and ethnically underrepresented participants proportional 
to the demographic characteristics of each study site (Boston; Kansas 
City; Pittsburgh). Participants were eligible if they were 65–80 years 
old, able to walk without being limited by pain or use of walking 
devices, inactive (i.e., self-reported exercise that was less than 20 min, 
3 days per week, of structured moderate-to-vigorous exercise over the 
last 6 months), living in the community, able to undergo an MRI, and 
have no diagnosis of a neurological disease. We  performed 
comprehensive neuropsychological testing with consensus 
adjudication to exclude individuals with MCI and dementia, but given 
known limitations of neuropsychological testing and evaluation and 
the often variable definitions of MCI, it is possible that there were 
participants that were included that could be near the MCI range.

Participants were excluded if they met any of the following 
criteria: current diagnosis or treatment of a psychological disorder 
(e.g., clinical depression); history of major psychiatric illness (e.g., 
schizophrenia); current treatment for cancer; neurological condition 
or brain injury; Type I diabetes or uncontrolled Type II diabetes; 
alcohol or substance abuse within the last 5 years; current treatment 
for congestive heart failure, angina, uncontrolled arrhythmia, DVT, or 
other cardiovascular event; myocardial infarction, coronary artery 
bypass grafting, angioplasty, or other cardiac condition in the past 
year; regular use of an assisted walking device; MRI contraindications; 

not fluent in English; not medically cleared by primary care physician; 
engaging in >20 min on 3 days or more of structured moderate-to-
vigorous exercise per week [see Erickson et al. (2019)] for a detailed 
description of the eligibility criteria. The study was approved by the 
Institutional Review Board at each site (Pittsburgh: STUDY19110244; 
Kansas: STUDY00140896; Northeastern: 17–05-02) and all 
participants provided written informed consent before data collection.

Data for this analysis focus on baseline measurements of CRF, 
MRI, and cognitive testing, which were conducted on separate days 
within a maximum of 8 weeks of each other. Of the 648 participants 
who were enrolled and randomized, 641 completed a baseline MRI. Of 
the 641 with MRI data, 39 were excluded due to improper placement 
of the field of view for the T2-weighted MRI sequence, which 
prevented accurate hippocampal segmentation, and 1 was excluded 
due to an incidental finding in the hippocampal region. This resulted 
in 601 participants with usable MRI data for analysis.

Cardiorespiratory fitness

Participants completed a maximal graded exercise test to assess 
aerobic capacity following a modified Balke protocol (Balke and Ware, 
1959). After a brief warm-up session, including measurement of 
resting blood-pressure and resting electrocardiogram (ECG) review, 
the participant walked on a motor-driven treadmill at a pace between 
1.5–3.5 mph that resulted in a heart rate of approximately 70% of 
age-predicted maximal heart rate (APMHR), or a Rating of Perceived 
Exertion (RPE) of 11 on the Borg rating scale (Borg, 1982). Once the 
walking speed was chosen, the participant walked at that constant 
speed for the duration of the test with an incrementally increasing 
incline. The incline was increased in two-minute stages with a 2% 
increase in incline at each stage. Heart rate was continuously 
monitored via a 12 lead ECG along with blood pressure and RPE 
measured during the second minute of every stage. Oxygen 
consumption (VO2) was measured via exhaled air analyzed by 
metabolic carts (Parvo Medics TrueOne 2,400; COSMED Quark 
CPET) throughout the test. The highest level of VO2 (VO2peak) 
expressed relative to body weight (ml/kg/min) was used to represent 
CRF. The test was completed to volitional exhaustion or with symptom 
limitation. At test completion, a four-minute active cooldown was 
completed and followed by a four-minute resting cooldown. We also 
recorded whether the test met three of the four standard American 
College of Sports Medicine (ACSM) criteria for determining maximal 
CRF (American College of Sports Medicine, 2021): (1) Plateau in VO2 
between two or more workloads (increase <0.15 L/min or 2.0 mL/kg/
min during the last minute of corresponding workloads), (2) 
Respiratory Exchange Ratio (RER) ≥1.10, (3) Heart rate within 10 
beats of the APMHR (220-age), and (4) an RPE ≥17. Maximal effort 
is typically defined as achieving at least 3 out of these 4 criteria. The 
majority of participants in the study met the 3 out of 4 criteria (see 
Table 1). These procedures have been previously described (Erickson 
et al., 2019; Oberlin et al., in press).

Episodic memory composite

All participants completed a comprehensive neuropsychological 
battery during their baseline assessments. A confirmatory factor 
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analysis (CFA) was conducted to obtain latent factors reflecting five 
core cognitive domains: episodic memory, processing speed, working 
memory, executive function/attentional control, and a visuospatial 
factor. The details and results from this analysis have been described 
in a prior publication (Oberlin et al., in press). In short, the CFA 
demonstrated good model fit (χ2 = 685.99, df = 259, p < 0.001, 
χ2/df = 2.649, CFI = 0.945, TLI = 0.936, RMSEA = 0.05, SRMR = 0.05), 

and all factor loadings were statistically significant (p < 0.001). Within 
the episodic memory factor, factor loadings of tests ranged from 0.55–
0.74. The episodic memory composite factor included outcomes from 
the Brief Visuospatial Memory Test – Revised (BVMT) (Benedict 
et al., 1996), Hopkins Verbal Learning Test (HVLT) (Brandt, 1991), 
Picture Sequence (Dikmen et  al., 2014), MoCA delayed recall 
(Nasreddine et al., 2005), Paired Associates (Salthouse et al., 1996), 
and Logical Memory (Tulsky et al., 2003), and the summary statistics 
for each of these are reported in Table 2.

MRI acquisition and hippocampal 
segmentation

Magnetic resonance images were collected on a Siemens Prisma 
3 T scanner with a 64-channel head coil at two of the sites 
(University of Pittsburgh; Northeastern University) and on a 
Siemens Skyra 3 T scanner with a 32-channel head coil at the 
University of Kansas Medical Center. Images from a high-
resolution T1-weighted 3D MPRAGE (Magnetization Prepared 
Rapid Gradient Echo Imaging) sequence (0.8 × 0.8 × 0.8 mm 
voxels, 224 slices, 0.8 mm slice thickness, TR = 2400.0 ms, 
TE = 2.31 ms, flip angle = 8 degrees) and T2-weighted focal 
hippocampal sequence [0.4 × 0.4 × 2.0 mm voxels, 30 slices, 
2.0 mm slice thickness, TR = 8830.0 ms, TE = 78 ms, flip 
angle = 150 degrees, turbo spin echo (TSE)] were collected for 
hippocampal subfield segmentation. All MRI sequences across all 
sites were standardized and monitored for quality assurance on a 
weekly basis for the duration of the study.

To segment the subfields of the hippocampus, we  used the 
Automatic Segmentation of Hippocampal Subfields (ASHS) software 
package, which uses multi-atlas segmentation and machine learning 
techniques to identify and label the subfields of the hippocampus and 
medial temporal lobe cortices (Yushkevich et al., 2015). ASHS requires 
a T1- and T2-weighted image and automatically labels the main 
hippocampal subfields on each participant’s T2-weighted image based 
on the Penn Memory Center 3 T ASHS atlas. For each participant, 
we used ASHS to generate measures of the subfields that make up the 

TABLE 1 Sample characteristics.

Measure N = 601

Age (mean, SD) 69.7 (3.7)

Sex (n, %)

Male 167 (27.8)

Female 434 (72.2)

Race (n, %)

Caucasian/White 459 (76.4)

African American/Black 113 (18.8)

Bi-racial 10 (1.7)

Other 9 (1.5)

Asian 9 (1.5)

Native Hawaiian or other Pacific 

Islander
1 (0.2)

Years of Education (mean, SD) 16.3 (2.3)

BMI (kg/m2) (mean, SD) 29.8 (5.7)

CRF (VO2peak, ml/kg/min) (mean, SD) 21.7 (5.1)

CRF testing criteria (% to reach ¾) 80

Plateau in VO2 (%) 90

Max RER ≥ 1.1 (%) 47

Max RPE ≥ 17 (%) 90

HR within 10 of APMHR (%) 80

BMI, body mass index; CRF, cardiorespiratory fitness; RER, respiratory exchange ratio; RPE, 
rating of perceived exertion; HR, heart rate; APMHR, age-predicted maximal heart rate.

TABLE 2 Cognitive tasks and outcomes for the episodic memory composite.

Cognitive task Outcomes Range Mean (SD)

Logical memory (VCAP)
Immediate recall total score 10–66 43.43 (9.03)

Delay recall total score 0–48 27.44 (7.01)

Paired associates (VCAP)
Immediate recall mean score 0–6 2.12 (1.41)

Delay recall mean score 0–6 1.43 (1.39)

MoCA delayed recall Delayed free recall 0–5 3.02 (1.55)

Picture sequence Total raw score 0–31 10.37 (5.93)

Hopkins verbal learning test (HVLT)

Total immediate recall raw score 12–36 26.00 (4.49)

Delayed recall (trial 4) raw score 1–12 9.15 (2.11)

Recognition discrimination index score 4–12 10.62 (1.44)

Brief visuospatial memory test - revised 

(BVMT)

Total immediate recall raw score 3–36 21.10 (6.42)

Delayed recall raw score 1–12 8.66 (2.53)

Range column depicts the lowest and highest scores obtained by participants on each cognitive task.
VCAP, version of the test that was adapted by Salthouse and colleagues as part of the Virginia cognitive aging project; MoCA, montreal cognitive assessment.
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hippocampus proper: left and right CA1, left and right CA2, left and 
right CA3, left and right DG, and left and right subiculum. Of note, 
ASHS includes the hilus—which some consider a separate subfield, 
CA4—as part of the DG subfield. We then calculated measures of total 
left and right hippocampal volume by adding the subfields together. 
Each participant’s hippocampal segmentation results were visually 
examined to ensure that no major errors occurred during segmentation.

Rather than adjust each of our hippocampal variables for 
intracranial volume, we covaried for estimated intracranial volume in 
our statistical models. Estimated intracranial volume was calculated 
with FreeSurfer (version 6.0), which uses an atlas-based spatial 
normalization procedure to estimate the size of the intracranial vault 
(Buckner et al., 2004).

Covariates

Covariates included age, sex, years of education, body mass index 
(BMI), estimated intracranial volume, and study site. Age, sex, and 
years of formal education were self-reported. Sex was either male or 
female, and no participants in the study identified as transgender or 
nonbinary. BMI (kg/m2) was calculated with height and weight 
collected using a calibrated stadiometer and scale at each site. 
Estimated intracranial volume was calculated with FreeSurfer (version 
6.0) (Buckner et  al., 2004). Study site (Pittsburgh, Kansas, or 
Northeastern) was included to account for potential site differences.

Statistical analyses

All statistical analyses were conducted in R Studio (version 
1.2.1335). Descriptive statistics were calculated, and CRF, hippocampal 
volume, and episodic memory variables were tested for normality of 
distribution. Independent samples t-tests (for continuous variables) 
and chi-square tests (for categorical variables) were conducted to 

assess whether there were significant differences between males and 
females on any demographic characteristics.

For Aim 1, we tested separate linear regression models to examine 
the association between CRF and total hippocampal volume, CA1 
volume, CA2 volume, CA3 volume, DG volume, and 
subiculum volume.

For Aim 2, we tested whether any associations between CRF and 
hippocampal volumes were statistically moderated by age (entered as 
a continuous variable) or sex (entered as a binary variable) by testing 
CRF × age and CRF × sex interaction terms in separate regression 
models for each hippocampal variable. Simple slopes were calculated 
for all statistically significant interactions. Interactions with age as the 
continuous moderator were probed at one standard deviation (SD) 
units above and below the mean.

For Aim 3, we  first tested whether CRF was associated with 
episodic memory performance using a linear regression model. 
We then tested separate mediation models to examine whether the 
association between CRF and episodic memory performance was 
mediated by the hippocampal volume variables. Statistical significance 
of the indirect paths was assessed by bootstrapping (5,000 iterations), 
with 95% confidence intervals (CIs) generated using the bias-corrected 
and accelerated method in the Causal Mediation Analysis package in 
R (Tingley et al., 2014).

Age, sex, BMI, education, and study site were included as 
covariates in all models. Intracranial volume was included as a 
covariate in all models examining hippocampal volume. Left and right 
hippocampal volume variables were examined separately (e.g., 
separate variables for left CA1 and right CA1). To adjust for multiple 
comparisons, we used the Benjamini-Hochberg correction with a false 
discovery rate (FDR) of 0.20 which was selected due to the novel and 
relatively exploratory nature of these analyses (McDonald, 2014). 
Results that survive FDR correction for multiple comparisons are 
reported as unstandardized coefficients (B) with uncorrected p-values. 
Standardized coefficients (β) are reported alongside the 
unstandardized results in Table 3.

TABLE 3 Associations between CRF and hippocampal volumes.

Outcome B (β) SE t p

Predictor: CRF

Total left 5.82 (0.10) 2.80 2.07 0.039*

Left CA1 2.63 (0.08) 1.60 1.65 0.100

Left CA2 0.14 (0.13) 0.06 2.30 0.022*

Left CA3 0.11 (0.03) 0.17 0.65 0.514

Left DG 2.34 (0.12) 1.09 2.16 0.031*

Left subiculum 0.58 (0.05) 0.59 0.98 0.326

Total right 7.64 (0.14) 2.77 2.76 0.006*

Right CA1 3.99 (0.13) 1.57 2.55 0.011*

Right CA2 0.15 (0.17) 0.05 3.05 0.002*

Right CA3 0.12 (0.00) 0.20 0.59 0.557

Right DG 1.82 (0.09) 1.08 1.68 0.094

Right subiculum 1.56 (0.14) 0.54 2.90 0.004*

Unstandardized (B) and standardized (β) regression coefficients reflect the effect of CRF on each outcome variable. Hippocampal volume variables are measured in mm3, and CRF is VO2peak in 
ml/kg/min.
*Statistically significant at uncorrected p < 0.05 and FDR < 0.2.
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Results

Participants

Means and standard deviations of demographic variables and 
cardiorespiratory fitness are presented in Table 1. The 601 participants 
were, on average, 69.7 years old (± 3.7), female (72%), White (76%), 
with 16.3 years (± 2.2) of education. Average BMI would classify the 
sample as being overweight (29.8 ± 5.7), and average CRF (i.e., 
VO2peak) would indicate that our participants were generally low-fit 
(21.7 ± 5.1) (American College of Sports Medicine, 2021), although 
CRF was normally distributed and ranged from 10.1–39.6 mL/kg/min. 
The females in this sample were slightly younger, less educated, less fit, 
and more racially diverse than the males (see Supplementary Table 1).

Associations between CRF and 
hippocampal volumes

Separate linear regression models examined the association 
between CRF and left and right total hippocampal volume, left and 
right CA1 volume, left and right CA2 volume, left and right CA3 
volume, left and right DG volume, and left and right subiculum 
volume. Results are presented in Table  3. Broadly, all regression 
coefficients were positive, such that higher CRF was associated with 
greater hippocampal subfield volumes. Higher CRF was significantly 
associated with greater total left (B = 5.82, p = 0.039) and total right 
hippocampal volume (B = 7.64, p = 0.006). However, consistent with 
our hypotheses, we found that the associations were only significant 
for certain subfields. For the left hippocampus, higher CRF was 
significantly associated with greater CA2 volume (B = 0.14, p = 0.022) 
and DG volume (B = 2.34, p = 0.031). For the right hippocampus, 
higher CRF was significantly associated with greater CA1 volume 
(B = 3.99, p = 0.011), CA2 volume (B = 0.15, p = 0.002), and subiculum 
volume (B = 1.56, p = 0.004) (Figure  1). These results remained 
statistically significant after correction for multiple comparisons.

CRF × age interactions

Before correction for multiple comparisons, there was one 
significant CRF × age interaction for total left hippocampal volume 
(B = −1.17, p = 0.033). The simple slopes are depicted in Figure 2, 
such that the association was positive and statistically significant for 
those at the younger end of the age spectrum (−1 SD or ~ 66 years; 
estimate = 9.76, SE = 3.35, p = 0.004), but not statistically significant 
for those at the older end of the age spectrum (+1 SD or ~ 73.5; 
estimate = 1.05, SE = 3.58, p = 0.769) in this sample. However, the 
interaction did not meet criteria for statistical significance after 
correction for multiple comparisons and should be interpreted with 
caution. No other interactions with age were statistically significant.

CRF × sex interactions

There was a statistically significant CRF × sex interaction for left 
DG volume (B = −4.26, p = 0.017), which remained after correcting 
for multiple comparisons. The simple slopes are depicted in Figure 2, 

such that the association between CRF and DG volume was positive 
and statistically significant for males (estimate = 4.72, SE = 1.46, 
p = 0.001), but not for females (estimate = 0.46, SE = 1.34, p = 0.731). 
No other interactions with sex were statistically significant.

Given the lower range of CRF in females (10.1–34.1 mL/kg/min) 
compared to males (11.9–39.6 mL/kg/min) in our sample, 
we conducted a sensitivity analysis removing the seven males with a 
CRF greater than 34.1 mL/kg/min. With these participants removed, 
the CRF × sex interaction for left DG volume was trending but no 
longer statistically significant (B = −3.24, p = 0.088).

Association between CRF and episodic 
memory

In replication of the findings with the full baseline sample 
(N = 648) reported by Oberlin et al. (in press), the association between 
CRF and episodic memory was positive and statistically significant, 
such that higher CRF was associated with better episodic memory 
performance (B = 0.018, p = 0.005).

Mediation analyses

Mediation analyses examined whether hippocampal volumes 
statistically mediated the association between CRF and episodic 
memory. Bootstrap analyses (bias-corrected and accelerated method) 
based on 5,000 resamples indicated statistically significant mediation 
for total left hippocampal volume [indirect effect = 0.002, 95% CI 
(0.0003, 0.00), p = 0.028], and right subiculum volume [indirect 
effect = 0.002, 95% CI (0.0007, 0.01), p = 0.006]. (Figure 3). These 
results remained significant after correction for multiple comparisons. 
No other hippocampal volumes were significant mediators.

Discussion

Consistent with our predictions, we demonstrated that higher 
CRF was significantly associated with larger left and right total 
hippocampal volume, but that these associations were specific to 
certain subfields of the hippocampus. For the left hippocampus, 
higher CRF was significantly associated with larger CA2 and DG 
volumes. For the right hippocampus, higher CRF was significantly 
associated with larger CA1, CA2, and subiculum volumes. Further, 
we found that sex moderated the association between CRF and left 
DG volume, such that the association was positive and statistically 
significant for males, but not for females. Finally, we demonstrated 
that total left hippocampal volume and right subiculum volume 
statistically mediated the association between CRF and episodic 
memory performance.

Higher CRF has been previously associated with larger total 
hippocampal volume (Bugg et al., 2012; Erickson et al., 2009; Fletcher 
et al., 2016; McAuley et al., 2011; Szabo et al., 2011), but some studies 
have failed to find an association (Cole et al., 2020; Dougherty et al., 
2017; Engeroff et al., 2018; Honea et al., 2009; Niemann et al., 2014; 
Raichlen et al., 2020). We hypothesized that this variability between 
studies might be explained by underlying heterogeneity within the 
hippocampal structure, such that only some subfields are associated 

https://doi.org/10.3389/fnagi.2024.1466328
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Ripperger et al. 10.3389/fnagi.2024.1466328

Frontiers in Aging Neuroscience 07 frontiersin.org

with CRF. Our results support our hypothesis: only half of the 
subfields we examined were significantly associated with CRF. Despite 
this regional specificity, total hippocampal volume was still 
significantly associated with CRF in our sample. However, our results 
suggest that a non-significant association with total hippocampal 

volume in prior studies may be masking significant associations with 
underlying subfield volumes. Thus, examining hippocampal subfield 
volumes may offer more precision when characterizing the 
relationship between CRF and hippocampal morphology, and future 
studies might benefit from including subfield volumes in their analyses.

FIGURE 1

Plots are arranged in order of subfield size (CA1 is largest, CA2 is smallest). Volume is shown in mm3, and CRF is VO2peak in ml/kg/min. *Statistically 
significant at uncorrected p < 0.05 and FDR < 0.2.
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Our study demonstrated that higher CRF was significantly 
associated with larger right CA1 and subiculum volume, providing 
some support for the idea that CRF might help preserve the same 
subfields which are especially vulnerable to AD-related atrophy (Small 
et  al., 2011; de Flores, De Flores et  al., 2015). These results are 
consistent with studies demonstrating that smaller hippocampal 
volume is predictive of AD (McRae-McKee et al., 2019), and that 
higher CRF is associated with a reduced risk of AD (Tari et al., 2019). 
It will be  important for future studies to examine whether the 
reduction in AD risk with higher CRF is mediated by variation in CA1 
and subiculum volumes. Our results demonstrated that higher CRF 

was significantly associated with larger left DG volume. This aligns 
with one study of young adults (aged 18–35) found that higher CRF 
was associated with greater combined CA3 and DG volume, and that 
CA3/DG volume increased after a three-month aerobic exercise 
intervention (Nauer et  al., 2020). Whether relationships among 
changes in CRF and hippocampal subfields are observed across the 
one-year IGNITE intervention remains to be determined.

It is important to speculate about the possible mechanisms 
underlying these associations between CRF and subfield volume. 
Studies in rodents indicate that exercise-induced change to 
hippocampal morphology is likely driven by increased secretion of 

FIGURE 3

*Statistically significant at uncorrected p < 0.05 and FDR < 0.2. **Statistically significant at uncorrected p < 0.01 and FDR < 0.2.

FIGURE 2

CRF × Age interaction is not significant after correction for multiple corrections. *Statistically significant at uncorrected p < 0.05 and FDR < 0.2.
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neurotrophic substances that promote neurogenesis [e.g., Brain-
Derived Neurotrophic Factor (BDNF)], angiogenesis (i.e., increase in 
vascularization), and increased synaptic plasticity, or synaptogenesis 
(i.e., increased ability to create new connections between neurons) 
(Ferrer-Uris et al., 2022). This literature is mirrored by histological 
studies in rodents (Kuhn et al., 1996; Seib and Martin-Villalba, 2014; 
Ingraham et al., 2008) and humans (Boldrini et al., 2018; Moreno-
Jiménez et  al., 2019) indicating that aging results in decreased 
neurogenesis and angiogenesis in the hippocampus. Although our 
results in this study are cross-sectional, and CRF is distinct from 
exercise, it might be that the physical activity required to maintain 
higher levels of CRF in older adulthood is neuroprotective and helps 
counteract the effects of aging on hippocampal morphology.

Age and sex could be  important moderators of the association 
between CRF and hippocampal volume (Barha et al., 2019; Barha and 
Liu-Ambrose, 2018; Colcombe et al., 2003). We found that age moderated 
the association between CRF and total left hippocampal volume in 
uncorrected models, though this was no longer significant after adjusting 
for multiple comparisons. There was a narrower range of CRF in the older 
adults in our sample (see Supplementary Table 2), so it is possible that 
we were underpowered to detect an association between CRF and total 
left hippocampal volume in the oldest adults because of that restricted 
range. We found that sex moderated the association between CRF and left 
DG volume, such that the association was positive and significant for 
males but not females. Prior studies have found sex differences in the 
expression of BDNF as a result of aerobic exercise, with some studies 
reporting that males experience greater exercise-related increases in 
BDNF (Szuhany et al., 2015), while others have found the opposite (Barha 
et al., 2017). Countless studies report sex differences in the relationship 
between CRF or exercise and brain health, yet few are able to pinpoint 
specific mechanisms (Barha et al., 2019; Barha and Liu-Ambrose, 2018). 
In our sample, since males were fitter on average and had a wider range 
of CRF, we conducted a sensitivity analysis removing the males with a 
CRF that was higher than any of the females. These results indicated that 
the CRF × sex interaction for left DG volume was driven by males with 
higher CRF. Given the narrower range of CRF in the females in our 
sample, we  may have been underpowered to detect a significant 
association between CRF and left DG volume in females. It will 
be important to examine sex differences in the context of the intervention, 
where we will test whether increasing CRF will increase hippocampal 
subfield volumes, and whether the effects differ between males 
and females.

We also demonstrated that the associations between CRF and 
hippocampal volume were behaviorally relevant. That is, total left 
hippocampal volume and right subiculum volume statistically mediated 
the relationship between CRF and episodic memory performance. These 
results suggest that CRF-related variation in hippocampal volume could 
be a possible mechanism by which CRF relates to episodic memory 
performance in late adulthood. Furthermore, the fact that there was some 
regional-specificity of these mediating patterns suggests that associations 
with episodic memory are relatively specific, and that the behavioral 
relevance of the hippocampal associations needs to be further examined 
in other studies.

We also report some hemispheric differences in our associations. This 
supports numerous prior studies reporting that higher CRF is associated 
with larger volume of the left hippocampus but not the right (Aghjayan 
et al., 2020; Esteban-Cornejo et al., 2017; Makizako et al., 2013; Nauer 
et al., 2020; Stillman et al., 2018). Several studies have also documented 
aging- and AD-related asymmetry in the volume of the hippocampus, 

where the left hippocampus tends to be more vulnerable and associated 
with cognitive impairment (Ardekani et al., 2019; de Toledo-Morrell et al., 
2000; Shi et al., 2009; Vijayakumar and Vijayakumar, 2012). In our study, 
CRF was associated with both total left and right hippocampal volume, 
but the underlying subfield associations were different across hemispheres 
(left CA2 and DG, versus right CA1, CA2, and subiculum). In addition, 
our significant moderation effect was in the left hippocampus, and our 
mediation effects were significant for left total volume and right 
subiculum volume. Given that aging- and AD-related atrophy may 
be asymmetrical, it is plausible that CRF-related volume differences may 
be also, and that these CRF-associated differences in left versus right 
hippocampal volume may have clinical significance. It will be important 
to determine whether these hemispheric differences are maintained in the 
context of an exercise intervention.

Although our findings were statistically significant and associated 
with episodic memory performance, effect sizes were small. Nonetheless, 
in our standardized models the association of CRF with hippocampal 
volumes was approximately half the effect size of age—which is considered 
the most significant risk factor for hippocampal atrophy—indicating that 
even though the effect size for the association between CRF and 
hippocampal volumes is considered small, it could still be  clinically 
meaningful. However, because other studies investigating CRF and total 
hippocampal volume have demonstrated larger effect sizes, it may be that 
our sample had several unique characteristics that diminished effect sizes 
of the associations. In particular, IGNITE excluded people that fell toward 
the cognitive impairment range while targeting physically inactive, yet 
healthy adults, which could have led to a sample in which the relationship 
between CRF and hippocampal volume was weaker than in other, more 
inclusive, studies.

Another possibility is our somewhat restricted range of 
CRF. Although we were able to detect significant associations between 
CRF and hippocampal volumes, our participants generally fell into the 
low-fit range and were sedentary. It is possible that with greater 
variability in CRF, the effect sizes for these associations would have 
been larger. However, another possibility is that the benefits to 
hippocampal volumes plateau at higher CRF levels and it may be that 
a loss of hippocampal volume is more related to lower CRF levels, as 
is represented in our sample. It is important to note that although 
we refer to lower and higher CRF, we use the term “higher CRF” as a 
relative term within our sample. In other words, the participants at the 
upper range of CRF were higher fit than those at the lower range, but 
they were not high-fit individuals relative to the population.

The results of the current study should be  interpreted in the 
context of several limitations. The sample was highly educated, mostly 
female, and largely White, although it is important to note that the 
racial demographics matched that of the recruitment cities (Pittsburgh, 
Kansas City, and Boston). This was a cross-sectional study, so 
we cannot draw causal conclusions from these reported associations. 
It will be important to examine whether exercise interventions also 
show selective effects on certain hippocampal subfields, and whether 
those are the same subfields that are associated with CRF. There could 
be  subtle variations in subfield segmentation that depend on the 
segmentation algorithms that were used and which are always 
evolving and improving. In particular, automated segmentation 
algorithms may be less accurate at delineating subfields within the 
hippocampal head and tail due to the greater anatomical complexity 
of those areas compared to the hippocampal body (Yushkevich et al., 
2015). In addition, a T2-weighted TSE sequence provides high 
in-plane resolution, but the through-plane resolution is relatively 
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coarse, potentially resulting in some blurred edges along the long-axis 
of the hippocampus. Nonetheless, we  visually examined each 
participant’s segmentation for accuracy, and the only segmentations 
that were inaccurate—and therefore excluded from analyses—were 
those with only a partial hippocampal image due to incorrect 
placement of the field of view during the scan. Thus, we  can 
be  confident of the accuracy of the segmentations reported here. 
Future research should continue to examine the association between 
CRF and hippocampal subfields as new MRI acquisition protocols, 
segmentation algorithms, and quality assurance procedures are 
validated (Canada et al., 2023; Wisse et al., 2017).

Despite these limitations, the current study had a number of 
important strengths. We used a high-resolution T2-weighted focal 
hippocampal sequence, which allowed us to reliably segment the 
hippocampus into its subfields in a sample (N = 601) that is several 
times larger than previous studies examining relationships between 
CRF and hippocampal volume. Participants all underwent a graded 
exercise test with objective measurement of VO2peak, which is the gold 
standard for CRF assessment and is not commonly measured in 
studies of this size. The composite measure of episodic memory 
performance was derived from outcomes of six different 
neuropsychological tests, providing higher reliability than outcome 
measures from a single assessment, and was validated with a 
confirmatory factor analysis (Oberlin et al., in press). The quality of 
these assessments and large sample size allowed us to clarify the 
relationships among CRF, hippocampal subfield volumes, and episodic 
memory performance in healthy older adults.

Conclusion

This study demonstrated that higher CRF was significantly 
associated with total left and total right hippocampal volume, but 
that these associations were specific to the left CA2 and DG, and the 
right CA1, CA2, and subiculum. These novel findings suggest that 
associations with CRF are regionally-specific within the 
hippocampus, and that total hippocampal volume might be  an 
incomplete metric for characterizing the relationship between CRF 
and hippocampal morphology. Further, we demonstrated that sex 
was a significant moderator, and that our CRF-hippocampal volume 
findings have clear implications for episodic memory performance. 
Finally, our findings provide the first evidence that the associations 
between CRF and hippocampal subfields may be asymmetrical (i.e., 
the associations differ by hemisphere). We  conclude that 
hippocampal measurement precision—by segmenting the 
hippocampus into its subfields, and keeping left and right 
hippocampi separate—is important for clearly interrogating the 
associations between CRF and hippocampal morphology. 
Collectively, these results provide the most precise and definitive 
evidence to date that the association between CRF and hippocampal 
volume in older adults is regionally-specific, moderated by sex, and 
has clinical relevance for episodic memory.
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