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Objective: Mild Cognitive Impairment (MCI) is a recognized precursor to 
Alzheimer’s Disease (AD), presenting a significant risk of progression. Early 
detection and intervention in MCI can potentially slow disease advancement, 
offering substantial clinical benefits. This study employed radiomics and machine 
learning methodologies to distinguish between MCI and Normal Cognition (NC) 
groups.

Methods: The study included 172 MCI patients and 183 healthy controls from 
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, all of whom 
had 3D-T1 weighted MRI structural images. The cerebellar gray and white matter 
were segmented automatically using volBrain software, and radiomic features 
were extracted and screened through Pyradiomics. The screened features were 
then input into various machine learning models, including Random Forest 
(RF), Logistic Regression (LR), eXtreme Gradient Boosting (XGBoost), Support 
Vector Machines (SVM), K Nearest Neighbors (KNN), Extra Trees, Light Gradient 
Boosting Machine (LightGBM), and Multilayer Perceptron (MLP). Each model was 
optimized for penalty parameters through 5-fold cross-validation to construct 
radiomic models. The DeLong test was used to evaluate the performance of 
different models.

Results: The LightGBM model, which utilizes a combination of cerebellar gray 
and white matter features (comprising eight gray matter and eight white matter 
features), emerges as the most effective model for radiomics feature analysis. 
The model demonstrates an Area Under the Curve (AUC) of 0.863 for the 
training set and 0.776 for the test set.

Conclusion: Radiomic features based on the cerebellar gray and white matter, 
combined with machine learning, can objectively diagnose MCI, which provides 
significant clinical value for assisted diagnosis.
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Introduction

Alzheimer’s disease (AD) is a chronic neurodegenerative disorder 
and the most prevalent form of dementia, characterized by progressive 
memory impairment accompanied by at least one of the following 
symptoms: aphasia, apraxia, agnosia, or executive dysfunction (Soria 
Lopez et al., 2019). The onset and progression of AD are continuous 
processes, with Mild Cognitive Impairment (MCI) considered a 
pre-clinical stage of AD (Anderson, 2019; Jongsiriyanyong and 
Limpawattana, 2018), posing a high risk of transition to AD (Jacobs 
et al., 2018). Therefore, early diagnosis and timely treatment of MCI 
can delay disease progression, offering significant clinical value in 
improving prognosis (Lim, 2016; Suh et al., 2020).

Traditionally, the cerebellum has been viewed as a crucial 
structure for orchestrating motor functions, with little to no 
association with AD onset or progression (Grodd et al., 2005; Hoenig 
et al., 2018). However, emerging studies suggest that beyond its role 
in fine motor control, the cerebellum may also contribute to cognitive 
processes and emotional expression (Schmahmann, 2010; Tedesco 
et al., 2011; Li et al., 2023). Concurrently, recent histopathological 
investigations have revealed neurodegenerative and neuropathological 
alterations in the cerebellum of AD patients. These changes encompass 
amyloid plaque accumulation, notable reductions in Purkinje cell 
density, and atrophy affecting both the molecular and granular cell 
layers. Furthermore, individuals with cerebellar damage often present 
with a range of cognitive impairments, collectively termed Cerebellar 
Cognitive Affective Syndrome (CCAS). This syndrome encompasses 
executive dysfunction, visual–spatial deficits, language processing 
challenges, and emotional regulation disturbances, reinforcing the 
proposition that the cerebellum is implicated in cognitive function 
modulation (Muenchhoff et al., 2014; Yang et al., 2020).

fMRI is a non-invasive imaging technique that measures blood 
oxygen level-dependent signals during brain activity, namely changes 
in cerebral blood flow. This helps reveal the connections and activity 
patterns between different regions of the brain, which is crucial for 
studying the pathophysiological mechanisms of AD and MCI. Research 
has shown that compared to healthy elderly controls, increased 
functional magnetic resonance imaging activity in the hippocampus 
and/or entorhinal cortex at baseline in MCI patients may indicate a 
higher likelihood of cognitive decline (Dickerson et al., 2004). Studies 
by Fanyu Tang and others have demonstrated through fMRI methods 
that cortical-cerebellar functional connectivity (FC) is significantly 
impaired and differently distributed in MCI and AD patients (Tang 
et al., 2021). However, fMRI also has drawbacks such as long scanning 
times, poor reproducibility, and numerous artifacts. In contrast, 
structural Magnetic Resonance Imaging (sMRI) has excellent 
reproducibility, which benefits long-term follow-up studies and 
monitoring disease progression or treatment effects. Hippocampal or 

medial temporal lobe atrophy measured on sMRI has been incorporated 
into the National Institute on Aging and the Alzheimer’s Association 
(NIA-AA) recommendations for the diagnosis of MCI caused by 
Alzheimer’s disease as a marker of neuronal damage (Albert et al., 2011).

Early identification of MCI is beneficial for timely intervention 
and treatment. Although clinical assessment can diagnose MCI, it may 
not be sensitive to early subtle changes. There exists a pressing need for 
objective and highly sensitive diagnostic methods in clinical settings. 
Radiomics is the process of extracting numerous imaging features that 
delineate disease characteristics from medical images through high-
throughput analysis (Lambin et al., 2017). The integration of radiomics 
with machine learning represents a significant advancement in the 
field of medical image analysis. This combination provides powerful 
tools and methods for improving the speed and precision of diagnoses, 
developing personalized treatment plans, and conducting in-depth 
research on complex diseases (Sharma et al., 2023; Yang et al., 2023).

Presently, the primary focus of radiomics and machine learning in 
AD is the hippocampus (Zhang et al., 2011; Luk et al., 2018), which has 
demonstrated commendable accuracy rates. Nonetheless, research 
concerning the cerebellum remains comparatively limited. Although 
the technical advantages of using cerebellar characteristics to assist in 
the diagnosis of MCI are not yet clear, we want to explore the potential 
abnormalities in patients with MCI from this new perspective of the 
cerebellum. Therefore, in this study, we extracted radiomic features 
based on cerebellar gray and white matter, and subsequently established 
a model to facilitate the rapid differentiation between MCI and HC. In 
this study, we presume that the radiomic features derived from both 
the cerebellar gray and white matter possess consistent diagnostic 
efficacy for MCI. By utilizing model visualization techniques, we aim 
to further evaluate and compare their respective importance.

Materials and methods

Subjects

All sample data for this study were obtained from the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI; http://adni.loni.usc.edu/) 
database. Established in 2003, ADNI primarily aims to monitor the 
progression of MCI and AD by incorporating various 
neuropsychological assessments, neuroimaging techniques, and other 
biomarkers. We chose the data from ADNI 1, setting the filtering 
criteria to 3D T1WI image data obtained from baseline period scans 
of MCI and CN. This study encompassed a total of 355 instances of 
3D-T1 weighted MR structural images, which included 172 MCI 
patients and 183 healthy individuals. All participants from baseline 
period were subjected to stringent exclusion criteria. The statistical 
information related to this sample data was presented in Table 1. As 

TABLE 1 Demographic data of the MCI and HC groups.

HC (n  =  183) MCI (n  =  172) Statistic p

Age/year 76.00 (73.00, 79.00) 76.00 (71.00, 81.00) Z = −0.17 0.862

Sex, n (%) χ2 = 14.44 <0.001

Male 88 (48.09) 117 (68.02)

Female 95 (51.91) 55 (31.98)

HC, Healthy controls; MCI, Mild cognitive impairment; Z, Mann–Whitney test; χ2, Chi-square test.
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per the ADNI protocol, the diagnostic criteria for MCI should include: 
(a) a subjective report of memory concerns, objective memory loss, 
absence of dementia, and preserved daily activities; (b) a Mini-Mental 
State Examination (MMSE) score of ≥24. Further details regarding the 
diagnostic criteria can be found on the ADNI website.

Image preprocessing

For all participants, image acquisition was performed using the 
3D-T1-MPRAGE or equivalent protocols with slimly different 
resolutions was used. The ADNI website provides all detailed imaging 
parameters. For scanner 1 (Siemens Medical Solutions, 3.0T), 
scanning parameters are as follows: repetition time (TR) = 2300.0 ms, 
echo time (TE) = 3.0 ms, matrix = 240 × 256 × 176. For scanner 2 
(General Electric Healthcare, 3.0 T), scanning parameters are: 
TR = 7.7–7.0 ms, TE = 3.1–2.8 ms, matrix = 256 × 256 × 196. For scanner 
3 (Philips Medical Systems, 3.0 T), Mr. imaging data were acquired 
with the following parameters: TR = 6.8 ms, TE = 3.1 ms, 
matrix = 256 × 256 × 170. The slice thickness for the three different 
scanners was either 1.0 or 1.2 mm, with a slice gap of 0 mm.

Image preprocessing and radiomics feature 
extraction

Before extracting MRI radiomics features, all data undergo 
preprocessing, adhering to the Image Biomarker Standardization 
Initiative (IBSI) (Zwanenburg et al., 2020). The specific steps of image 
preprocessing are as follows:

 1 Format conversion: Use dcm2niix from the MRIcron1 software 
to convert MRI images from dicom format to Neuroimaging 
Informatics Technology Initiative (NIFTI, nii) format for 
subsequent processing.

 2 Segmentation: Automated segmentation of the cerebellum is 
performed using volBrain,2 a powerful high-precision 
automated brain segmentation tool, which can extract white 
matter and gray matter of the cerebellum. The exclusive CERES 
is an automatic segmentation and extraction of white matter 
and gray matter in the cerebellum from MRI.

 3 Image normalization: Prior to feature extraction, it is crucial to 
resample the MRI images using Python in order to standardize 
voxel sizes to 1 × 1 × 1 mm3. Subsequently, grayscale values 
should be discretized with a bin width of 25.

After image preprocessing is completed, use Pyradiomics in 
Python3 to extract features from all white and gray matter. This study 
extracts 833 radiomics features from each white and gray matter, 
including 14 shape features, 18 first-order features, 22 Gray-Level 
Co-occurrence Matrix (GLCM) features, 14 Gray-level dependence 
matrix (GLDM) features, 16 Gray level size zone matrix (GLSZM) 
features, 16 Gray level run-length matrix (GLRLM) features, five 

1 https://www.nitrc.org/projects/mricron/

2 https://volbrain.upv.es/

3 https://www.radiomics.io/pyradiomics.html

Neighboring gray tone difference matrix (NGTDM) features, and 728 
wavelet features. Details are provided in Supplementary Table S1.

Radiomics feature data preprocessing

Before conducting radiomics feature selection, it is necessary to 
preprocess the data. Due to the different orders of magnitude of the 
data in radiomics features, this study adopts the Z-score 
standardization method to transform the original image pixel values 
through the formula “Z = [x − mean (x)]/std. (x),” that is, calculating 
the mean and standard deviation of each radiomics feature in the 
training set to obtain the Z-score value.

Radiomics feature selection

To obtain relatively stable radiomic features, we randomly selected 
20 samples for two rounds of segmentation and retained the features 
with an Intra-class Correlation Coefficient (ICC) greater than 0.8 for 
further calculations. The remaining features are used for further 
filtering and modeling. Firstly, the radiomic features are subjected to 
Mann–Whitney U test for statistical verification and feature selection, 
retaining only those radiomic features with a p value <0.05. If the 
correlation coefficient between two features exceeded 0.90, the feature 
exhibiting a higher Pearson correlation with other features was 
eliminated. To maximally preserve the ability to characterize features, 
we adopt a greedy recursive deletion strategy for feature selection, 
which involves deleting the feature with the highest redundancy in the 
current set each time (the advantage of this method is that it efficiently 
pinpoints the most informative features by sequentially discarding the 
least significant ones, resulting in more streamlined models with 
potentially enhanced performance). Subsequently, the Least Absolute 
Shrinkage and Selection Operator (LASSO) is used to construct 
features. Based on the tuning weight “λ,” LASSO shrinks all regression 
coefficients to zero, precisely setting the coefficients of many irrelevant 
features to zero. To find the optimal “λ” value, this study employed 
5-fold cross-validation and the one standard error rule, ultimately 
selecting the “λ” value that produced the smallest cross-validation 
error. Features with non-zero coefficients are retained for regression 
model fitting and combined into radiomic signatures. Radiomic scores 
are calculated for each patient.

Model establishment and verification

Before establishing the model, all patients were randomly divided 
into a training group and a test group at an 8:2 ratio. We input the final 
features into machine learning models such as Random Forest, 
Logistic Regression (LR), eXtreme Gradient Boosting (XGBoost), 
Support Vector Machines (SVM), K Nearest Neighbors (KNN), Extra 
Trees, Light Gradient Boosting Machine (LightGBM), and Multilayer 
Perceptron (MLP). Each model underwent 5-fold cross-validation for 
penalty parameter optimization to construct radiomics models. The 
flowchart of this study was shown in Figure 1.
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TABLE 2 Demographic data of the test and training groups.

Training set (n  =  284) Test set (n  =  71)

HC (n  =  146) MCI (n  =  138) p value HC (n  =  37) MCI (n  =  34) p value

Age (years) 76.00 (73.00, 80.00) 76.00 (72.00, 81.75) 0.860 75.73 ± 4.54 75.47 ± 6.15 0.842

Gender, n (%) <0.001 0.718

Male 70 (47.95) 99 (71.74) 18 (48.65) 18 (52.94)

Female 76 (52.05) 39 (28.26) 19 (51.35) 16 (47.06)

MMSE 29.00 (29.00, 30.00) 27.00 (26.00, 28.00) <0.001 29.30 ± 0.81 26.94 ± 1.89 <0.001

Statistical analysis

The model’s predictive performance is assessed using the receiver 
operating characteristic curve (ROC), which involves calculating the 
AUC and its 95% confidence interval (CI), as well as accuracy, 
sensitivity, and specificity. All statistical analyses are performed using 
Python software (version 3.9.7, https://www.python.org/), with 
“Scikit-Learn” for machine learning, and “matplotlib” and “sklearn” 
for plotting correlation heatmaps, ROC curves, and decision curves.

Results

The baseline characteristics of the patients

Table 2 provided a summary of the baseline clinical characteristics 
for 355 patients, divided into a training set (N = 284) and a test set 
(N = 71). The combined training and test sets include 138 cases 
(48.6%) and 34 cases (45.9%) of patients with mild cognitive 
impairment, respectively. A significant difference in gender 
distribution is observed between the normal control and mild 
cognitive impairment groups within the training set (p < 0.001).

Model establishment

Feature selection is scheduled after the completion of feature 
preprocessing. For detailed information on the results of feature 
preprocessing, please refer to the Supplementary material. A portion 
of the samples underwent ICC tests through two repetitive 
segmentations, ultimately leaving 1643 radiomics features, including 
210 original features and 1433 wavelet features. The proportion of 
various radiomics features was shown in Supplementary Figure S1. 
Features with statistically significant differences between groups were 
retained through hypothesis testing, leaving a total of 352 radiomics 
features, among which there are 46 original features and 306 wavelet 
features. Through Spearman screening (with a threshold set at 0.9), 
142 radiomics features were obtained, including 18 original features 
and 124 wavelet features.

This study utilized the LASSO to further select features 
(Figure 2A). Features with non-zero coefficients were retained for 
regression model fitting (Figure 2B), and Radiomics scores (Rad_
score) were calculated for each patient (in Supplementary material). 
The serial numbers corresponding to the 16 radiomics features 
included in the modeling were shown in Table  3, their weight 

distribution was shown in Figure 3A, and the correlation heatmap was 
shown in Figure 3B.

Machine learning algorithm

The modeling process incorporated various machine learning 
algorithms, including Random Forest, Logistic Regression, eXtreme 
Gradient Boosting (XGBoost), Support Vector Machines (SVM), 
K-Nearest Neighbors (KNN), Extra Trees: Extremely Randomized 
Trees, Light Gradient Boosting Machine (LightGBM), and Multilayer 
Perceptron (MLP). These models were fine-tuned to attain optimal 
solutions. Table  4 delineated the performance metrics of each 
algorithm on the training and test sets. Figure 4 depicted the ROC 
curves for each model on both sets. After comparing multiple 
indicators in the table, the considered to be the most effective. The 
DCA curves of the model on the training set and test set are shown in 
Figure 5. The importance ranking of the 16 radiomic features in the 
LightGBM model was displayed in Figure 6. Notably, among these 16 
features in the LightGBM prediction model, eight pertain to gray 
matter and eight pertain to white matter.

Model efficiency comparison

In the test set, the LightGBM model achieved the highest 
AUC. The DeLong’s test revealed that although there is a difference 
between the AUC of the LightGBM model and other models, there 
is no statistically significant difference in performance (p > 0.05) 
compared to other models. In the training set, the AUC of the 
LightGBM model was ranked second, and the DeLong test showed 
that the performance of the LightGBM model was significantly 
higher than that of the other seven models (p < 0.001). Although the 
XGBoost model has the highest AUC in the training set, there is a 
significant difference compared to the AUC in the test set. 
Considering robustness, the LightGBM model is considered the 
most suitable model. For detailed information, please refer to 
Supplementary Table S2.

Discussion

This study independently extracted imaging features from the 
gray and white matter of the cerebellum, creating a combined model 
of cerebellar gray and white matter imaging capable of objectively 
diagnosing MCI and HC. Among the models established by eight 
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FIGURE 1

A schematic diagram for the whole radiomics and machine learning pipeline.

FIGURE 2

Process of feature selection. The parameters are screened based on lambdamin, that is, when the mean value of the error is the minimum (A). 
Radiomics features were selected by the LASSO logistic regression model (B). LASSO, Least absolute shrinkage and selection operator.
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FIGURE 3

A graph of the relationships between 16 radiomic features used for modeling. (A) The weight distribution of radiomic features. (B) A heatmap of the 
correlations between radiomic features.

machine learning algorithms, the LightGBM prediction model 
emerged as the optimal choice for distinguishing between MCI and 
HC. The training set showed an AUC of 0.863 and an accuracy of 
78.5%, while the validation set displayed an AUC of 0.776 and an 
accuracy of 74.6%. Notably, within the 16 imaging features of the 
LightGBM prediction model, the GM_wavelet_HLH_glrlm_
RunVariance feature carried the highest weight.

The cerebellum, a brain structure primarily known for its role in 
motor functions, has recently gained attention for its involvement in 
cognitive functions (Piccinin et  al., 2014; Weier et  al., 2014). The 
cerebellar gray matter, located beneath the cerebellar cortex and 
consisting of neuronal cell bodies and dendrites, is an important 
component of the cerebellum. Studies using fMRI have confirmed that 
certain areas of the cerebellum are involved not only in motor control 
but also in cognitive and emotional functions (Sokolov et al., 2017; 
Guell et al., 2018). Beneath the gray matter is the white matter, which 
contains numerous nerve fiber bundles and several pairs of deep 
cerebellar nuclei responsible for transmitting information within the 
cerebellum and between the cerebellum and other brain regions 
(Prevosto et al., 2009). Neuroimaging studies have shown that the 
cerebellum forms anatomical connections with the prefrontal cortex, 
which are crucial for normal cognitive function (Gelinas et al., 2014; 
Buckner et al., 2011).

Research by Toniolo et al. found that patients in the MCI stage 
already exhibit atrophy of cerebellar gray matter, primarily in certain 
areas of the anterior and posterior lobes (Toniolo et al., 2018). Wang 
et al. discovered that first-order texture features from quantitative 
susceptibility mapping successfully distinguish AD and MCI from CN 
(Hwang et  al., 2016). Radiomics is a method that extracts a large 
number of quantitative features from medical images to reveal 
underlying biological information and pathological changes. These 
features are particularly important in medical image analysis because 
it can quantitatively describe the characteristics of lesions, aiding in 
diagnosis, prognosis assessment, and evaluation of treatment 
response. These features have been proven to reflect the pathological 
changes in neurodegenerative diseases (Feng et  al., 2018; Sun 
et al., 2018).

Pathological studies have confirmed Aβ amyloid deposition in 
the cerebellum of MCI patients (Mufson et al., 2011). Studies have 
shown that texture features of the hippocampus and corpus callosum 
can be used through machine learning to differentiate patients with 

TABLE 3 Sixteen imaging genomics characteristics included in the 
modeling.

Index feature

A GM_wavelet_HLH_glrlm_RunVariance

B WM_wavelet_LLL_firstorder_10Percentile

C WM_original_glszm_GrayLevelNonUniformity

D WM_wavelet_HLH_glszm_

SmallAreaHighGrayLevelEmphasis

E GM_original_glrlm_RunEntropy

F WM_wavelet_HLL_firstorder_Maximum

G WM_wavelet_HLL_firstorder_Skewness

H GM_wavelet_LHH_glrlm_RunEntropy

I GM_wavelet_LHL_glrlm_

RunLengthNonUniformity

J WM_original_shape_LeastAxisLength

K WM_wavelet_LLL_ngtdm_Contrast

L GM_wavelet_LLL_glcm_ClusterShade

M GM_wavelet_HHH_glszm_SizeZoneNonUniformity

N GM_wavelet_HLH_glrlm_RunEntropy

O GM_wavelet_LHH_glszm_SizeZoneNonUniformity

P WM_wavelet_LLH_firstorder_RootMeanSquared
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TABLE 4 Various indicators of each model’s training set and test set.

model_name Accuracy AUC 95% CI Sensitivity Specificity PPV NPV Precision Recall F1 Threshold Task

LR 0.648 0.701
0.6412–

0.7610
0.536 0.753 0.673 0.632 0.673 0.536 0.597 0.524 Train

LR 0.704 0.700
0.5756–

0.8250
0.529 0.865 0.783 0.667 0.783 0.529 0.632 0.574 Test

SVM 0.782 0.861
0.8179–

0.9045
0.761 0.801 0.784 0.780 0.784 0.761 0.772 0.490 Train

SVM 0.718 0.744
0.6247–

0.8634
0.794 0.649 0.675 0.774 0.675 0.794 0.730 0.447 Test

KNN 0.634 0.785
0.7357–

0.8345
0.304 0.945 0.840 0.590 0.840 0.304 0.447 0.600 Train

KNN 0.606 0.719
0.6014–

0.8358
0.324 0.865 0.687 0.582 0.687 0.324 0.440 0.600 Test

RandomForest 0.757 0.828
0.7806–

0.8745
0.746 0.767 0.752 0.762 0.752 0.746 0.749 0.466 Train

RandomForest 0.704 0.757
0.6455–

0.8681
0.500 0.892 0.810 0.660 0.810 0.500 0.618 0.554 Test

ExtraTrees 0.715 0.768
0.7149–

0.8220
0.674 0.753 0.721 0.710 0.721 0.674 0.697 0.482 Train

ExtraTrees 0.690 0.725
0.6064–

0.8443
0.706 0.676 0.667 0.714 0.667 0.706 0.686 0.480 Test

XGBoost 0.842 0.919
0.8871–

0.9509
0.841 0.842 0.835 0.848 0.835 0.841 0.838 0.489 Train

XGBoost 0.718 0.733
0.6134–

0.8533
0.676 0.757 0.719 0.718 0.719 0.676 0.697 0.505 Test

LightGBM 0.785 0.863
0.8210–

0.9047
0.775 0.795 0.781 0.789 0.781 0.775 0.778 0.481 Train

LightGBM 0.746 0.776
0.6636–

0.8881
0.735 0.757 0.735 0.757 0.735 0.735 0.735 0.460 Test

MLP 0.704 0.772
0.7189–

0.8257
0.804 0.610 0.661 0.767 0.661 0.804 0.725 0.442 Train

MLP 0.676 0.704
0.5810–

0.8276
0.794 0.568 0.628 0.750 0.628 0.794 0.701 0.404 Test

LR, Logistic Regression; SVM, Support Vector Machines; KNN, K Nearest Neighbors; Extra Trees, Extremely Randomized Trees; XGBoost, eXtreme Gradient Boosting; LightGBM, Light Gradient Boosting Machine; MLP, Multilayer Perceptron; CI, confidence interval; 
PPV, Positive Predictive Value; NPV, Negative predictive value.
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FIGURE 4

Receiver Operating Characteristic (ROC) curves for each model on the training (A) and test sets (B).

FIGURE 5

Decision Curve Analysis (DCA) curve of the LightGBM model for both training and test sets.

MCI from healthy controls (Du et al., 2023; Shaji et al., 2022), based 
on high-throughput radiomic features numerically interpreting 
existing pathological changes. Therefore, the feasibility of this study’s 
model establishment is supported by both the pathological changes 
in the MCI cerebellum and the applicability of radiomics. When 
pathological changes occur in brain tissue, the texture of MR images 
may change accordingly (Sorensen et al., 2016; Chen et al., 2024). 
Based on this principle, we  speculate that there may be  certain 
imaging markers that can well reflect the pathological changes of 
MCI. This study combines radiomics with machine learning, using 
3D T1WI images, focusing on the gray and white matter of the 
cerebellum, and establishes an efficient and objective differential 
model to distinguish MCI from NC.

The LightGBM algorithm is a tree-based gradient boosting 
algorithm known for its efficient reduction in memory consumption 

and computational complexity (Yanagawa et al., 2024). By utilizing a 
histogram-based decision tree algorithm, it significantly enhances 
training speed and efficiency. It’s most notable advantages include 
faster training speed, higher efficiency, and improved accuracy. In the 
LightGBM prediction model with 16 radiomic features, there are eight 
features related to gray matter and eight features related to white 
matter. The eight gray matter features include five GLRLM features, 
one GLCM feature, and two GLSZM features. Similarly, the eight white 
matter features consist of four first-order features, two GLSZM 
features, one shape feature, and one NGTDM feature. Among these, 
GM_HLH_glrlm_RunVariance is the most important feature. 
RunVariance refers to the variance of sequences where the same 
grayscale value appears consecutively in an image (Jin et al., 2023), 
reflecting the uniformity of image texture; a larger variance indicates 
a more uneven texture. In this study, when the Run Variance of the 
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MCI group is smaller than that of the HC group, it may indicate that 
the texture within the cerebellar gray matter region of the MCI group 
is more uniform or has higher consistency, suggesting fewer local 
structural changes. The reduction in Run Variance may be associated 
with atrophy of the cerebellar gray matter (Toniolo et al., 2018; Kim 
et  al., 2021). As patients with mild cognitive impairment may 
experience slight neuronal loss or reduced density of cerebellar gray 
matter, there would be fewer local structural changes, thus resulting in 
more uniform imaging texture features (Toniolo et al., 2018; Kim et al., 
2021; Thomann et al., 2008). The decrease in Run Variance may also 
reflect a reduction in the microstructural complexity of the cerebellar 
gray matter. These identified abnormalities are closely associated with 
the underlying pathological changes in the cerebellum of MCI patients.

Other radiomics features also played a role in the established 
discriminant model, reflecting abnormal pathological changes in the 
cerebellar gray and white matter from different dimensions. It is 
noteworthy that we assumed the diagnostic efficacy of radiomics 
features extracted from the cerebellar gray and white matter for MCI 
to be the same. However, in the final model, the importance of gray 
matter seemed to be slightly higher. But this does not prove that the 
pathological changes in the cerebellar gray matter of MCI patients are 
more significant than those in the white matter. To address this 
question, it may be necessary to further expand the sample size and 
conduct multi-dimensional studies with more detailed disease 
progression classifications.

Limitations

Our research has several limitations. Firstly, the data used in this 
study was obtained from the public database of ADNI and did not 
utilize internal data for further verification. Future studies should 

incorporate more centers to gather additional data for validation and 
optimization of the model. Secondly, this study solely employed 
imaging features to establish an independent imaging model, 
without further analyzing the relationship between these features 
and clinical scales or biological indicators. Thirdly, this study only 
conducted cross-sectional cohort comparison studies, without 
in-depth research on the role of these imaging features in the 
progression process. Fourth, we  did not conduct a study on 
cerebellar involvement in patients with different subtypes of 
MCI. Lastly, current research has not utilized molecular biomarker 
data to further differentiate MCI caused by AD from MCI due to 
other etiologies, nor does it include longitudinal information on the 
conversion of MCI to dementia. This is worth exploring in 
future studies.

Conclusion

To our knowledge, this is the first machine learning study to 
detect MCI based on cerebellar gray matter radiomics features. In this 
trial, a LightGBM machine learning model based on 16 radiomics 
features of cerebellar gray and white matter was able to accurately 
distinguish between MCI and HC based on conventional MRI images. 
Since this method is non-invasive, it has great potential for future 
clinical medical applications.
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FIGURE 6

Ranking of the importance of 16 radiomics features in the LightGBM model.
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