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Introduction: Hispanic/Latino populations are underrepresented in Alzheimer 
Disease (AD) genetic studies. Puerto Ricans (PR), a three-way admixed 
(European, African, and Amerindian) population is the second-largest Hispanic 
group in the continental US. We aimed to conduct a genome-wide association 
study (GWAS) and comprehensive analyses to identify novel AD susceptibility 
loci and characterize known AD genetic risk loci in the PR population.

Materials and methods: Our study included Whole Genome Sequencing 
(WGS) and phenotype data from 648 PR individuals (345 AD, 303 cognitively 
unimpaired). We used a generalized linear-mixed model adjusting for sex, age, 
population substructure, and genetic relationship matrix. To infer local ancestry, 
we merged the dataset with the HGDP/1000G reference panel. Subsequently, 
we conducted univariate admixture mapping (AM) analysis.

Results: We identified suggestive signals within the SLC38A1 and SCN8A genes 
on chromosome 12q13. This region overlaps with an area of linkage of AD in 
previous studies (12q13) in independent data sets further supporting. Univariate 
African AM  analysis identified one suggestive ancestral block (p  =  7.2×10−6) 
located in the same region. The ancestry-aware approach showed that 
this region has both European and African ancestral backgrounds and both 
contributing to the risk in this region. We also replicated 11 different known AD 
loci -including APOE- identified in mostly European studies, which is likely due 
to the high European background of the PR population.
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Conclusion: PR GWAS and AM  analysis identified a suggestive AD risk locus 
on chromosome 12, which includes the SLC38A1 and SCN8A genes. Our 
findings demonstrate the importance of designing GWAS and ancestry-aware 
approaches and including underrepresented populations in genetic studies of 
AD.
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1 Introduction

Alzheimer Disease (AD), the most common type of dementia 
in older adults worldwide, accounts for an estimated more than 
60% of all dementia cases (Alzheimer’s Association, 2024). The 
prevalence of AD increases with age, affecting more than a third 
of individuals above the age of 85 (Borenstein and Mortimer, 
2016). The etiology of AD is complex with a strong genetic 
predisposition (Gatz et al., 1997; Gatz et al., 2006). Genome-wide 
association studies (GWAS) have identified more than 75 loci 
associated with AD to date (Bellenguez et al., 2022). However, 
these studies have primarily focused on non-Hispanic White 
(NHW) populations (Mills and Rahal, 2019; Mills and Rahal, 
2020). Research into AD genetics across diverse populations 
reveals a partial overlap of genetic risk and protective loci among 
different ancestral groups, while also showing differences in effect 
sizes and specific genetic variants associated with AD (Cukier 
et al., 2016; Farrer et al., 1997; Liu et al., 2009; Reitz et al., 2013). 
Including diverse populations in AD genetic studies is crucial for 
identifying ancestry-specific loci and generalizing risk and 
protective loci across ancestral populations (Reitz et al., 2023). 
Notably, Latino populations are among the least represented in 
AD genetic studies (Mills and Rahal, 2020), underscoring the 
necessity of extending AD genetic studies to these populations, 
particularly given their admixed ancestral makeup. This is 
essential for a more comprehensive understanding of the genetic 
architecture of AD and advancing the development of 
precision medicine.

The diverse and multicultural Puerto Rican (PR) population is 
the second largest Latino group in the continental US. The 
estimated AD prevalence among PRs is 12.5%, which is higher 
compared to the general US population (10.1%) (Feliciano-Astacio 
et  al., 2019). The PR population is three-way admixed with an 
average of 69% of European (EU), 17% African (AF) and 14% 
Amerindian (AI) ancestral backgrounds (Feliciano-Astacio et al., 
2019). The admixed background in the PR population facilitates 
the discovery of novel AD loci and allows for the assessment of 
heterogeneity in the effects of known AD loci across EU, AF and 
AI ancestral backgrounds. However, genetic studies on PRs for AD 
have been limited so far.

To address these issues, we  performed GWAS, 
ancestry-aware approaches, and comprehensive analyses to 
identify novel AD susceptibility loci and characterize known AD 
genetic risk loci and regions in PR individuals enrolled in AD 
genetic studies.

2 Materials and methods

2.1 Study participants

The participants were ascertained from seven different regions of 
Puerto Rico (94%) (Figure 1), and from the continental United States 
(6%) (Florida, New  York, Connecticut, and North Carolina). All 
ascertainment was coordinated by the University of Miami and the 
Universidad Central del Caribe.

Informed consent was obtained from all participants, and the 
study protocols were approved by the University of Miami’s, and the 
Universidad Central del Caribe’s Institutional Review Boards. All 
eligible participants underwent an initial screening consisting of a 
standard clinical interview which included detailed medical and 
family history as well as a Modified Mini-Mental State Examination 
(3MS) (Folstein et al., 1975; Teng and Chui, 1987). Individuals who 
failed the screening were then evaluated with a comprehensive multi-
domain cognitive battery which included measures of memory, 
executive function, language, and visuospatial ability. In addition, 
these participants were evaluated using functional measures including 
the Clinical Dementia Rating Scale (CDR). Using all available clinical 
information, participants were adjudicated by neurologists and 
neuropsychologists with expertise in neurodegenerative disorders. 
Clinical research diagnoses were assigned using the National Institute 
of Aging-Alzheimer’s Association (NIA-AA) criteria for possible and 
probable AD (McKhann et al., 2011) or the DSM-V criteria for Major 
Neurocognitive Disorder, Alzheimer’s type (Association AP, 2013). 
AD Cases were defined as participants who met NIA-AA or DSM-V 
criteria for AD. In summary, possible and probable AD diagnoses 
were assigned using the NIA-AA criteria by a clinical adjudication 
panel after reviewing historical and screening/evaluation test data 
(Rajabli et al., 2018; Rajabli et al., 2021). Cognitively unimpaired (CU) 
individuals were defined as participants who were cognitively 
unimpaired and ≥ 65 years of age at study entry.

2.2 Whole genome sequencing

Whole genome sequencing (WGS) data was generated at the 
Uniformed Services University of the Health Sciences (USUHS) and 
the Center for Genome Technology (CGT) at the John P. Hussman 
Institute for Human Genomics (HIHG) at the University of Miami 
Miller School of Medicine using coordinated methodology. Briefly, 
sequencing libraries were created using the TruSeq DNA PCR-Free 
library preparation kit followed by sequencing to 30X depth on the 

https://doi.org/10.3389/fnagi.2024.1459796
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Akgun et al. 10.3389/fnagi.2024.1459796

Frontiers in Aging Neuroscience 03 frontiersin.org

Illumina NovaSeq  6000 (Illumina, San Francisco, California, 
United States). The resulting FASTQ files were processed on a high-
performance computing cluster maintained by the Frost Institute for 
Data Science and Computing at the University of Miami. Processing 
and quality control utilized the Variant Calling Pipeline (VCPA) 
developed and used for the Alzheimer’s Disease Sequencing Project 
(Leung et al., 2019) including alignment to GRCh38 using bwa-mem 
(Li, 2013), duplicates marking and base quality recalibration with 
multi-sample variant calling and joint genotyping were performed 
using the GATK HaplotypeCaller (van der Auwera and O’Connor, 
2020) across all samples from the study. After quality control, all 
samples were screened for causal variants of PSEN1, PSEN2 and APP 
genes, and individuals who were found to be carriers of any causal 
variant were excluded from the study.

Principal components (PCs) were calculated using the GENESIS 
R/Bioconductor package (Gogarten et al., 2019). To determine the 
PCs used for further analyses, we  employed logistic regression 
modelling (AD ~ Sex + Age + PC1:10).

2.3 Association analysis

2.3.1 Single variant analysis
Single variant association analysis was performed using SAIGE 

(Zhou et al., 2020) on genotypes employing a linear mixed model. 
We analyzed the data in two separate models; the first model accounted 
for sex, age, and PCs for population substructure (Model 1), while the 
second model also included the dosage of the APOE ε4 allele (Model 
2). In both models, we  included a genetic relationship matrix as a 
random effect to account for any potential relatedness. The GenABEL 
package version 1.8–031 was used to estimate genomic inflation (λ). 
Known AD markers were determined from the AF (Kunkle et al., 2021) 
and NHW (Bellenguez et al., 2022) GWASs. We evaluated whether 
these Known AD markers were replicated in our association analysis 
results for both models based on the p-value threshold of 0.05.

2.3.2 Gene-based analysis
Before the gene-based test, variants were restricted to rare 

variants excluding all variants with minor allele frequency 
(MAF) > 0.01. Then, variants were annotated with AnnoVar (Wang 

et al., 2010) to identify the gene region and the CADD (Kircher 
et  al., 2014) score. As a result of gene region annotation, only 
intragenic variants (upstream, downstream, exonic and intronic 
variants) were included in the analysis. A combined test of burden 
and sequence kernel association test (SKAT-O) (Lee et al., 2012) was 
performed using the SAIGE-GENE (Zhou et al., 2020) tool. Three 
different variant sets were assessed: CADD20 set (variants with a 
CADD score of 20 or higher), CADD10 set (variants with a CADD 
score of 10 or higher) and CADD0 set (all intragenic variants). All 
sets were tested twice with two models: a main model (adjusted for 
sex, age, and first 4 PCs as fixed effects and GRM as a random effect), 
and an additional APOE ε4 allele dosage adjusted model.

2.4 Pathway analysis

We performed pathway analyses with Multi-marker Analysis of 
GenoMic Annotation (MAGMA) (de Leeuw et al., 2015) v1.08 using 
FUMA (Watanabe et al., 2017) v1.5.6, which performs SNP-wise gene 
analysis. 18977 gene sets obtained from MsigDB (Liberzon et al., 2015; 
Subramanian et al., 2005) v7.0 were used in the analyses. We analyzed 
a 35-kb upstream and 10-kb downstream window around each gene.

2.5 Fine-mapping and ancestral aware 
analysis

2.5.1 Fine mapping and replication analysis
Fine-mapping was performed using CARMA (Yang et al., 2023) 

with each locus defined as a 1Mb region centered around the index 
SNP with suggestive significant (p < 1×10−6) loci. Each locus’ LD 
matrix was generated based on the individual-level genetic data used 
in the association analysis. We employed CARMA with default values 
for all parameters with the maximum number of causal variants 
assumed in a region set at N = 10. The functional annotation CADD 
(Kircher et  al., 2014) was also provided to CARMA as prior 
information on the causality of the testing SNPs.

For replication analysis, we used the EFIGA (Estudio Familiar de 
Influencia Genetica en Alzheimer) (Vardarajan et al., 2014) cohort 
included in the ADSP R4 dataset. This cohort includes individuals of 

FIGURE 1

Seven different geographical Puerto Rican health zones defined by Puerto Rico Department of Health (2024) where participants were ascertained.
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Caribbean Hispanic descent recruited from the Dominican Republic 
and New York, comprising both a family-based study with multiple 
AD individuals and a case–control study of unrelated AD individuals. 
We selected AD cases and CU controls with ≥65 years of age at study 
entry from this cohort. PCs were calculated and single variant 
association testing was performed on index SNPs at suggestive 
significant loci identified in our PR dataset, employing the same 
statistical models, tools, and adjustments as in the initial analysis. 
We then conducted a meta-analysis of these suggestive index variants 
across the PR and EFIGA datasets using the METASOFT (Han and 
Eskin, 2011) program with random effects model (RE2).

2.5.2 Global ancestry estimation
The admixture proportion was estimated by using a model-based 

clustering algorithm implemented in the ADMIXTURE software 
(Zhou et al., 2011). Supervised ADMIXTURE analysis was performed 
at K = 3 by including the 3 reference populations (AI, EU, and AF) 
from combined reference panels of the Human Genome Diversity 
Project (HGDP) (Fairley et al., 2020) and 1000 Genomes Phase 3 
(Delaneau et al., 2014; Auton et al., 2015).

2.5.3 Local ancestry estimation
The local ancestry was assessed by combining the 3 populations 

(AI, EU, and AF) in combined reference panels of HGDP (Fairley 
et al., 2020) and 1000 Genomes Phase 3 (Delaneau et al., 2014; Auton 
et al., 2015) with the PR dataset. The SHAPEIT (Delaneau et al., 2011) 
tool was used to phase all individuals in the same combined reference 
panels, and the RFMix Version 2 (Maples et al., 2013) tool with the 
discriminative modelling approach was used to infer the local 
ancestry at each locus across the genome. The standard parameters 
were used with a minimum node size of 5 to perform RFMix analysis.

2.5.4 Admixture mapping
We performed admixture mapping in PR datasets using the 

GENESIS R/Bioconductor package (Gogarten et  al., 2019). First, 
we encoded copies of local ancestry calls for each ancestry (AF, AI, and 
EU) as dosage values (0, 1, or 2, number of haplotypes at a locus). 
Then, to test for an association between AD and local ancestry at a 
genomic location, we used a logistic mixed model. The model includes 
local ancestry as the main and the genetic relationship matrix (GRM) 
as a random effect to adjust for the sample relatedness and was 
adjusted further for age, sex, and principal components (PC1:4).

2.6 Runs of homozygosity analysis

We calculated ROH in the PR dataset by including the 3 reference 
populations (AI, EU, and AF) from combined reference panels of the 
Human Genome Diversity Project (HGDP) (Fairley et al., 2020) and 
1000 Genomes Phase 3 (Delaneau et al., 2014; Auton et al., 2015) using 
the PLINK software. The following parameters were used: 
-homozy-snp  50, -homozy-kb 300, homozy-density 300, 
homozyg-gap 1000, -homozyg-window-snp 50, -homozyg-window-het 
1, homozyg-window-missing 1, and homozyg-window-threshold 0.05. 
We plotted the resulting outputs using the ggplot package of the R.

We analyzed the total and average lengths of the ROHs per sample 
and the total number of ROHs for each sample. Then we evaluated 
ROHs larger than 1 Mb, 2 Mb, or 3 Mb separately with the global 

burden analysis. We  conducted a global burden analysis among 
autosomal chromosomes in cases and controls using a one-tailed test 
with 10,000 permutations for the number of ROHs, the total ROH 
length and the mean ROH length per individual.

2.7 Polygenic risk score

We constructed PRS on the PR dataset using the effect sizes from 
summary statistics from the largest NHW GWAS study (Bellenguez 
et al., 2022). Quality control steps were carried out using standard 
parameters in the literature (Choi et al., 2020). We removed duplicate 
and ambiguous SNPs from the summary statistics NHW GWAS with 
the custom script.

The PRSice-2 (Choi and O'Reilly, 2019) tool was used to generate 
the PRS. Analyses were performed with standard parameters in 
accordance with the published PRS tutorial (Choi et  al., 2020). 
We applied LD-clumping using the following parameters: --clump-kb 
250 – clump-r2 0.1 –clump p1. We also filtered out variants with 
minor allele frequency (MAF) was less than 5%. We included only 
autosomal chromosomes in the analysis. In order to evaluate PRS 
performance independent of the APOE effect, we first removed the 
APOE region (2 MB around APOE ε4 SNP) from the data. Then, to 
adjust the model, we used age, sex, and the first four PCs as covariates.

After each PRS calculation, the PRS performance was assessed by 
employing the logistic regression model: Covar-only, PRS-only, 
APOE ε4-only, PRS + APOE ε4, and Full to construct receiver 
operator curves (ROC).

 1 AD ~ Sex + Age + PC1:4 (“ModelCovar-only”)
 2 AD ~ PRS (“ModelPRS-only”)
 3 AD ~ APOE ε4 (“ModelAPOE ε4-only”)
 4 AD ~ PRS + APOE ε4 (“ModelPRS + APOE ε4,”)
 5 AD ~ PRS + APOE ε4 + Sex + Age + PC1:4 (“ModelFull”)

We deposited the codes and scripts used in this study to the 
GitHub repository we created.1

3 Results

3.1 Association analysis

Our study included a total of 648 PR individuals from families (78 
AD, 41 cognitively unimpaired) and unrelated individuals (267 AD, 
262 cognitively unimpaired) (Table 1). There was no evidence for 
genomic inflation (model 1: λ = 1.029; model 2: λ = 1.048).

Single-variant testing replicated the APOE locus (p = 1.3 × 10−7) 
(Table  2; Figure  2). In addition to APOE, we  replicated the same 
signals of ten known-AD loci (p ≤ 0.05): ABCA7, ANK3, CLU, 
FERMT2, GRN, PRDM7, RASGEF1C, SEC61G, SORL1, and TREM2 
(Table 2; Figure 2).

Six novel loci reached suggestive significance at p ≤ 1 × 10−6: 
AL392172.2 on chromosome 1, AC097655.1 on chromosome 4, 

1 https://github.com/hihg-um/PuertoRican_GWAS
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AKR1C2 on chromosome 10, SLC38A1 on chromosome 12, SCN8A 
on chromosome 12, and HAR1A on chromosome 20 (Table  2; 
Figure 2).

As a result of gene-based testing, there was no gene-wide 
significant region (Supplementary Table S1).

3.2 Pathway analysis

MAGMA gene-set analysis showed no pathway at Pbon < 0.05 after 
Bonferroni correction (18977 genes were tested). Three pathways were 

identified that p < 1 × 10−4, although these pathways were not 
significant after Bonferroni correction (Supplementary Table S2).

3.3 Fine mapping and replication analysis

Six novel loci in Models 1 and 2 were fine mapped using 
CARMA. There was no credible set generated for these regions, 
although these regions’ index SNPs showed the highest PIPs 
(Supplementary Table S3). Consequently, these SNPs garnered a 
larger proportion, if not the entirety, of the PIP for their respective 
regions with the sum of the PIPs of these regions falling short of 
generating a credible set.

Replication analysis in an independent Caribbean Hispanic 
dataset from the EFIGA study (632 AD, 270 cognitively unimpaired) 
showed significant associations of index SNPs in two loci: SLC38A1 
(p = 0.009), and SCN8A (p = 0.049). As a result of the metanalysis of 
the EFIGA and our PR datasets, the SLC38A1 locus neared genome-
wide significance (p = 3×10−7).

3.4 Admixture mapping

An ancestral block located on chromosomes 12q13.1 (p = 6.3×10−6, 
Figure  3) neared genome-wide significance by Univariate African 
AM analysis. This region also overlapped with the SLC38A1 and SCN8A 
genes, which reached suggestive significance in the association analysis.

TABLE 2 Results of single variant analysis.

Model 1 Model 2

Closest 
gene

Marker dbSNP Reference/ 
effect allele

AF OR (95% CI) p value OR (95% CI) p value

Novel loci

AL392172.2 1:222779085 rs4240935 G/T 0.39 1.76 (1.39–2.22) 2.2 × 10−6 1.82 (1.43–2.31) 9.5 × 10−7

AC097655.1 4:60211881 rs11131227 A/C 0.30 0.5 (0.66–0.38) 6 × 10−7 0.51 (0.67–0.38) 1.6 × 10−6

AKR1C2 10:5008180 rs11252881 T/A 0.50 0.54 (0.68–0.42) 2.1 × 10−7 0.56 (0.71–0.44) 1.7 × 10−6

SLC38A1 12:46230329 rs11183403 A/C 0.34 1.78 (1.41–2.25) 1 × 10−6 1.78 (1.41–2.25) 1.7 × 10−6

SCN8A 12:51658428 rs7953996 G/A 0.20 1.98 (2.59–1.51) 6 × 10−7 2.03 (2.67–1.54) 4.1 × 10−7

HAR1A 20:63109757 rs112918561 T/TTG 0.16 2.04 (1.54–2.72) 9.1 × 10−7 2.14 (1.6–2.86) 2.3 × 10−7

AD-Known Loci

RASGEF1C 5:180201150 rs113706587 G/A 0.11 1.41 (1.02–1.96) 0.040 1.43 (1.02–2.01) 0.036

TREM2 6:41161469 rs143332484 C/T 0.008 3.76 (1.58–8.95) 0.003 4.18 (1.74–10.01) 0.001

SEC61G 7:54873635 rs76928645 C/T 0.09 0.62 (0.41–0.94) 0.025 0.64 (0.42–0.99) 0.045

CLU 8:27607795 rs11787077 C/T 0.42 0.76 (0.95–0.61) 0.016 0.78 (0.99–0.62) 0.037

ANK3 10:60025170 rs7068231 G/T 0.46 0.8 (1–0.64) 0.048 0.8 (1.01–0.64) 0.062

SORL1 11:121482368 rs74685827 T/G 0.002 4.64 (1.08–19.86) 0.039 3.16 (0.85–11.78) 0.086

FERMT2 14:52924962 rs17125924 A/G 0.08 1.7 (1.2–2.42) 0.003 1.78 (1.24–2.56) 0.002

PRDM7 16:90103687 rs56407236 G/A 0.05 1.89 (1.18–3.03) 0.008 1.73 (1.07–2.81) 0.026

GRN 17:44352876 rs5848 C/T 0.35 1.28 (1.01–1.62) 0.043 1.28 (1.01–1.63) 0.044

ABCA7 19:1050421 rs115550680 A/G 0.005 3.16 (1.14–8.78) 0.027 3.62 (1.3–10.07) 0.013

APOE 19:44908684 rs429358 T/C 0.13 2.19 (1.64–2.93) 1.3 × 10−7 1.69 (0.29–10) 0.563

Allele frequency (AF) in the table reflects the effect allele frequency in the controls. The AD-Known markers are the same SNPs identified in the AF (Kunkle et al., 2021) and NHW 
(Bellenguez et al., 2022) GWASs.

TABLE 1 Table showing the age, gender, and APOE ε4 dosage 
distributions of the participants in our study.

Cases Controls Total

Count 345 303 648

Families 78 41 119

Unrelated individuals 267 262 529

Sex
Female 240 (69.6%) 225 (74.2%) 465 (71.8%)

Male 105 (30.4%) 78 (25.8%) 183 (28.2%)

Age (Mean ± SD) 75.5 ± 8.09 75.3 ± 6.74 75.5 ± 7.48

APOE 

ε4%

0 57.7 76.2 66.4

1 35.6 21.5 29.0

2 6.7 2.3 4.6
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3.5 Global ancestry and ROH analysis

Admixture analysis revealed proportions of 71% EU, 18% AF, and 
11% AI in the cohort (Figure  4). Global ancestry distributions 
according to different health regions (Puerto Rico Department of 
Health, 2024) in PR showed a slight increase in the AF rate and a 
decrease in the EU in Zone 7 compared to the others 
(Supplementary Figure S1A). In addition, it was observed that the 
ROH length and number distributions of the participants in Zone 7 
mostly overlapped with the reference individuals of African origin 
(Supplementary Figure S1B).

Global Burden Analysis showed that the mean size of ROHs larger 
than 1 MB was significantly higher in cases than in the control group 
(Supplementary Table S4).

3.6 Polygenic risk score

We calculated a PRS using 99 clumped SNPs 
(Supplementary Table S5). AUC in the PR dataset was found to 
be 0.62 in ModelPRS-only and the t-test showed a significant association 
between PRS and AD (p = 7.9×10−8) (Figure 5A). In modelAPOE ε4-only 
and modelPRS + APOE ε4, we  achieved an AUC of 0.59 and 0.65, 
respectively. ModelFull showed an AUC of 0.66 (Figures 5B,C).

4 Discussion

Our GWAS and AM analysis identified a suggestive AD risk locus 
with two signals within a 5 MB region on chromosome 12: one within 
the SLC38A1 gene (12q13.11) and the other within the SCN8A gene 
(12q13.13). We  replicated both signals using an independent 
Caribbean Hispanic dataset from the EFIGA study. This region 
corresponds to a locus on chromosome 12q13 previously implicated 
in AD by linkage studies (Rogaeva et al., 1998; Yu et al., 2011; Scott 
et al., 2000; Pericak-Vance et al., 1997; Beecham et al., 2009). The 
index marker at 12q13.11, identified in this study, was found to 
be significant in the AF (Kunkle et al., 2021) (p = 0.004; OR = 1.12) and 
NHW (Kunkle et  al., 2019) (p = 0.04; OR = 1.03) GWAS studies, 
further supporting these findings. The ancestry approach showed that 
the index marker has both EU and AF ancestral backgrounds and 
both contributing to the risk in this region. The SLC38A1 gene is 
associated with ischemic brain damage (Yamada et al., 2019) and its 
transcription is affected by amyloid-beta peptide (Buntup et al., 2008). 
The SCN8A gene is associated with a severe developmental and 
epileptic encephalopathy (Ohba et al., 2014), cognitive impairment 
(Wagnon et al., 2017; Trudeau et al., 2006), and has a demonstrated 
relationship with reduced pathogenesis of AD in a mouse model study 
(Yuan et al., 2022). Both genes are involved in the biological process 
of sodium ion transport (GO [Gene Ontology]:0006814) (Aleksander 

FIGURE 2

Manhattan plots of single variant analysis. (A) Model 1. (B) Model 2.
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et al., 2023; Ashburner et al., 2000). While the number of participants 
in this study is modest, the robustness of our findings at this locus is 
further strengthened by the replication in an independent Caribbean 
Hispanic cohort, ancestry-aware follow-up analysis, and supporting 
results from previous GWAS and linkage studies.

We replicated the APOE e4 risk allele and additionally the same 
markers of the ten known AD loci (Bellenguez et al., 2022; Kunkle et al., 
2021) – ABCA7, ANK3, CLU, FERMT2, GRN, PRDM7, RASGEF1C, 
SEC61G, SORL1, and TREM2. APOE ε4 allele is the major risk factor 
for AD in almost all populations, but its effect differs among different 
ancestral populations (Farrer et al., 1997). The ε4 allele has the highest 
risk in East Asian populations (Liu et al., 2014), followed by Europeans, 

and a lower risk in AF ancestry populations (Tang et al., 1996; Tang 
et al., 1998; Sahota et al., 1997; Hendrie et al., 2014). The APOE e4 odds 
ratio was found to be 2.19 (1.64–2.93) in our study, and although this 
rate was slightly above that in the recent large-scale African-American 
GWAS study (OR = 1.93) (Kunkle et al., 2021), it was below that found 
in European studies. Our result was also consistent with a study 
investigating the ancestral origin of APOE e4 AD risk in PR and African 
American populations (Rajabli et al., 2018). Of the 10 other signals 
replicated by our study, 9 were identified in European studies 
(Bellenguez et al., 2022) and ABCA7 (rs115550680) was identified in 
the recent African-American GWAS study (Kunkle et al., 2021). This is 
likely due to the higher proportion of EU background and the lower 
proportion of AF background of the PR population.

Global ancestry admixture analysis revealed proportions of 71% EU, 
18% AF, and 11% AI in our cohort, which confirmed that PRs were a 
3-way admixed population. Upon examining the global ancestry and 
ROH length/number distributions by zones, we saw that Zone 7 had a 
higher African ancestry background and a lower European ancestry 
background than the other zones. Upon closer inspection of the cities in 
Zone 7, we  found out that individuals from Loiza city had African 
ancestry rates of 58%, which was higher than the cohort average. Loiza is 
known in PR for the rich African heritage that forms the basis of its 
identity. The background of this rich African heritage dates back to the 
African individuals who were brought to work in the sugar plantations 
established in the region in the 16th century (Perez, 2002).

NHW GWAS (5)-derived PRS showed a good predictive value 
(AUC of 0.62  in ModelPRS-only) of AD risk in the PR population. 
Moreover, the AUC value of the PRS + APOE model was found to 
be higher (0.65). While the results provide a promising prediction 
value, there is potential to further optimize the PRS calculations for 
PR to enhance their clinical relevance. The accuracy of PRS improves 
when modelled using GWAS with a similar ancestral origin (Choi 
et al., 2020). Nonetheless, the NHW GWAS-based PRS likely showed 
good predictive results due to the substantial EU ancestral background 
among PRs. Overall, our results point to the importance of performing 
population-specific studies to derive PRS calculations that will yield 
high predictive values that are suitable for clinical use.

FIGURE 3

Univariate African AM Manhattan plot of PR dataset. The solid gray horizontal line represents the genome-wide significance threshold calculated in our 
cohort, and the dashed gray horizontal line represents the genome-wide significance threshold calculated in the previous larger Caribbean Hispanic 
study (Kizil et al., 2022).

FIGURE 4

ADMIXTURE bar plot showing each individual as a vertical line and 
global ancestries in different colors.
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The poor generalizability of genetic studies across populations 
is well-established. To understand the myriad genetic factors that 
contribute to the development of AD it is important to study diverse 
populations which are underrepresented in genetic studies. By 
including diverse populations, not only can we identify factors that 
contribute to health disparities, but we can also fine-tune our efforts 
to develop effective treatments for AD. Further, by including 
underrepresented populations in genetic studies, higher-sensitivity 
risks can be calculated with methods such as PRS: more importantly, 
new genetic loci can be  discovered, as in our study, and the 
biological role of known loci in different populations can 
be understood more clearly. Thus, a more effective approach to the 
prevention of AD can be achieved by initiating treatments at the 
preclinical stage (Andrieu et al., 2015), a timing frame when the 
pathophysiological mechanisms of the disease begin, decades before 
the clinically detectable symptoms of AD appear (Sperling et al., 
2014). Including underrepresented populations such as the PR 
population, provides an important opportunity to evaluate the role 
of different ancestral backgrounds in AD, and may pave the way for 
more accurate prevention, early detection, and intervention of AD 
in this and other admixed Hispanic populations.
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