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Background: Dementia can be  caused by numerous different diseases that 
present variable clinical courses and reveal multiple patterns of brain atrophy, 
making its accurate early diagnosis by conventional examinative means 
challenging. Although highly accurate and powerful, magnetic resonance 
imaging (MRI) currently plays only a supportive role in dementia diagnosis, 
largely due to the enormous volume and diversity of data it generates. AI-based 
software solutions/algorithms that can perform automated segmentation and 
volumetry analyses of MRI data are being increasingly used to address this 
issue. Numerous commercial and non-commercial software solutions for 
automated brain segmentation and volumetry exist, with FreeSurfer being the 
most frequently used.

Objectives: This Review is an account of the current situation regarding the 
application of automated brain segmentation and volumetry to dementia 
diagnosis.

Methods: We performed a PubMed search for “FreeSurfer AND Dementia” and 
obtained 493 results. Based on these search results, we conducted an in-depth 
source analysis to identify additional publications, software tools, and methods. 
Studies were analyzed for design, patient collective, and for statistical evaluation 
(mathematical methods, correlations).

Results: In the studies identified, the main diseases and cohorts represented 
were Alzheimer’s disease (n  =  276), mild cognitive impairment (n  =  157), 
frontotemporal dementia (n  =  34), Parkinson’s disease (n  =  29), dementia with 
Lewy bodies (n  =  20), and healthy controls (n  =  356). The findings and methods 
of a selection of the studies identified were summarized and discussed.

Conclusion: Our evaluation showed that, while a large number of studies and 
software solutions are available, many diseases are underrepresented in terms 
of their incidence. There is therefore plenty of scope for targeted research.
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1 Introduction

According to the WHO, dementia is currently the seventh most 
common cause of death and one of the leading causes of disability and 
dependency among older people worldwide (World Health 
Organization, 2017). Furthermore, its incidence is likely to increase in 
coming years caused by aging populations. Accordingly, its early 
detection and prevention are matters of increasing urgency, 
necessitating methods for accurate diagnosis of the underlying disease. 
Diagnosis of dementia by clinical examination is often inconsistent 
and subject to inaccuracy. Additional biomarkers, such as cerebrospinal 
fluid (CSF) and positron emission tomography (PET), are often not 
groundbreaking either. However, magnetic resonance imaging (MRI) 
enables reliable and unambiguous classification of brain status.

Current high-resolution MRI is performed using magnetic field 
strengths of up to 7 Tesla, enabling excellent representations of brain 
tissue. However, the enormous amounts of image data generated 
present an obstacle to thorough analysis. An increasingly common 
method to address this obstacle is the use of computer software 
capable of automated MRI volumetry, whereby the volumes of specific 
anatomic brain regions are calculated using segmentation algorithms 
and detailed atlases.

Such segmentation tools enable a fully automated and objective 
assessment of brain atrophy. The results can confirm suspected 
diagnoses or provide differential diagnoses. Standardized use can also 
save time in radiological reporting.

Currently, one of the first and most recognized software solutions 
is FreeSurfer, (Fischl, 2012) with 2,925 results being returned on 
PubMed using the search string “FreeSurfer.” It performs calculations 
lasting hours to days to produce robust and reliable results. For 
comparison, its “little brother” FastSurfer (Henschel et al., 2020) only 
returns 16 results on PubMed (search string “FastSurfer”).

The increasing prevalence of high-resolution sequences and 
7-Tesla MRI could lead to problems for software solutions based on 
fixed-resolution or resolution-ignorant convolutional neural networks 
(CNNs). One possible solution is the new FastSurferVINN (Henschel 
et al., 2022). A slower high-resolution stream for FreeSurfer also exists 
(Zaretskaya et al., 2018). In any case, we are certain to see changes in 
the volumetry software used due to this trend in the next few years.

The aim of this review was to assess the status of automated 
volumetry in 2024 and identify recommendations, gaps, and 
opportunities within MR brain research. The focus was on FreeSurfer 
software and Alzheimer’s disease.

Even if global cortical surface area, thickness, and volume are not 
related to cognitive scores (Li et al., 2023), volumetric analysis is a 
useful tool to study and observe dementias. For instance, new 
Alzheimer medications based on antibodies against amyloid plaque 
can cause serious side effects leading to Amyloid-Related Imaging 
Abnormalities (ARIAs) or accelerated atrophy (Pinter et al., 2022), so 
for patients taking such medications, regular volumetric monitoring 
of the brain is essential (Withington and Turner, 2022; Van Dyck 
et al., 2023).

1.1 Search terms and included studies

The two major search terms were “dementia AND FreeSurfer” as 
well as “Alzheimer’s disease AND volumetric measurements AND 

brain.” Figure 1 reveals the continuing trend with a steady increase 
(with a possible plateau formation in the last years) in publications on 
PubMed regarding the search queries relevant to this review.

A PRISMA flow chart (Rethlefsen and Page, 2021) of the evaluated 
studies is shown in Figure  2. To reduce the risk of overlooking/
underestimating relevant programs, we additionally performed a deep 
search for all software tools found.

2 Current state of the art

2.1 Evaluated dementias

A PubMed search on “FreeSurfer and Dementia” returned 493 
results, 428 were included. Alzheimer’s disease (AD) was the most 
analyzed disease (40%), followed by mild cognitive impairment 
(MCI), frontotemporal dementia, and Parkinson’s disease (PD). 
Figure  3 illustrates the distribution of dementias evaluated 
using FreeSurfer.

The category “other” includes cohorts with less typical diseases or 
specific groups of interest in certain circumstances associated with 
suspected brain volume loss or fluctuations, such as HIV or Down 
syndrome. Supplementary Figure S1 shows the distribution of these 
entities. The results show that there is still a need for targeted research.

When it comes to the more common dementias, it is noticeable 
that the subgroupings are differently defined depending on the study. 
This makes a comparison, for example in the context of a meta-
analysis, more difficult. More precise definitions appear to 
be necessary, e.g., for subgroups with mild cognitive impairment [e.g., 
MCI with PD or MCI before PD dementia (PDD)] or for classification 
into mild or severe symptoms. Table 1 shows a detailed breakdown of 
our PubMed search.

While the number of Alzheimer’s cohorts examined dominates, 
individual dementias are significantly underrepresented in terms of 
incidence; particularly dementias in which no specific atrophy pattern 
is expected, such as vascular dementia (VD) or dementia with Lewy 
bodies (DLB).

2.2 Volumetric software

Since AD is the most studied dementia, we focused our search on 
this. A PubMed search on “Alzheimer’s disease AND volumetric 
measurement AND brain” revealed 745 results. The search revealed 
that FreeSurfer, SPM, and FSL are currently the most used software 
tools. Figure 4 demonstrates a pie chart of the mostly used tools. For 
a detailed list of software solutions see Table 2.

2.3 Performance assessment of the 
segmentation software

Several statistical parameters for the measurement of accuracy 
and quality of segmentation tools exist. Beside sensitivity, frequently 
used metrics are the dice similarity coefficient (Dice, 1945; Shamir 
et al., 2018) (0–1, higher better). the (Pompeiu-) Hausdorff distance 
(HD) (Birsan and Tiba, 2006) (in mm, lower better), and the mean 
average precision metric (mAP; 0–1, higher better) (Beitzel et al., 
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2009). A further development is the Modified or Robust Hausdorff 
Distance (MHD, HD95) (Huttenlocher et  al., 1993), which is not 
sensitive to local outliers.

Often, manual segmentation (or another validated gold standard) 
is not used as a comparison segmentation to determine these values, 
but another automatic segmentation (e.g., FreeSurfer).

It is not yet clear whether these statistical values, which have been 
adopted from other areas for the segmentation algorithms, really allow 
a sufficient assessment, especially in brain tumor segmentation 
(Hoebel et al., 2024). Especially with FreeSurfer, it is difficult to find 
exact current parameteres due to the rapid development, and the 
metrics given are often limited to certain areas of the brain and types 
of MRI, e.g., hippocampal volume and 7-Tesla MRI (Hosseini et al., 
2016; Schmidt et al., 2018; Li and Martinez, 2020). A comparison of 
white matter segmentations of FreeSurfer 6, FSL 5 and SPM 12, and 
revealed in simulated MRI following noise level dependant result: 
FreeSurfer (Dice index 0.88–0.90; HD 14–35 mm; MHD 4–6 mm); 
FSL (Dice index 0.89–0.96; HD 20–60 mm; MHD 3–22 mm); SPM 
(Dice index 0.87–0.94; HD 20–25 mm; MHD 4–9 mm) (Li and 
Martinez, 2020).

3 Tailor-made software solutions for 
the right question

3.1 The (“symmetric”) healthy or aged brain

Multiple software solutions have been developed for the 
segmentation and volumetry of the healthy or aged brain, e.g., 
FreeSurfer (Fischl, 2012), FastSurfer (Henschel et al., 2020), SAMSEG 

(as part of FreeSurfer) (Puonti et  al., 2016; Cerri et  al., 2023), 
NeuroQuant (Ross et al., 2012; Yim et al., 2021), SynthSeg (Billot et al., 
2023), DeepBrain (Suh et al., 2020), volBrain (Manjón and Coupé, 
2016), inBrain (Lee J. et al., 2021; Lee J. Y. et al., 2021), CAT-12 (Gaser 
et al., 2022), icobrain dm (Struyfs et al., 2020), FSL (Smith et al., 2004; 
Woolrich et  al., 2009; Jenkinson et  al., 2012) (with several 
segmentation tools), and Siemens Morphometry (Rahmani 
et al., 2023).

3.2 The “non-healthy” brain

Algorithms for the segmentation of the asymmetrical, unhealthy 
brain (tumor, stroke, traumatic brain injury) are not part of this 
review, but should be mentioned for completeness. In these cases, 
sometimes a more complex segmentation is needed, because 
symmetric approaches and atlases as described in the section above 
could fail.

One of the best known representatives is DeepMedic (Kamnitsas 
et al., 2017). Several hundred other approaches for the segmentation 
of brain tumors exist, many of which are compared annually in the 
BRATS challenge (Kazerooni et al., 2023), although validation and 
evaluation have also proven to be complicated. Recently, several new 
approaches based on generative adversarial networks (GANs) or 
U-Nets have been published, e.g., MMGan (Gao et  al., 2023), 
nnUNetFormer (Guo et al., 2023), and multi-scale context UNet-like 
network (Qian et al., 2024).

Brain volume loss can also be  detected in several diseases in 
younger patients, e.g., corpus callosum and thalamus volumes can 
decrease in patients with multiple sclerosis (Fujimori and Nakashima, 

FIGURE 1

The PubMed time line of the four relevant search terms (green: 2024).
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2024). However, for these studies it must always be noted that the 
accuracy of some segmentation algorithms may be reduced by the 
presence of multiple lesions (De Sitter et al., 2020).

4 Anatomic regions of interest

4.1 Cortex and white matter

The segmentation and volumetrization of cortex and white matter 
is the basis of all brain volume diagnostics. Brain volume loss occurs 
in both aging and dementia, but it is locally or globally accelerated in 
most central nervous system diseases, e.g., AD (Chwa et al., 2023) or 
PD (Jahanshahi A. et al., 2023). Therefore, most studies require a 
suitable control group of the same age.

In addition, it must be  mentioned that brain volume also 
seems to depend on diet (Karstens et  al., 2019; Bramen et  al., 

2023). For example, body mass index and hypothalamic volume 
are associated, and gray-matter-volume loss is described in 
anorexia nervosa, (Lyall et al., 2024) while minor physiological 
factors, like dehydration, blood pressure, caffeine levels, and 
circadian rhythm, do not seem to have any influence (Zahid 
et al., 2022).

However, there are slight differences between individual T1 
sequences and MRI scanners, leading to slight shifts between gray and 
white matter volume. Therefore, this phenomenon can occur when 
analyzing the basal ganglia.

Individual software solutions also show differences from one 
another in (volume) calculations; for example, the voxel-based 
morphometry (VBM) results by SPM and FSL and the grey matter 
volume results by FSL, FreeSurfer, and SPM show dissimilarities 
(Rajagopalan and Pioro, 2015). In an ideal study, all patients would 
be scanned on the same scanner with the same sequence and should 
be analyzed with the same reliable software tool.

FIGURE 2

PRISMA flow chart of the included PubMed studies for both search terms.
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4.2 Thalamic nuclei

An additional FreeSurfer script contains a specific atlas and 
enables the fine segmentation of the thalamic nuclei (Iglesias et al., 
2018). These scripts also work on FastSurfer segmentations, which 
use the same data structures. Many other approaches also exist (Su 
et  al., 2019; Forno et  al., 2023; Pfefferbaum et  al., 2023; Vidal 
et al., 2024).

4.3 Brainstem and cerebellum

There is also an additional FreeSurfer script for this specific 
segmentation (Iglesias et  al., 2015b), but it only offers a rough 
subdivision. For some diseases, such as progressive supranuclear palsy 
(PSP), multiple system atrophy (MSA), and corticobasal syndrome, 
analysis of the brainstem is crucial (Brinia et al., 2023), but it is also 
atrophied in other dementias (Müller et  al., 2023). Deep learning 
approaches are become more widely adopted here (Nigro et al., 2024). 
Some software solution can additionally analyze cerebellar 
hemispheres, e.g., volBrain. CerebNet (Faber et al., 2022) is compatible 
with FreeSurfer and FastSurfer and is able to measure cerebellar lobes.

4.4 Hippocampus

Since the hippocampus plays a crucial role in both AD and 
epilepsy, there are many approaches to its segmentation and volumetry 
in both dementia research and epilepsy research. Hippocampal 
volume can be used as early marker of dementia (Gentreau et al., 2023).

FreeSurfer provides a specific script (Iglesias et al., 2015a) for the 
segmentation of hippocampal subfields and the nuclei of the amygdala 
that supports T1-weighted and T2-weighted sequences.

An example of such a segmentation of a healthy brain/
hippocampus is shown in Figure 5.

Another popular approach is the automatic segmentation of 
hippocampal subfields (ASHS; https://www.nitrc.org/projects/ashs), 
which uses three-dimensional CNNs (Goubran et al., 2020). Several 
studies have compared the different algorithms in patients with AD 
(Mueller et al., 2018; Xie et al., 2018), or across lifespans (Bender 
et al., 2018).

4.5 Cerebral networks and connectomes

Atlas-based segmentations enable the design of connection models 
of the human brain. Such models can be designed using graph theory 
approaches, and several tools have been built, e.g., Brain Connectivity 
Toolbox (Rubinov and Sporns, 2010), eConnectome (He et al., 2011), 
BRAPH (Mijalkov et al., 2017), GRETNA (Wang et al., 2015), GAT 
(Hosseini et al., 2012), and GraphVar (Kruschwitz et al., 2015).

In the future, comparing the connectivity models of patients with 
dementia with those of healthy controls could reveal new disease 
concepts and causes of impairments.

5 Mild cognitive impairment (MCI)

MCI is defined as an intermediate state (or prodromal stage) 
between normal aging and dementia (Petersen et al., 1999) with a 

FIGURE 3

Pie chart showing the distribution of cohorts/diseases returned by the PubMed search “FreeSurfer and Dementia” (n = 428 of 493 studies, 01/01/2024).
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wide range of heterogeneous underlying pathophysiologies. Its 
prevalence in older (>80 years) patients is high (Campos et  al., 
2024). MCI does not necessarily convert into dementia. Subjects 
can recover from it. Diagnosis can be established using several 
tests, e.g., the Montreal cognitive assessment score (Nasreddine 
et  al., 2005; Malek-Ahmadi and Nikkhahmanesh, 2024) or 
minimum mental state examination (Zaudig, 1992). Another 
category is subjective cognitive impairment (SCI), which describes 
a cognitive worsening that cannot be verified by standard tests 
(Garcia-Ptacek et  al., 2014). Such patients are usually more 
educated and thus likely to pass the tests because they have a 
higher baseline cognitive level.

MCI (or SCI in some studies) is often examined as a comparison 
population. In many studies, it is not entirely clear which dementia the 
corresponding MCI will later develop into. In some studies, MCI is 
also divided into subgroups (MCI-AD, MCI-FTD, etc.) depending on 
the study design and protocol.

Aging, MCI, and AD are related with widespread cortical and 
subcortical atrophy and have overlapping atrophy patterns (Chwa 
et al., 2023). Therefore, brain changes in MCI are subtle and show as 
moderate atrophies of the hippocampus and amygdala (Qu et al., 
2023) as well as hypometabolism (Bailly et al., 2015). A recent study 
found altered cortical and subcortical morphometry and asymmetries 
in SCI and MCI (Yang et al., 2023). A meta-analysis revealed that 
differentiation of MCI and AD using the whole hippocampus volume 
was not significantly worse than a hippocampal subfield analysis 
(Zhang J. et  al., 2023), mainly because atrophy patterns are not 

restricted to specific subfields. Therefore, a precise differentiation 
should be made earlier, i.e., at the SCI stage.

Asymmetry of hippocampal subfields is often present in MCI and 
AD (Jahanshahi A. R. et al., 2023), but its diagnostic value is still a 
matter of debate (Singh et al., 2023).

A large Finnish study tried to prevent cognitive impairment with 
a 2-year multimodal intervention (diet, exercise, cognitive training, 
and vascular risk monitoring). They could not find significant 
differences between the intervention and control groups for regional 
brain volume changes (Stephen et al., 2019).

6 Dementias

6.1 Alzheimer’s disease

As revealed by our PubMed search “FreeSurfer and Dementia,” 
AD (Stoddart, 1913) is the most common (Stoeck et al., 2012) and 
best-researched dementia in terms of volumetric analysis. It represents 
an enormous global burden (Gauthier et al., 2022). The existence of 
several subtypes makes precise detection by MRI methods in some 
cases difficult or impossible, especially in patients with hippocampal 
sparing patterns or without atrophy (Ferreira et al., 2017). Another 
limiting factor is its potential co-existence with other diseases in older 
patients, e.g., vascular risk factors and carotid atherosclerosis are also 
associated with cortical volume loss (Cardenas et al., 2012), which 
supports the “double hit” theory for AD.

Even though the importance of volumetry is increasing, 
conventional visual radiologically ratings remain a valid and reliable 
alternative, e.g., the medial temporal lobe atrophy scale (Molinder 
et al., 2021) or the entorhinal cortex atrophy (ERICA) score (Enkirch 
et al., 2018).

In a study by Hari et al. (2023), morphometric analysis of medial 
temporal lobe subregions revealed a volume reduction of the 
entorhinal cortex as well as of the anterior amygdaloid area in the early 
stages of SCI-AD and MCI-AD, which partially correlates with the 
pathological findings of Braak, who found the origin of neurofibrillary 
(Tau) pathologies in the transentorhinal and entorhinal region (as well 
as the hippocampus) (Braak et al., 2006). So the medial temporal lobe 
remains the main target for early diagnoses, even if age-related and 
amyloid-beta-independent tau deposition is also observed in the 
frontal and parietal cortical regions (Wuestefeld et al., 2023).

A study in China emphasized the importance of the volume of 
the presubiculum in hippocampal subfield analysis and 
demonstrated that a specific volume loss is associated with memory 
decline during the early phase and progression of AD (Xiao 
et al., 2023).

FreeSurfer’s Bayesian longitudinal segmentation of hippocampal 
substructures (Iglesias et  al., 2016) performed well in two large 
collectives for Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
(Mueller et al., 2005) and Minimal Interval Resonance Imaging in 
Alzheimer’s Disease (MIRIAD) (Malone et al., 2013). The sensitivity 
to distinguish between controls and patients with AD was increased. 
New atrophy patterns or differences in atrophy rates, e.g., in the right 
parasubiculum, left and right presubiculum, as wells as right 
subiculum, were found.

In some studies, commercial software tools, e.g., IcoBrain DM, 
performed partially better than FreeSurfer regarding volumetric 

TABLE 1 Evaluated cohorts/diseases returned by the PubMed search 
“FreeSurfer and Dementia” (n  =  428 of 493 studies, 01/01/2024).

Group Found 
cohorts (n)

Found 
cohorts (%)

Sum 1,049 100.0%

Healthy / control group 356 33.9%

Alzheimer’s disease 276 26.3%

Mild cognitive impairment 157 15.0%

Other 63 6.0%

Frontotemporal dementia 34 3.2%

Parkinson’s disease 29 2.8%

Dementia with Lewy bodies 20 1.9%

Primary progressive aphasia* 19 1.8%

Vascular dementia 16 1.5%

Parkinson’s disease dementia 12 1.1%

Subjective cognitive impairment 10 1.0%

Corticobasal degeneration 10 1.0%

Huntington’s disease 10 1.0%

Progressive supranuclear palsy 8 0.8%

Amyotrophic lateral sclerosis 8 0.8%

Posterior cortical atrophy 8 0.8%

Multiple sclerosis 5 0.5%

Cerebral amyloid disease 4 0.4%

ALS-FTD spectrum 3 0.3%

Multiple system atrophy 1 0.1%
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errors, test–retest reliability, and diagnostic performance for AD 
(Wittens et al., 2021).

A standardized medial temporal atrophy volume ratio, which was 
calculated by QBraVo based on SPM8, revealed a good diagnostic 
performance for differentiation of AD and control group, as well as 
MCI and a control group (Ryu et al., 2022).

Resting-state functional connectivity and hippocampal radiomic 
features can also provide information about compensatory 
mechanisms and cognitive decline in the event of progressive volume 
loss of the hippocampus (Du et al., 2023).

Of course, Alzheimer’s disease spreads to many other areas of the 
brain over time, for example cortical thinning in the dorsal lateral 
prefrontal cortex and/or superior parietal cortex can be associated 
with a decline in cognitive-motor automaticity and task prioritization 
(Longhurst et al., 2023).

The complex division into multiple subclasses can be simplified 
using artificial intelligence methods. A study from Columbia 
demonstrated a possible classification of Alzheimer’s disease stages 
using deep learning (Mora-Rubio et al., 2023).

A method to handle the heterogeneity of AD atrophy patterns is 
normative modeling, with one study presenting a possible solution 
using multimodal variational autoencoders to identify such deviations 
(Kumar et al., 2023).

Another mathematical approach is the so-called graph theory, 
which defines the brain as a network of nodes and edges (connections), 
with pathologies corresponding to defects within this architecture. 
While the nodes usually represent specific segmented brain areas and 
their volumes, definition of their edges can vary from study to study, 

but often consists of correlations between brain areas. A study from 
Japan revealed left dominant morphometric changes of these networks 
in patients with AD (Maruoka et al., 2023). This method also enables 
the prognosis of epilepsy in patients with AD, as demonstrated in a 
study from Korea (Lee et al., 2023).

When considering Alzheimer’s disease, one should not forget that 
an inflammatory component is also suspected (Newcombe et  al., 
2018). Interestingly, a study from Japan found a negative correlation 
between inflammation values (high-sensitivity C-reactive protein) and 
disease progression (Zhang Y. et al., 2023).

White matter hyperintensities also play an important role in the 
AD and MCI spectrum. In a multicenter evaluation of automated 
segmentation algorithms using 3D fluid-attenuated inversion recovery 
(FLAIR) sequences, deep learning based (re-trained) algorithms 
performed well (Gaubert et al., 2023).

6.2 Frontotemporal dementia

Frontotemporal dementia or frontotemporal lobar degeneration 
(FTD/FTLD) is a common cause of dementia in patients typically 
between 45–65 years (Galimberti and Scarpini, 2012). The most 
frequent phenotype is the behavioral variant frontotemporal dementia 
(bvFTD) (Rascovsky et al., 2011). Other subtypes are semantic variant 
PPA (svPPA) and non-fluent variant PPA (nfvPPA). Both sporadic 
and familial FTD exists. The genetic overlap of bvFTD with 
amyotrophic lateral sclerosis (ALS) form a special variant called 
FTD-ALS.

FIGURE 4

Pie chart of software solutions in reports retrieved from Pubmed with the search term “Alzheimer’s disease volumetric measurement brain” (most 
recent; descending). The newest 350 entries (from 2024 to 2015) were evaluated, 293 were included. All solutions with fewer than three entries are 
summarized under “Other”.
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TABLE 2 Shows more details of a short PubMed search relating to software solutions.

Software Developer Task/diagnosis %

AccuBrain® 9 Chak Cheung Street, Shatin, New Territories, Hong Kong Whole-brain segmentation / AD, MCI, NC, FTD, diabetes Type 

2, CSVD, VD, amyotrophic laterals sclerosis, HIV-associated 

neurocognitive disorder, hippocampal sclerosis, NMOSD

2.2%

ANALYZE software package 

(1989)

Mayo Foundation, Rochester, MN, USA (obsolete) The ANALYZE7.5 file format was the basis of many 

new software solutions (e.g., SPM, FSL, FReeSurfer)

0.3%

ART (Automatic Registration 

Toolbox)

Nathan Kline Institute for Psychiatric Research, 

Orangeburg, NY, United States

(obsolete) NC 1.0%

ASEG Old atlas, part of FreeSurfer Whole-brain segmentation, hippocampal volume / epilepsy 0.3%

CAT12 (SPM12 and MathLab 

Lib based)

Structural Brain Mapping Group at the University of Jena, 

Germany

Whole-brain segmentation, hippocampal volume / epilepsy, 

bipolar disorder, stroke, autism, depression, PD, AD, cocaine 

use disorder, MS, VD, schizophrenia, NC

3.2%

CIVET McCo nnell Brain Imaging Centre, Montreal Neurological 

Institute, McGill University, Montréal, Canada

Whole-brain segmentation, hippocampal volume / PD, AD, NC, 

drug use disorder, epilepsy, MS, autism, schizophrenia

0.3%

cNeuro® Combinostics, Hatanpään valtatie 24

33,100 Tampere, Finland

Whole-brain segmentation, MS 1.0%

FastSurfer Martinos Center for Biomedical Imaging and Harvard 

Medical School, Boston, USA

Whole-brain segmentation, MS, stroke, multiple system atrophy, 

DLB, PD, progressive supranuclear palsy

1.0%

FreeSurfer (no version info) Whole-brain segmentation, hippocampal, thalamic and brain 

stem subsegmentations / dementia, psychiatry, MS, PD, NC, 

epilepsy…

15.4%

Freesurfer 4.1 1.0%

Freesurfer 4.3 1.0%

Freesurfer 5.0 1.0%

Freesurfer 5.1 6.4%

Freesurfer 5.2 0.3%

Freesurfer 5.3 8.3%

Freesurfer 6.0 9.9%

Freesurfer 7.1.1 1.9%

FSL (without further 

specification)

Analysis Group, FMRIB, Oxford, UK Whole-brain segmentation, hippocampal volume, thalamic 

volumetry / MS, epilepsy, NC, radiotherapy-associated brain 

changes, psychiatric disorders, …

5.4%

FSL FAST 0.3%

FSL FIRST 2.6%

Gif geodesic information flow M. J. Cardoso, Translational Imaging Group, Centre for 

Medical Image Computing (CMIC), University College 

London, UK

Whole-brain segmentation, basal fore brain, thalamic volumes / 

FTD, MS

0.6%

HAMMER Radiology and BRIC, University of North Carolina at 

Chapel Hill, North Carolina, USA

Whole-brain segmentation, hippocampal volume, AD, epilepsy 0.6%

Hippodeep Benjamin Thyreau, Tohoku University, Japan; Institute of 

Development, Aging and Cancer, Tohoku University, Japan

hippocampal volume / AD, epilepsy 0.3%

HIPS Hippocampal Pipeline of volBrain hippocampal volume / AD, epilepsy, childhood maltreatment 0.3%

icobrain dm Icometrix, Kolonel Begaultlaan 1b / 12, 3,012 Leuven, 

Belgium

Whole-brain segmentation, hippocampal volume / AD, MCI, 

FTD epilepsy, depression

0.3%

Inbrain MIDAS IT, Seongnam, South Korea Whole-brain segmentation, hippocampal volume / AD, MCI, 

NC

0.6%

MriCloud Center for Imaging Science (CIS), Whiting School of 

Engineering, Johns Hopkins University, Baltimore, USA

Whole-brain segmentation, corpus callosum, hypothalamis 

structures / hydrocephalus, schizophrenia, depression, AD, 

MCI, NC, PD

0.3%

MUSE Center for Biomedical Image Computing and Analytics 

(CBICA), University of Pennsylvania, Philadelphia, USA.

Whole-brain segmentation / AD, NC 1.0%

(Continued)
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Patients with FTD suffer from different symptoms, e.g., hoarding and 
obsessive-compulsive behaviors. A related study indicated associations of 
cortical atrophies of the left temporal lobe, the left insula and the anterior 
cingulate gyrus with hoarding, while obsessive-compulsive behaviors 
were associated with cortical decrease in the anterior cingulate, the 
bilateral hippocampus, and amygdala (Mitchell et al., 2019).

Neuropsychiatric symptoms are most common in FTD and are 
associated with cortical atrophies in cingulate, insular, and inferior 
frontal brain areas (Ozzoude et al., 2023). Lesion and/or atrophy of the 
medial and lateral ventral prefrontal cortex may also increase apathy 
and other inappropriate behaviors (Huey et  al., 2015). Generally, 
apathy seems to be  associated with volume loss of the ventral 
prefrontal cortex, the posterior cingulate cortex and the adjacent 
lateral cortex, as well as the superior temporal sulcus in both AD and 
FTD (Huey et al., 2016).

The association of CSF biomarkers and distinct brain atrophies is 
not yet sufficiently understood. However, cortical atrophies can 
be  partially explained by levels of Aβ and 14–3-3  in AD, and 
neurofilament light chain and 14–3-3 in FTD (Falgàs et al., 2020).

The determination of ventricular volume as a simple follow-up 
parameter in FTD was suggested in a study from Tavares et al. (2019). 
In particular, the volume of the temporal horns often seems to provide 
an excellent follow-up parameter for several diseases (Erten-Lyons 
et al., 2006).

A machine learning approach has shown good differentiation 
between FTD and other dementias using FreeSurfer segmentation, 
numerous clinical and MRI data (De Francesco et  al., 2023). 
Differentiation of AD and FTD appears to be possible through the 
reduced cortical thickness in the posterior cingulate gyrus, which 
seems to be characteristic of typical and atypical AD, but not FTD 
(Lehmann et  al., 2010). In one study, FTD patients had a more 
selective loss in frontal cortex and in anterior parts of the temporal 
lobes compared with AD patients (Möller et al., 2016).

A longitudinal FreeSurfer study of Alzheimer’s disease and 
behavioral-variant frontotemporal dementia revealed that, at 
follow-up, patients with AD demonstrate a pronounced cortical 
volume loss in the inferior parietal and posterior cingulate cortex, 
while patients with bvFTD show a greater volume loss in the striatum 
(Landin-Romero et al., 2017).

A (multi-level) hierarchical classification algorithm of AD versus 
FTD (and bvFTD versus PPA, and nfvPPA versus svPPA) revealed 
distinct discriminative areas for each comparison using machine learning 
and demonstrated an overall accuracy of 75.8% (Kim et al., 2019). A 
study from Barcelona, which tried to distinguish control, AD, and FTD 
groups using support vector machines, showed an accuracy of 82% in 
distinguishing the control and FTD groups, and 63% in distinguishing 
the AD and FTD groups (the accuracy improves to 75% after adding 
longitudinal data) (Pérez-Millan et al., 2023a; Pérez-Millan et al., 2023b).

TABLE 2 (Continued)

Software Developer Task/diagnosis %

Neuromorphometrics Neuromorphometrics, Inc., 3 Seal Harbor Rd. PH 31, 

Winthrop, MA 02152–1,083 USA

Whole-brain segmentation, hippocampal volume / AD, MCI, 

NC, epilepsy,PD, amyotrophic laterals sclerosis, head and neck 

cancer survivors

0.3%

NeuroQuant CorTechs Labs Inc. San Diego, USA Whole-brain segmentation, hippocampal volume / AD, MCI, 

NC, epilepsy, schizophrenia, hypoxia, CVOD19-associated brain 

volume loss, MS, radiotherapy-associated brain volume loss, …

4.8%

Neuroreader NR; Brainreader Aps, Horsens, Denmark Whole-brain segmentation, hippocampal volume / AD, MCI, 

NC, FTD, epilepsy, primary progressive aphasia

1.3%

PMOD / pNEURO Bruker’s Preclinical Imaging Division, Industriestrasse 26, 

8,117 Fällanden, Switzerland

PET, SPECT and MRI, whole-brain segmentation, olfactory 

cortex and hippocampus / stroke,

0.6%

Quantib® ND DeepHealth, 212 Elm St., Somerville, MA, USA Whole-brain segmentation, white-matter lesions / FTD, AD, 

MCI, NC, patent foramen ovale, stroke, VD

0.6%

SAMSEG Koen Van Leemput, available in FreeSurfer 7.2 Whole brain segmentation, contrast adaptive, white matter 

lesions / MS, VD

0.6%

SLANT (Spatially Localized 

Atlas Network Tiles)

Vanderbilt University, Nashville, TN, USA Whole brain segmentation, 7 T / NC 0.6%

SPM Functional Imaging Laboratory, UCL Queen Square 

Institute of Neurology, London, UK

Whole-brain segmentation, hippocampal volumes / dementia, 

psychiatry, MS, PD, NC, epilepsy…

3.8%

SPM2 0.3%

SPM3.0.4 0.3%

SPM8 3.5%

SPM12 9.0%

volBrain ITACA, Valencia, Spain and Pictura Research Group, 

Bordeaux, France

Whole-brain segmentation, white matter lesions / MS, Lupus 

erythematous, migraine, AD, MCI, NC, …

1.6%

Of course, this overview can never be complete in such a rapidly developing environment. AD, Alzheimer’s disease; MCI, mild cognitive impairment; VD, vascular dementia; CSVD, cerebral 
small vessel disease; FTD, frontotemporal dementia; NC, normal control; group; DLB, dementia with Lewy bodies; MS, multiple sclerosis; NMOSD, neuromyelitis optical spectrum disorders; 
PD, Parkinson’s disease.
*This list does not claim to be complete, e.g., DeepBrain (VUNO Inc., Seoul, South Korea), SynthSeg + (Centre for Medical Image Computing, University College London, London, UK) or 
Siemens Morphometry (AI-Rad Companion; Siemens Healthineers), BrainSuite (University of California, Los Angeles and University of Southern California, California, United States) were 
not found by the search term.
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White matter hyperintensities and cortical atrophy are associated 
with a loss of empathy (Ozzoude et al., 2022). Emotional decline in 
bvFTD could be  triggered by an atrophy of the right pregenual 
anterior cingulate cortex (Sturm et al., 2013). In 2023, a study revealed 
significant atrophies of the frontotemporal cortex and the bilateral 
anterior-dorsal thalamus in sporadic bvFTD (Jakabek et al., 2023). 
Some patients with bvFTD suffer from extrapyramidal symptoms, 
which could be caused by brainstem atrophy (Heikkinen et al., 2022).

Repeat expansion within C9orf72 is the most common genetic 
cause of FTD, which especially seems to be associated with gray matter 
changes (Popuri et al., 2018), a thalamic atrophy (Bonham et al., 2023) 
and a loss of brain stem white matter (Pérez-Millan et al., 2023a; Pérez-
Millan et al., 2023b). Dyslexia susceptibility genes play an important 
role in frontotemporal dementia as well and are associated with 
specific local cortical thickness reduction (Paternicó et al., 2016). In 
svFTD and nfvPPA, different patterns of cortical atrophy are observed 
(Rohrer et al., 2009). The rate of brain volume loss in FTD varies 
depending on the mutation, as demonstrated for MAPT and GRN 
(Whitwell et  al., 2011). Pre-symptomatic mutation carriers could 
be useful for disease monitoring (Borrego-Écija et al., 2021).

Cortical thinning and regional prefrontal cortical atrophy has also 
been observed in patients with ALS-FTD (Schuster et al., 2014; Ratti 
et al., 2021).

6.3 Dementia with Lewy bodies (DLB)

Although DLB is the second most common dementia of the 
elderly (>65 years) (Walker et al., 2015), it seems to be one of the least 
scientifically understood diseases. One review revealed a lack of 
detailed understanding of its clinical course, neuropathology, genetic 
factors, and molecular mechanism (Outeiro et al., 2019). MRI is still 
only a supportive marker in the diagnostic pathway (McKeith et al., 
2017, 2020).

Studies have reported focal pronounced atrophies of the substantia 
innominata (Hanyu et al., 2007) and the insula (Tisserand et al., 2024). 
A low hippocampal volume is also associated with a risk of DLB in 
patients with MCI (Kantarci et al., 2016). But DLB shows significantly 
larger hippocampal volumes than AD and MCI (Mak et al., 2014, 
2017). Atrophy of extra-hippocampal structures linked to visual 
functions were found in patients with DLB as well (Delli Pizzi et al., 

2016). DLB subgroups with psychiatric and cognitive onset showed 
different atrophy patterns (Hansen et  al., 2022) of the substantia 
innominate. The caudate nucleus appears to be relatively unaffected 
by global atrophy (Khadhraoui et al., 2022), while the brainstem also 
atrophies at the same rate (Müller et al., 2023). Gray matter atrophy is 
associated with decrease in dual task gait in DLB (Subotic et al., 2023).

More prospective and longitudinal studies for the evaluation of 
MRI (especially volumetric analyzes), FDG-PET, biomarkers, and 
clinical tools are needed (Hansen et al., 2023a,b; Burgio et al., 2024).

6.4 Parkinson’s disease dementia (PDD)

To begin with, a distinction must be  made between PD, 
PD-MCI, and PDD. The worse the cognitive state, the more 
advanced atrophy is to be expected. A meta-analysis of patients 
with PD revealed a regional atrophy that mainly manifests in the 
gray matter (He et al., 2020), but with several limitations. Another 
study (Říha et  al., 2022) reported patients with PD show an 
accelerated volume loss of the hippocampal, which could be  a 
marker for a dementia conversion (Low et al., 2019). Hippocampal 
subfield analysis revealed significantly smaller volumes in patients 
with PD-MCI than in patients with PD but without cognitive 
impairment (Becker et  al., 2021). Additionally, a pronounced 
cortical thinning was found in PD patients with MCI compared 
with those without (Mak et  al., 2015). A study from Singapore 
revealed pronounced baseline atrophy of the thalamus and 
progressive atrophies of thalamus, caudate nucleus, presubiculum, 
and cornu ammonis 1–3 (Foo et al., 2017). Dopamine loss may 
support the development of cortical atrophies (Sampedro 
et al., 2019).

In a four-year follow-up study, cortical thinning was correlated 
with impairment in visuospatial and visuoperceptual performance 
(Garcia-Diaz et al., 2018b), while another study found a link between 
poor test performance and a pronounced cortex atrophy of the lateral 
temporo-parietal regions (Garcia-Diaz et al., 2018a).

An association of white matter hyperintensities with global brain 
atrophy and cognitive impairment has been reported (Chen et al., 
2020). A mild midbrain atrophy was found in 20% of PD patients 
(Sako et al., 2023). A more pronounced atrophy of the corpus callosum 
was found in patients with PDD than in PD and PD-MCI (Goldman 

FIGURE 5

Example of FreeSurfer’s segmentation (HBT, Head Body Tail) of hippocampal subfields without nuclei of the amygdala in a 1.5-Tesla T1-MPRAGE 
sequence, transversal (left), coronary (middle) and sagittal (right).
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et al., 2017). Left-sided olfactory amygdala volume reduction is not 
only associated with hyposmia but with cognitive impairment in 
patients with PD and can also predict a possible shift to PDD (Ay 
et al., 2023). The cortical atrophy of PDD is less severe than that in AD 
or DLB (Colloby et al., 2020). An asymmetric course with an early 
left-sided atrophy and late right-hemisphere involvement was revealed 
in a study from the USA (Claassen et al., 2016).

Therefore, MR volumetry can potentially play a role in the 
early detection of progression from PD to PDD (Trufanov 
et al., 2013).

6.5 Vascular dementia (VD)

White matter lesions can be  visually assessed better in T2-or 
FLAIR-weighted images than in T1-weighted sequences, which are 
usually required by segmentation algorithms. The classic Fazekas score 
(Fazekas et al., 1987) is still used today to simplify assessments, but it 
has long since ceased to be suitable for fine classification and follow-up 
monitoring. While Fazekas 0 and 1 are usually not considered VD, a 
score of 2 can describe early VD, while a score of 3 can represent classic 
VD. However, there is no fine granular classification in the score, which 
is needed to describe a progressive disease.

The reasons for such lesions are diverse and range from stroke, 
arterial hypertension (Sierra, 2014), atrial fibrillation, arteriosclerosis 
(Kim et al., 2014), and carotid stenosis to rarer diseases of large and 
small vessels (Chojdak-Łukasiewicz et al., 2021) to genetic diseases 
such as CADASIL (Kalimo et al., 1999) and CARASIL (Müller et al., 
2020). Vitamin D insufficiency is also linked with white matter lesions 
(Annweiler et  al., 2015). Subcortical ischemic vascular dementia 
(SIVD) is a term that describes a disease with the typical subcortical 
MR lesions in order to separate it from other causes, like large 
infarctions (Chui, 2007).

Volumetric approaches, which are significantly more suitable, 
show an association of measured global lesion volumes with this 
Fazekas Score (Andere et  al., 2022). A combination of T1-and 
T2-weighted sequences is probably the most accurate way to 
determine such lesion volumes, otherwise adapted normalizations and 
metrics are recommended (Valdés Hernández et al., 2017).

A high lesion load must be viewed as a possible cause of dementia 
(or as secondary or mixed dementia), especially in old people 
(Jellinger and Attems, 2010). Especially, frontal white matter 
hyperintensities could have a strong impact in cognitive impairment 
of older adults (Boutzoukas et al., 2021).

Another reason for neuropsychiatric deterioration in addition to 
the lesion itself can be the induced focal thinning in connected cortical 
regions (Duering et al., 2012). Furthermore, a high lesion load has 
been associated with hippocampal atrophy in mild cognitive 
impairment in a study from Sweden (Eckerström et al., 2011). A study 
from China reported cognitive deterioration with abnormalities in the 
brain network between hippocampal subfields and the whole cerebral 
cortex (Wang et al., 2018). Silent micro infarction may also play a 
crucial role (Knopman et al., 2015).

Besides FreeSurfer, several other white matter tools exists, e.g., 
Brain Intensity AbNormality Classification Algorithm (BIANCA, part 
of FSL) (Griffanti et al., 2016) and UBO Detector (Jiang et al., 2018). 
However, the right choice of sequence and segmentation algorithm is 
essential (Hotz et al., 2022).

A study revealed an association between cortical volume and 
cognitive impairment in patients with white matter lesions using 
FreeSurfer (Liu et al., 2021). In addition to the information provided 
by volumetry, MR perfusion (e.g., arterial spin labelling) can also 
detect brain areas with reduced blood flow in vascular diseases 
(Gyanwali et al., 2022).

Stroke-dependent severe neurocognitive decline appears in 
approx. 10% of patients up to 3 months after stroke (Aamodt et al., 
2021). In the years after a stroke, a progressive ipsilateral brain volume 
reduction has also been observed (Salah Khlif et al., 2022).

Hippocampal lesions may explain memory deficits in patients 
with VD (He et  al., 2022). Hippocampal subfield volumetry via 
FreeSurfer revealed a significant volume reduction of the left 
hippocampus, left subiculum, presubiculum, and the right CA4/
dentate gyrus in patients with vascular lesions and MCI (Li et al., 
2016). Another reason fot such memory impairments could be cortical 
thinning in the precuneus and medial temporal lobe (Chen 
et al., 2021).

Regarding white matter lesions, deep learning may be a promising 
solution to specifically classify, monitor, and evaluate these lesions. A 
study using VUNO Med-DeepBrain (9F, 479, Gangnam-daero, 
Seocho-gu, Seoul, Korea) and FLAIR images demonstrated the 
successful classification via the Fazekas scale and could distinguish 
non-SVID from SVID (Joo et al., 2022). The main architecture of most 
deep learning solutions is actually still CNN based (Dong and 
Hayashi, 2024).

6.6 Cerebral amyloid angiopathy (CAA)

The accumulation of amyloid β (Aβ) in the vascular walls of 
intracranial (micro-) vessels defines CAA as a form of VD (Wang et al., 
2024). These deposits can lead to (atypical) brain hemorrhages. CAA 
patients are usually significantly older and a overlaps with other 
dementias exist. This may be the reason why no significant subcortical 
atrophy has been observed in some studies (Chen et al., 2023). However, 
most studies suggest that CAA also leads to cortical thinning (Subotic 
et al., 2021). A large study demonstrated significant losses of whole 
cortical volume as well as bilateral hippocampus, amygdala, thalamus, 
left caudate and right putamen volumes in patients with positive 
amyloid status (Ten Kate et al., 2018).

In patients with amnestic MCI, the amyloid status can be predicted 
by hippocampal volume, grey matter volume, or the ratio of 
hippocampal volume and whole brain volume (Kang et al., 2020).

6.7 Progressive supranuclear palsy (PSP)

PSP as a rare atypical parkinsonism with vertical gaze, 
pseudobulbar palsy, and dementia (Steele, 1964). Volumes of the 
thalamus, mesencephalon, and caudate nucleus are significantly 
reduced in PSP (Coughlin and Litvan, 2020). A study revealed an 
association of gait characteristics in PSP and volumetric changes using 
FreeSurfer (Chatterjee et  al., 2023). The mild pontine atrophy 
compared to the pronounced mesencephalic volume loss is used as a 
diagnostic criterion by many indices along with “neuroradiologic 
signs” on MRI (Slowinski et al., 2008; Hussl et al., 2010; Mittal et al., 
2017; Cui et al., 2020; Lupascu et al., 2023). Additionally, volume loss 
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has been observed in the frontal lobe, particularly the superior frontal 
gyrus (Worker et al., 2014).

Despite a detailed fine segmentation of the brain stem, deep 
learning methods could improve the early detection of patients (Nigro 
et al., 2024).

6.8 Multiple system atrophy (MSA)

MSA is a rare synucleinopathy, characterized by α-synuclein-
positive cytoplasmic deposits. It presents with Parkinsonism and is 
challenging to diagnose for both neurologists and neuroradiologist 
(Goh et al., 2023). It is separated into Parkinsonian (MSA-P) and 
cerebellar (MSA-C) subtypes; atrophies of the putamen, middle 
cerebellar peduncles, pons, and cerebellum are described. However, a 
study did not detect significant volume reductions in cortical 
morphology for MSA compared with that for PD and control groups 
(Worker et al., 2014).

In addition to detailed brain stem segmentation, a deep learning 
approach also shows promise for the future detection of this disease.

6.9 Alcohol dementia/alcohol use disorder

A common secondary disease that also leads to cortical atrophy 
and can be  a disruptive factor is alcohol addiction. The expected 
volume losses are in the left ventral diencephalon, left inferior and 
middle temporal gyrus, left caudate nucleus, brain stem, and 
cerebellum (Squeglia et al., 2014). Interestingly, one study here even 
describes a possible regional recovery of brain volume during 
abstinence (Durazzo et al., 2023). Additionally, a thickness reduction 
of the occipitotemporal cortex and an association with apathy was 
reported (Yang et al., 2020). Hippocampal atrophies, particularly of 
the subiculum, CA1, molecular layer, and hippocampal tail, have also 
been observed (Sawyer et al., 2020).

6.10 Other dementias

Other forms of dementia are very rare and only poorly 
investigated using MR morphometric methods. An exception is 
diseases with a specific atrophy pattern. These include also mixed 
etiologies, for example, semantic-variant primary progressive 
aphasia (svPPA) and posterior cortical atrophy (PCA) (Fazlollahi 
et al., 2023), which are subtypes of FTD, corticobasal degeneration 
and AD, respectively.

Even diseases that are not primarily referred to as dementia can 
present this as a secondary consequence. The most prominent example 
is multiple sclerosis. Besides the thalamic changes, the cortical 
thickness is significantly reduced in older patients with multiple 
sclerosis and cognitive impairment (Jakimovski et  al., 2023). An 
association between whole brain volume and disability exists as well 
(Moridi et al., 2022).

A study revealed a cortical involvement in idiopathic normal-
pressure hydrocephalus (Bianco et al., 2022). This form of dementia is 
also suitable for segmentation algorithms. In addition to calculating 
the volume of the ventricles, a measurement of the areas “compressed” 
by the increase in CSF is also of interest but remains underresearched.

7 Discussion

There are similar reviews about brain segmentation (Singh and 
Singh, 2021) or hippocampal segmentation software (Zhang J. et al., 
2023). Our review provides an up-to-date status of the software and 
dementias researched so far with a focus on FreeSurfer. It makes it 
possible to discover numerous gaps in research and to focus 
specifically on a question that has not yet been researched.

Even if numerous commercial and non-commercial software 
solutions for automated brain segmentation and volumetry exist, 
FreeSurfer seems to be currently the most frequently used. There are 
many reasons for this. In addition to the extensive functions for 
almost all questions and diagnosis, regular updates are also offered. 
The accuracy of the tool is sufficient. Since it has been around for a 
long time, there is a wide acceptance and validation. In addition, it is 
free and there is a large open source community that is constantly 
adapting the extensive documentation. FreeSurfer is compatible with 
many other tools (e.g., FastSurfer, CerebNet).

There are still numerous gaps in research. Be it the few publications 
in the area of Lewy Body Dementia, which has only been sparsely 
researched, or the multiple atrophy patterns in Alzheimer’s disease, 
which are still not fully understood. Many diseases are 
underrepresented, measured by the percentage ratio of entries found 
compared to the prevalence of the disease. There are also only a few 
longitudinal studies that have been conducted using the same 
protocols and MRI devices. The many new artifacts in clinical 
application in 7 T MRI will also influence the segmentation algorithms.

Increasing comorbidities and mixed dementias in old age, as well 
as the normal level of physiological brain involution, are areas of 
research that will occupy us for decades to come.

In addition to volumetry and nuclear-medicinal examinations, 
there are also new possibilities for quantification in MRI using T1-and 
T2-mappings (Gräfe et al., 2022; Müller et al., 2022) or quantitative 
susceptibility mapping (Li et al., 2024). Improvement from 3 to 7-Tesla 
scanning also promises more accurate diagnostics.

7.1 AI-based software/algorithms

Many of the methods mentioned, such as FreeSurfer, are based on 
neural networks and are formally already AI software. Nevertheless, 
other AI algorithms can additionally be applied to all the methods 
mentioned, potentially facilitating new discoveries in the field. In 
particular, when networking multiple different data, such as clinical 
information (Noroozi et al., 2024), electroencephalogram (Carrarini 
et  al., 2024), CSF biomarkers and MR imaging data, enormous 
advantages can arise from AI approaches. Of course, as the number of 
data to be processed increases, so does the computing power and 
time required.

However, a major problem remains the diversity of data, MR 
sequences, and scanners, which make uniform, large, multi-center 
data analysis difficult. Here, too, the advantage of neural networks 
could become apparent, as they already include a very efficient 
normalization of the data.

Besides the brain, the liver is another organ where segmentation 
using AI can deliver promising results (Zhang et  al., 2024), e.g., 
universal models like segment anything model (SAM), MedSAM and 
SAMed2D in hepatocellular carcinoma (Saha and Van Der Pol, 2024).
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7.2 Limitations

Today, neurodegenerative disorders that progress to dementia are 
often identified solely from a clinical perspective (Tahami Monfared 
et al., 2023), without considering the underlying biological substrate, 
such as the CSF biomarker profile. This is an important (disturbing) 
factor that can also lead to incorrect diagnoses and inclusions or 
exclusions within many studies. In the case of small deviations in 
median brain volumes for some diseases, such misclassifications could 
also influence the validity of studies.

Due to the heterogeneity of the diseases and the software tools 
used, it seems almost impossible to conduct a homogeneous PubMed 
search in this research area. Many programs are only used for 
individual diseases and are specifically adapted for them, while a 
universal solution for whole brain volumetry with specialization in 
certain regions using additional scripts/apps, such as those offered by 
FreeSurfer, has not yet been fully adopted by the research community.

We therefore concentrated on the FreeSurfer results. Accordingly, 
a certain bias in the searches with an emphasis on the results in favor 
of FreeSurfer and Alzheimer’s disease is to be expected.

To reduce the potential of underrepresentation of certain 
dementia types and overlooking relevant software tools, we performed 
a deep search on all software tools found. Nevertheless, there remains 
a certain residual risk of having overlooked or underestimated 
software solutions.

In addition, we did not perform a detailed evaluation of accuracy 
and reliability, as the latter in particular was often not available and 
the sensitivity/specificity data often referred to specific comparisons 
of two patient cohorts, which were, however, often defined differently 
in the studies. This significant variability in study protocols affects 
result comparability, and therefore, a detailed evaluation of the 
accuracy and reliability of segmentation tools is almost impossible.

8 Conclusion

Automated brain segmentation and volumetry could enable 
earlier and more reliable dementia diagnosis than other approaches. 
It can also clarify and objectify the radiological findings. However, the 
method is not yet widely established. There is also a lack of studies 
proving its high diagnostic accuracy. In everyday clinical practice, MR 
volumetry still plays little role in smaller hospitals and is mainly 
carried out by university institutions for research and validation 
purposes. The importance of automated evaluation in diagnostics will 

continue to increase in the coming years. Nevertheless, the clinical 
picture, CSF biomarkers and PET will remain important.
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