
Frontiers in Aging Neuroscience 01 frontiersin.org

Identification of key genes and 
diagnostic model associated with 
circadian rhythms and Parkinson’s 
disease by bioinformatics analysis
Jiyuan Zhang 1,2†, Xiaopeng Ma 1,2†, Zhiguang Li 3, Hu Liu 1,4,5, 
Mei Tian 1,4,5, Ya Wen 1,4,5, Shan Wang 1,4,5 and Liang Wang 1,4,5*
1 Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China, 
2 School of Basic Medicine, Hebei Medical University, Shijiazhuang, China, 3 Xingtai Third Hospital, 
Xingtai, China, 4 The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, 
Shijiazhuang, China, 5 Neurological Laboratory of Hebei Province, Shijiazhuang, China

Background: Circadian rhythm disruption is typical in Parkinson’s disease (PD) 
early stage, and it plays an important role in the prognosis of the treatment 
effect in the advanced stage of PD. There is growing evidence that circadian 
rhythm genes can influence development of PD. Therefore, this study explored 
specific regulatory mechanism of circadian genes (C-genes) in PD through 
bioinformatic approaches.

Methods: Differentially expressed genes (DEGs) between PD and control samples 
were identified from GSE22491 using differential expression analysis. The key 
model showing the highest correlation with PD was derived through WGCNA 
analysis. Then, DEGs, 1,288 C-genes and genes in key module were overlapped 
for yielding differentially expressed C-genes (DECGs), and they were analyzed 
for LASSO and SVM-RFE for yielding critical genes. Meanwhile, from GSE22491 
and GSE100054, receiver operating characteristic (ROC) was implemented on 
critical genes to identify biomarkers, and Gene Set Enrichment Analysis (GSEA) 
was applied for the purpose of exploring pathways involved in biomarkers. 
Eventually, immune infiltrative analysis was applied for understanding effect 
of biomarkers on immune microenvironment, and therapeutic drugs which 
could affect biomarkers expressions were also predicted. Finally, we verified the 
expression of the genes by q-PCR.

Results: Totally 634 DEGs were yielded between PD and control samples, and 
MEgreen module had the highest correlation with PD, thus it was defined as 
key model. Four critical genes (AK3, RTN3, CYP4F2, and LEPR) were identified 
after performing LASSO and SVM-RFE on 18 DECGs. Through ROC analysis, 
AK3, RTN3, and LEPR were identified as biomarkers due to their excellent ability 
to distinguish PD from control samples. Besides, biomarkers were associated 
with Parkinson’s disease and other functional pathways.

Conclusion: Through bioinformatic analysis, the circadian rhythm related 
biomarkers were identified (AK3, RTN3 and LEPR) in PD, contributing to studies 
related to PD treatment.
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1 Introduction

Parkinson’s disease (PD) is a long-term, progressive 
neurodegenerative condition that is mainly characterized by motor 
dysfunction, including bradykinesia, instability in posture, muscle 
stiffness, and resting tremor (Yang et al., 2020; Aarsland et al., 2021). 
One distinguishing feature of the illness is the selective loss of 
dopaminergic neurons in the Substantia Nigra pars compacta (SNpc), 
which causes motor symptoms (Maiti et al., 2017; Guatteo et al., 2022). 
Another distinct characteristic of PD is the existence of Lewy bodies, 
which are cytoplasmic aggregates mostly made of ubiquitin and 
α-synuclein (α-syn), within the remaining neurons (Bérard et al., 2022; 
Surguchov and Surguchev, 2022; Stoker and Greenland, 2018). The 
pathophysiology of PD is yet unknown, however, hereditary factors, 
environmental variables, age, and oxidative stress may all play a role in 
the degenerative death of dopaminergic neurons (Chang and Chen, 
2020; Jankovic and Tan, 2020). Living independently is challenging for 
PD patients, which places a huge load on individuals and their families. 
At present, the diagnosis criteria for PD are still dependent only on 
motor symptoms that appear years after the neurodegenerative process 
has begun (Tolosa et al., 2021). But the emergence of symptoms linked 
to dyskinesia has revealed that PD patients are at an advanced clinical 
stage. Symptoms of mobility abnormalities in PD patients can 
be avoided as soon as feasible if the neurodegeneration is identified and 
treated at an early stage.

Although PD is classified as a movement illness, most patients 
also have a wide range of non-motor symptoms (NMS) (Kulisevsky 
et al., 2013). NMS often appear in the early stages of PD and often 
precede motor dysfunction. Nonmotor symptoms such as decreased 
olfaction, constipation, nocturia, neuropsychiatric symptoms, and 
sleep difficulties are very prevalent and can occur many years before 
the clinical diagnosis of PD (Zhang et al., 2016).

The circadian rhythm is a 24-h cycle that governs physiological 
and behavioral processes (Hood and Amir, 2017). Circadian rhythms 
control almost all bodily functions and behaviors, including sleep–
wake cycles, body temperature, blood pressure, food intake, hormone 
release, and others (Serin and Acar Tek, 2019). Circadian rhythm 
disruption is typical in PD early stage. And symptoms associated with 
circadian rhythms can persist into the later stages of Parkinson’s disease 
(Hunt et al., 2022). Circadian rhythm disorder can cause rapid eye 
movement sleep behavior disorder, night insomnia, excessive daytime 
sleepiness and many other sleep disorders (Gros and Videnovic, 2020). 
Circadian rhythm disruption also impacts the corresponding 
fluctuations in blood pressure and heart rate, resulting in hypertension 
at night and hypotension during the day. Circadian rhythm issues for 

PD patients may have an impact on depression propensity, treatment 
responsiveness, body temperature, endocrine abnormalities, and other 
occurrences (Videnovic and Zee, 2015). Polymorphisms in clock genes 
have been linked to an increased risk of PD (De Lazzari et al., 2018; 
Shkodina et al., 2022). It has been postulated that clock gene mutations 
may contribute to PD pathogenesis by altering circadian regulation of 
processes such as mitochondrial bioenergetics, autophagy, and 
neuroendocrine function (Hunt et  al., 2022). Many neurological 
illnesses, including schizophrenia, bipolar disorder, depression, and 
autism, rely on circadian rhythms (Hunt et al., 2022).

We hope to investigate the mechanism of circadian rhythm 
disturbance in Parkinson’s disease patients using high-throughput chip 
technology, as well as uncover relevant molecular markers that may 
diagnose and predict PD at an early stage and monitor patients’ circadian 
rhythm disruption for a long period. We extracted data sets GSE22491 
and GSE100054 and 1,288 circadian rhythm genes from a public database. 
Differential expression analysis, WGCNA, LASSO, SVM-RFE, ROC, etc. 
were used to find circadian-related PD biomarkers, and genome 
enrichment analysis (GSEA) was used to investigate the functional 
pathways connected to PD. Finally, immunoinfiltration analysis was 
carried out in order to better understand the role of biomarkers in the 
immune milieu and to suggest therapeutic drugs that may influence 
biomarker expression. The strategy of this study is shown in Figure 1. It is 
crucial for the diagnosis and therapy of Parkinson’s disease to understand 
the mechanism of circadian biomarkers in the illness. The aim of this 
study was to investigate the regulatory mechanisms of circadian rhythm 
genes in Parkinson’s disease and to provide new ideas to guide the clinical 
treatment of Parkinson’s disease patients.

2 Materials and methods

2.1 Sources of data

Datasets GSE22491 and GSE100054 were acquired via GEO,1 in 
which the GSE22491 included peripheral blood mononuclear cells 
(PBMC) for 10 Parkinson’s disease (PD) samples and PBMC for 8 
control samples (Mutez et  al., 2011). GSE100054 contained 8 PD 
PBMC samples and 8 control PBMC samples (Miki et al., 2018). Then, 
totally 1,288 circadian genes (C-genes) were extracted via Circadian 
Gene DataBase (CGDB) database2 (Li et al., 2017; Yin X. et al., 2022; 
Yin Z. et al., 2022).

2.2 Differential expression analysis and 
ingenuity pathway analysis

After acquiring the (GSE22491) dataset, we first applied log2(x + 1) 
normalization to ensure the accuracy and reliability of the subsequent 
analysis. Subsequently, we performed differential gene analysis using 
stringent criteria (p.adjust<0.05, |log2FC| > 1) (Wang et  al., 2021) to 
accurately screen for genes that were significantly differentially expressed 
between the disease and control groups. Through this process, genes that 

1 https://www.ncbi.nlm.nih.gov/gds

2 http://cgdb.biocuckoo.org
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were lowly expressed in all samples were virtually automatically 
excluded, thus eliminating the need for additional screening for lowly 
expressed genes. Then, for the remaining gene were subjected to GO and 
KEGG through R package clusterProfiler (version 1.58.0) for finding 
functional pathways, filter criteria was adj. p < 0.05 (Yu et al., 2012). 
Subsequently, IPA was implemented in GSE22491 for exploring 
enrichment pathways of DEGs (Krämer et  al., 2014). The symbol 
columns of DEGs and corresponding logFC columns were uploaded to 
IPA software, and preference was set to 3,000 mb, confirming that 
analyzed data was consistent with molecular background. Construction 
of interactions network was set to consider indirect effects, and data 
filtering threshold of 100–2000 was set to include contents of 
MyPathways and List created by individual into analysis together, RUN 
was clicked to start analysis. Z-score > 0  in indicated pathway was 
activated, and Z-score < 0 indicated inhibited. Role of biomarkers in 
transmission of signaling pathway corresponding to the highest value of 
|z-score| was displayed (Wang et al., 2022; Yang et al., 2022). In this 
study, we chosed thresholds of z-score > 2 or z-score < −2.

2.3 WGCNA

In this study, WGCNA analysis was performed on the entire sample 
of the training set using PD as a trait. WGCNA was applied in GSE22491 
via R package WGCNA (version 1.70–3) (Langfelder and Horvath, 
2008). GSE22491 samples were clustered for removing outliers, sample 
clusters were constructed for visualizing results. A soft threshold was 

chosen on the light of facts with constructed network maximally 
conformed to scale-free distribution and R2 closed to threshold 0.85. 
For constructing the co-expression matrix, all detected genes from 
GSE22491 were clustered into different modules. Therefore, neighboring 
and similarity were estimated for introducing coefficient of dissimilarity 
among genes, systematic clustering tree among genes was yielded 
according to coefficient of dissimilarity. Modules (set MEDissThres = 0.25 
to merge similar modules, p < 0.05) with minimum number of 100 genes 
were sifted out for correlations analysis with sample groups (PD and 
control), key module that was highly correlated with PD was sifted out.

2.4 Acquisition of differentially expressed 
C-genes

The DEGs, C-genes and genes in the key module were overlapped 
to yield DECGs, and their localization on chromosomes as well as 
correlations among them were analyzed, GO and KEGG analyses were 
also applied with threshold p < 0.05 to identify relevant 
functional pathways.

2.5 Screening for critical genes via machine 
learning methods

In order to further screen out biomarkers that could diagnose the 
PD, we  applied machine learning algorithm analyses. First, least 

FIGURE 1

Flow chart of this study.
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absolute shrinkage and selection operator (LASSO) logistic regression 
algorithm was implemented on DECGs, and gene coefficient and cross-
validation error maps were gained. The importance degrees of DECGs 
were ranked by support vector machine-recursive feature elimination 
(SVM-RFE) algorithm, and genes with the lowest error rate point were 
sifted out. Subsequently, critical genes were identified after taking the 
intersection of genes obtained by LASSO and SVM-RFE, the 
parameters were set to Lambda.min = 0.0046, AUC > 0.7.

2.6 Assessment of biomarkers’ diagnostic 
value

To evaluate ability of critical genes to distinguish PD from control 
samples, ROC curves were applied in GSE22491 and GSE100054 via 
pROC package (version 1.0.3) (Robin et al., 2011). ROC curves are 
plotted based on different dichotomous thresholds, where the vertical 
coordinate is the true-positive rate (Sensitivity) and the horizontal 
coordinate is the false-positive rate (1-Specificity). The closer the AUC 
(Area Under the Curve) is to 1, the higher the diagnostic accuracy of 
the model. Our analysis is based on an existing dataset designed to 
predict the risk of disease prevalence. We used an AUC value of 0.7 as 
a criterion, and area under the curve (AUC) of critical genes exceed 
0.7 both in GSE22491 and GSE100054 were defined as biomarkers.

2.7 Construction of the diagnostic model

In GSE22491, the “rms” package (Liu et al., 2021) was used to 
construct a biomarker-based column plot model for PD risk 
prediction. Then, using the “pROC” package, we analyzed the ROC 
analysis (AUC > 0.7) of the column charts and evaluated the 
performance of the column charts in predicting the risk of PD, and 
the result was 1, which indicated that the performance was good. In 
addition, based on the column-line diagram prediction model, 
we plotted the calibration curves corresponding to the column-line 
diagrams. The horizontal coordinate of the calibration curve is the 
predicted probability and the vertical coordinate is the actual 
probability, and the closer the slope of the calibration curve is to 1, the 
more accurate the model prediction.

2.8 GSEA, gene set variation analysis

To explore the regulatory pathways or biological functions 
associated with target gene expression, we  performed GSEA 
enrichment analysis. Compared with traditional enrichment analysis, 
GSEA enrichment analysis does not need to specify explicit differential 
gene thresholds, and the algorithm analyzes according to the actual 
overall trend, and does not miss some key information due to 
unreasonable screening parameters. Therefore, GSEA enrichment 
analysis can retain the key information without differential screening, 
and thus find the functional gene sets with insignificant differences 
but very consistent trends. The purpose of single-gene GSEA analysis 
is to find the regulatory pathways or biological functions associated 
with the expression of target genes. In this study, we calculated the 
correlation coefficients of the expression of all the genes with the 
target genes as a sorting criterion for the GSEA enrichment analysis.

For purpose of exploring functional pathways involved in 
biomarkers, GSEA was applied via R package clusterProfiler (version 
1.58.0) (Yu et al., 2012) with adj. p < 0.05 (background gene set: KEGG: 
c2.cp.kegg.v2022.1.Hs.entrez.gmt), Individual biomarkers and all 
genes inside GSE22491 were analyzed for correlation and scored in 
order of correlation value. Next, expression high/low groups were 
classified according to biomarkers’ median expression, and significant 
pathways between these two groups in GSE22491 were displayed in 
heatmap through R packages clusterProfiler (version 1.58.0) (Yu et al., 
2012) and GSVA (version 3. 15.0) (Su et al., 2022) (background gene 
set: h.all.v7.5.1.symbols.gmt).

2.9 Immune infiltrative analysis

To understand role that biomarkers played in immune 
microenvironment of PD, immune infiltration analysis was carried 
out in GSE22491. First infiltration abundance of immune cells in 
GSE22491 samples was estimated via cell type identification by 
estimating relative subsets of RNA transcripts (CIBERSORT). 
Spearman correlations among them was analyzed. After that, 
differences in immune cells’ proportions between PD and control 
samples from GSE22491 were compared, and sensibly different 
immune cells were selected for correlation analysis with biomarkers 
(p < 0.05, |r| > 0.3).

2.10 Construction of the GeneMANIA, 
competing endogenous RNA, and 
mRNA-miRNA-transcription factor 
networks

For the purpose of understanding the genes associated with 
biomarkers and functional pathways in which they are involved, 
GeneMANIA analysis was carried out (Franz et  al., 2018). Then, 
Starbase3 (Li et al., 2014) and TargetScan4 databases (McGeary et al., 
2019; Jia et  al., 2022) were utilized to predict miRNAs targeting 
biomarkers, MiRNAs meeting the criteria with Conserved Sites in 
TargetScan database and all miRNAs predicted in the Starbase 
database were selected to determine the intersection and obtain the 
intersected miRNAs. Following this, lncRNAs targeting the intersected 
miRNAs were identified via the Starbase database with clipExpNum 
>15. A ceRNA network was acquire using Cytoscape software based 
on the above results. Additionally, TFs that regulate biomarkers were 
predicted from the ChEA3 database5 (Keenan et  al., 2019), and a 
mRNA-miRNA-TF network was constructed.

2.11 Prediction and molecular docking 
analysis of potential therapeutic agents

In order to predict the drugs that affect the expression of 
biomarkers. Therapeutic drugs which targeting multiple biomarkers 

3 http://starbase.sysu.edu.cn/

4 https://www.targetscan.org/vert_80/

5 https://maayanlab.cloud/chea3/
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were predicted using the comparative toxicogenomics database 
(CTD)6 (Davis et al., 2021). Drugs with Interaction Count ≥2 and 
Organism Count ≥2 were selected to construct a drug-gene network 
with biomarkers. Subsequently, 3D crystal structures of biomarker 
encoded proteins were downloaded utilizing Protein Data Bank 
(PDB)7 (Berman et al., 2000), and saved as protein PDB format files. 
2D structures of drugs were obtained from the PubChem database8 
(Kim et al., 2023), and saved in SDF format, OpenBabel software was 
applied to convert them to PDB format for small molecule ligands. 
Next, water molecules and original ligands were removed by using 
PyMOL software, and the proteins and small molecules’ PDB files were 
converted to pdbqt format utilizing AutoDockTools software. Protein 
receptors and small molecule ligands were docked by AutoDock using.

2.12 External gene set validation

In order to assess biomarkers’ expression levels of between PD and 
control samples in this study, their expression trends were 
demonstrated by plotting box plots in GSE22491. Meanwhile, 
expression levels were further validated in GSE100054.

2.13 Patient sample collection and ethical 
clearance

We collected blood samples from 5 PD patients and 5 controls 
from the Second Hospital of Hebei Medical University. This study is 
consistent with the Declaration of Helsinki. The study involving 
human participants was reviewed and approved by the Ethics 
Committee of the Second Hospital of Hebei Medical University, and 
all included patients signed written informed consent for the study.

2.14 Quantitative real-time polymerase 
chain reaction

To demonstrate the expression levels of the biomarkers in 
GSE22491 and GSE100054. Total RNA from the 10 samples was 
extracted using the TRIzol reagent (Invitrogen, China) according to 
the manufacturer’s protocol. Afterwards, RNA concentrations were 
detected with NanoPhotometer N50. Subsequently, cDNA was 
generated through reverse transcription using SureScript-First-strand 

6 http://ctdbase.org/

7 https://www.rcsb.org/

8 https://pubchem.ncbi.nlm.nih.gov/

cDNA synthesis kit (Servicebio, China). Finally, the qPCR assay was 
conducted using CFX Connect Thermal Cycler (Bio-Rad, 
United States). The relative quantification of mRNAs was calculated 
using the 2-ΔΔCT method. The sequence fragments of RNAs are shown 
in Table 1.

2.15 Statistical analysis

Statistical analysis was carried out through R software (version 
R-4.2.2).9 Differences between samples were analyzed via Wilcox test 
and t-test. *p < 0.05, **p < 0.005, ***p < 0.0005; ****p < 0.00005, 
represented significant difference. In GSEA, judgment standard was 
adj. p < 0.05. Correlation coefficients and p-values were estimated 
utilizing Spearman correlation analysis. p < 0.05 was considered 
statistically significant.

3 Results

3.1 Identification of DEGs

A total of 634 DEGs were yielded between PD and control 
samples from GSE22491 (Supplementary material S1). Figure 2A 
shows the volcano map after the differential expression analysis of 
all genes. The heat map showed the expression and clustering of 
differentially expressed genes in PD group and control group 
(Figure  2B). Next, DEGs were analyzed for KEGG and GO 
enrichment, and the results showed that DEGs were involved in GO 
terms such as neutrophil-mediated killing of symbiont cell, 
regulation of vascular permeability, transmission of nerve impulse, 
regulation of transmission of nerve impulse (Figure  2C). 
Meanwhile, they were participated in four KEGG pathways 
containing hematopoietic cell lineage, nitrogen metabolism, 
neuroactive ligand-receptor interaction, Malaria (Figure  2D). 
Ultimately, IPA indicated that S100 family signaling pathway, 
gustation pathway, neutrophil extracellular trap signaling pathway, 
superpathway of melatonin degradation, erythropoietin signaling 
pathway and other classical pathways identified based on DEGs 
were found to be suppressed in PD (Figure 3A). Additionally, A 
Regulatory network of biomarkers was constructed, in which 
factors indirectly associated with biomarkers including Viral 
infection (disease-related), Cell movement (cell-related), 
angiogenesis (cell-related), NPM1 (TF), FOXM1 (TF), NSUN6 

9 https://www.r-project.org/

TABLE 1 PCR primers.

Gene Forward primer sequence Reverse primer sequence

AK3 CCTGATCAGTCAGCAGCCATC GCCTGTGGAAGTGTCCTTGG

RTN3 AAGGCCATCCATTCAAACCCA AACAATTGACTTGGTCTGATCTCG

CYP4F2 GGTCATCTCCCGCCATGT CTGGGTTGTGATGGGTTCCG

LEPR CCATCTCTGCCTTCGGTCG TCCAGCAGGCAAAAGGAAGT

GAPDH CGAAGGTGGAGTCAACGGATTT ATGGGTGGAATCATATTGGAAC

https://doi.org/10.3389/fnagi.2024.1458476
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
http://ctdbase.org/
https://www.rcsb.org/
https://pubchem.ncbi.nlm.nih.gov/
https://www.r-project.org/


Zhang et al. 10.3389/fnagi.2024.1458476

Frontiers in Aging Neuroscience 06 frontiersin.org

(gene), EGFR (chemical compound), etc., where NPM1 could 
indirectly inhibit FOXM1 (Figure  3B). Diseases and functional 
pathways identified based on DEGs including increases cardiac 
dilation, cardiac fibrosis, liver proliferation, increases liver 
hyperplasia/hyperproliferation, cytochrome p450 panel-substrate 
is an eicosanoid (human), etc., all of which were found to 
be suppressed in PD (Figures 3C,D).

3.2 Screening for key module

Subsequently, the R package “WGCNA” was used to check the 
clustering outliers of the samples. The results show that general 
clustering of samples in GSE22491 was good, thus there was no need 
to exclude samples (Figure 4A). A soft threshold was chosen as 13 
because vertical coordinate R^2 approached 0.85 at this time 

(Figure 4B). Next, totally 24 merged modules were finally sifted out 
(Figure 4C). Figure 4D shows the correlation heat maps of all the genes 
in these 24 modules. MEgreen module was highly correlated with PD 
(Cor = 0.92, and p < 0.05), therefore, it was defined as the key module 
containing 1,144 genes (Figure 4E). There is high correlation between 
Module Membership (MM) and Gene Significance (GS) (Cor = 0.5, 
and p < 0.05) (Figure 4F). Taking intersection of DEGs, C-genes and 
genes in the key module resulted in 18 DECGs (Figure 5A). Figure 5B 
illustrated localization of DECGs on chromosomes, where the most of 
genes were localized on chromosome 7, including TPST1, 
HEPACAM2 and CNTNAP2. Enrichment analyses showed that 
DECGs were enriched in GO entries, including positive regulation of 
angiogenesis, purine ribonucleoside bisphosphate metabolic process, 
and 3′ − phosphoadenosine 5′ − phosphosulfate metabolic process, etc. 
(Figure 5C; Supplementary material S2). They were also engaged in 
Neuroactive ligand−receptor interaction, Purine metabolism, 

FIGURE 2

Identification of DEGs and enrichment of DEGs. (A) Volcano plot of differential expression analysis. The red dots represent up-regulated genes and the 
blue dots represent down-regulated genes. (B) Heatmaps of expression clusters for all genes in PD and control groups. Green represents down 
regulation, and orange represents up regulation. (C) The diagram shows GO enrichment of DEGs. (D) The diagram shows KEGG enrichment of DEGs.

https://doi.org/10.3389/fnagi.2024.1458476
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Zhang et al. 10.3389/fnagi.2024.1458476

Frontiers in Aging Neuroscience 07 frontiersin.org

Biosynthesis of cofactors and other KEGG pathways (Figure  5D; 
Supplementary material S3). Ultimately, there had notably negatively 
correlations among CYP4F2, FHIT, RTN3, LYNX1, and ANGPT2 
(Figure 5E).

3.3 Biomarkers had terrific ability for 
distinguishing PD from control samples

To identify biomarkers, we  screened 18 circadian rhythm-
associated differential genes by the Lasso model, when 
lambda = 0.0046, error rate was the lowest, and five genes (AK3, 
RTN3, CYP4F2, LEPR, and HEPACAM2) were obtained at this point 
(Figure 6A). Four genes (AK3, RTN3, CYP4F2, and LEPR) were also 
yielded via SVM-RFE (Figure 6B). Four critical genes, namely AK3, 

RTN3, CYP4F2, and LEPR, were identified after taking intersection 
of genes obtained by LASSO and SVM-RFE (Figure 6C). In GSE22491 
and GSE100054, AUC values of AK3, RTN3 and LEPR all exceeded 
0.7, indicating that they had terrific ability for distinguishing PD from 
control samples, thus they were defined as biomarkers (Figure 6D). 
Corners of ROC curve indicated optimal critical value point, with the 
values in parentheses Specificity and Sensitivity, respectively. It could 
be seen that sensitivity and specificity of optimal critical value points 
in all ROC curves were high [AK3 (1,1), RTN3 (1,1), CYP4F2 (1,1), 
and LEPR (1,0.9)], and false positives and false negatives were also the 
least, which indicated that AUC of ROC curve was the most desirable 
examination index at this time. Additionally, C-index of nomogram 
was 1, suggesting that diagnostic model had a nice ability for 
predicting PD patients. In calibration curve, “Apparent,” “Bias−
corrected,” and “Ideal” curves were almost coincident, and their slopes 

FIGURE 3

IPA analysis. (A) Classical pathway analysis using IPA in GSE22491 revealed enriched pathways for differentially expressed genes. (B) Biomarker 
regulatory network. (C) Disease function bar graph of differentially expressed genes in GSE22491. (D) Disease function items of differentially expressed 
genes.
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FIGURE 4

WGCNA analysis of GSE22491 and acquisition of key module. (A) Sample clustering tree diagram. (B) The selection of soft threshold power. (C) A tree 
diagram based on hierarchical clustering is generated. Different hues reflect different modules of co-expression. (D) Heatmap of correlation between 
different genes. (E) Correlation analysis between modules and PD clinical status. Blue represents negative correlation, and orange represents up 
positive correlation. A number inside a square shows the degree of statistical significance. (F) GS vs. MM correlation scatterplot of green module.
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FIGURE 5

Identification of DECGs. (A) The Venn diagram shows the intersection of the green module genes of WGCNA and DEGs and C-genes. (B) The diagram 
shows the localization of DECGs on chromosomes. (C) The chordal graph shows GO enrichment of DECGs. (D) The chordal graph shows KEGG 
enrichment of DECGs. (E) Correlation heat map of DECGs. Red represents negative correlation, and blue represents positive correlation. *p  <  0.05; 
**p  <  0.01; ***p  <  0.001; ****p  <  0.0001.
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were closed to 1, suggesting that diagnostic model could prediced PD 
patients accurately, AUC of diagnostic model was 1 further validated 
that it could prediced PD patients well, DCA curve showed that 
nomogram curve was higher than ALL and None curves, indicating 
that the diagnostic model could be  applied to PD patients 
(Figures 6E–H).

3.4 Biomarkers were associated with PD 
related pathways

For exploring functional pathways involved in biomarkers, GSEA 
was carried out. KEGG enrichment results showed that AK3 positively 
regulated SPLICEOSOME, RIBOSOME, CELL_CYCLE and 
CITRATE CYCLE TCA_CYCLE pathways and negatively regulated 
MATURITY ONSET DIABETES OF THE_YOUNG pathway. The 
RTN3 negatively regulated the CELL_CYCLE, SPLICEOSOME, 
PARKINSONS_DISEAS, UBIQUITIN_MEDIATED PROTEOLYSIS 
and PATHOGENIC ESCHERICHIA_COLLINFECTION pathways. 
The LEPR positively regulated the PARKINSONS DISEASE, 
OXIDATIVE_PHOSPHORYLATION, SPLICEOSOME, 
ALZHEIMERS DISEASE and HUNTINGTONS DISEASE pathways 
(Figure 7A). Meanwhile, pancreas beta cells, apical surface, hedgehog 
signaling, kras signaling, heme metabolism, oxidative phosphorylation 
and other hallmark pathways were simultaneously and differentially 
enriched in high/low expression groups for each biomarker 
(Figure 7B).

3.5 Biomarkers was important for PD’s 
immune microenvironment

Next, we used CIBERSORT to assess the relative abundance of 
22 immune cells per sample in the training set GSE22491. It could 
be  seen from the stacked plot that the monocytes occupied a 
relatively high proportion in GSE22491 samples (Figure 8A). Besides, 
the highest positive correlation was found between M1 macrophages 
and resting dendritic cells (Cor = 1, p < 0.05) (Figure 8B). The box 
plot revealed notable differences in the proportion of M0 
macrophages, naive B cells, activated NK cells, resting mast cells, 
monocytes, between PD and control samples, except the activated 
NK cells, the other four immune cell types were highly expressed in 
control samples (Figure  8C). Apparently, LEPR was strongly 
negatively correlated with activated NK cells (Cor = −0.65, p < 0.05) 
(Figure 8D).

3.6 The GeneMANIA, ceRNA, and 
mRNA-miRNA-TF networks

A total of 20 genes associated with biomarkers were predicted 
through GeneMANIA database, and they were involved in 7 
pathways. Among these pathways, LEP, RTN4, APOD, ZFYVE27, 
SOD1, and LEPR collectively played a role in developmental growth 
(Figure 9A). AK3, LEPR, and RNT3, respectively, correspond to 10, 
5, and 4 intersected miRNAs targeting them (Figure  9B). In the 
ceRNA network, there was a phenomenon where one lncRNA 
simultaneously regulated multiple miRNAs at the same time was 

existed. For example, MALAT1 could simultaneously target hsa-miR-
1-3p, hsa-miR-205-5p, etc., while NEAT1 could simultaneously 
target hsa-miR-181a-5p, hsa-miR-181b-5p, etc. (Figure  9C). The 
ceRNA network related information of the three molecular markers 
is shown in Table  2. Besides, AK3, LEPR, and RNT3 were, 
respectively, corresponded to 13 TFs, 8 TFs, and 30 TFs (Table 3). 
Among these TFs, CTCF could regulate both AK3 and RNT3, 
MYOG could simultaneously regulate AK3 and LEPR, and ZNF143 
could regulate LEPR and RNT3 at the same time. Furthermore, an 
mRNA-miRNA-TF network containing relationship pairs such as 
PAX5-AK3, GATA2-LEPR, FOXP2-RTN3 was constructed 
(Figure 9D).

3.7 Prediction of potential therapeutic 
agents

The 14 potential therapeutic agents were identified based on 
biomarkers, each of which had different effects on biomarkers 
expression. For instance, bisphenol A increased expression of AK3, 
RTN3 and LEPR, while Aflatoxin B1 inhibited expression of both 
RTN3 and LEPR. A drug-gene network was constructed, including 
relationship pairs such as cadmium Chloride-AK3, Estradiol-LEPR, 
Cyclosporine-RTN3 and other relationship pairs was constructed 
(Figure  10A). Eventually, AK3 was molecularly docked with 
doxorubicin. Forming two hydrogen bonds including GLU-105 and 
LYS-102 (Figure 10B). RNT3 was docked to acetaminophen, forming 
two hydrogen bonds (LEU-488 and GLY-489) (Figure 10C). LEPR was 
molecularly docked to bisphenol A by three hydrogen bonds including 
GLN-677, SER-719 and ASP-635 (Figure  10D). The molecular 
docking energies of AK3 and doxorubicin, RTN3 and acetaminophen, 
and LEPR and bisphenol A were − 4.04 kcal/mol, −3.14 kcal/mol, 
and − 3.735 kcal/mol, respectively.

3.8 Gene expression levels in GEO data sets 
and qRT-PCR experiments

To demonstrate the expression levels of the biomarkers in 
GSE22491 and GSE100054, we performed qRT-PCR experiments. In 
GSE22491, AK3 and LEPR in PD patients were significantly down-
regulated, while CYP4F2 and RTN3 were significantly up-regulated 
(Figure 11A). In GSE100054, AK3 was down-regulated in PD patients, 
while LEPR and RTN3 were significantly up-regulated (Figure 11B). 
In the qRT-PCR test, AK3 was down-regulated (p = 0.0433) and RTN3 
up-regulated (p = 0.0283) in PD, and the expression was consistent 
with the results in GEO datasets. CYP4F2 was up-regulated in PD, and 
LEPR was not differentially expressed. The qRT-PCR results are 
shown in Figures 11C–F.

4 Discussion

Parkinson’s disease is the second most common neurodegenerative 
disease, and its incidence is increasing year by year (Emamzadeh and 
Surguchov, 2018). PD-related symptoms have a serious impact on the 
normal life of patients and their families. The current diagnosis of PD 
is based on clinical criteria that require the presence of retardation 
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FIGURE 6

Identification of molecular biomarkers determined by machine learning and evaluation of their diagnostic value. (A) LASSO regression analysis. (B) SVM 
machine learning analysis. (C) The Venn diagram shows the LASSO regression analysis and SVM machine learning analysis results. (D) ROC curves of 
AK3, RTN3, CYP4F2 and LEPR in GSE22491 and GSE100054. (E–H) The nomogram, calibration curve, prediction model ROC curve and decision curve 
analysis of GSE22491 were performed.
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FIGURE 7

GSEA and GSVA analysis of AK3, RTN3 and LEPR. (A) GSEA analysis results of AK3, RTN3 and LEPR. (B) GSVA analysis heatmap of AK3, RTN3 and LEPR.
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FIGURE 8

Immune infiltration analysis of GSE22491. (A) Distribution of 22 kinds of immune cells in PD and control groups. (B) Correlation analysis and heat map 
of 22 immune cells. Red represents negative correlation, and blue represents positive correlation. (C) Boxplot of infiltration of 22 immune cells in PD 
and control groups. (D) Heat map for correlation analysis of biomarker (AK3, RTN3 and LEPR) and five immune cells (B cells naïve, NK cells activated, 
Monocytes, Macrophages M0 and Mast cells resting). “×“means statistically significant. *p  <  0.05; **p  <  0.01; ***p  <  0.001; ****p  <  0.0001; ns  =  no 
significance.
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along with at least one motor symptom, such as tremor, stiffness, or 
postural instability (Tolosa et al., 2021). However, the latency period 
from the first non-motor symptoms of Parkinson’s disease to meeting 
the current diagnostic criteria for PD can range from 5 to 20 years, and 
we also call this period the prodromal phase of PD. Through the study 

of body fluid and tissue biomarkers, clinical non-motor symptoms and 
neuroimaging related to PD prodromal stage, it can provide new ideas 
for relieving and preventing PD motor symptoms. Many processes in 
the human body, including brain function, are regulated over a 24-h 
cycle, and there is a strong association between circadian rhythm 

FIGURE 9

Interaction network of AK3, RTN3 and LEPR. (A) Gene–gene interaction network of AK3, RTN3 and LEPR. (B) Venn diagram shows the common miRNA 
of AK3, RTN3 and LEPR in the TargetScan and Starbase databases. (C) The ceRNA regulatory network of AK3, RTN3 and LEPR. Red is the biomarkers; 
blue is the miRNAs and green is the lncRNAs. (D) mRNA-miRNA-TF network of AK3, RTN3 and LEPR. Biomarkers are shown in green, miRNA in purple, 
and TF in blue.
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disturbances, such as sleep–wake cycles, and central nervous system 
disorders. Studies have shown that 80% of PD patients suffer from 
sleep–wake disorders, and nighttime hypertension is almost universal 
in PD patients, and patients’ blood pressure often reverses, with 
nighttime blood pressure higher than daytime levels (Hunt et  al., 
2022). Although various circadian rhythm real-time detection 
instruments have been used to observe the rhythm disturbance in PD 
patients, the mechanism of circadian rhythm disturbance in PD 
patients and the impact of circadian rhythm disturbance on the 
occurrence and development of PD are not clear.

The purpose of this study was to screen out blood molecular 
markers related to prodromal Parkinson’s disease on the one hand, 
and to explore the relationship and mechanism between circadian 
rhythm disturbance and PD development on the other hand. 
We analyzed the expression of circadian rhythm-related genes and the 
enrichment of functional pathways in PD patients by bioinformatics. 
In addition, we  used machine learning methods to screen out 
candidate markers with diagnostic value, and used other data sets to 
conduct external validation with clinical patient blood samples. Elize 

Aparecida Santos Musachio et al. found that bisphenol A can cause 
changes in drosophila Parkinson’s disease through oxidative stress 
(Musachio et  al., 2020). Drug target prediction indicated that 
bisphenol A could up-regulate the expression of LEPR, AK3 and 
RTN3 (Ptak and Gregoraszczuk, 2012; Thongkorn et al., 2019; Ooi 
et al., 2021). The interaction of the three molecular markers is shown 
in Figure 12.

The leptin protein receptor, encoded by the LEPR gene, act as a 
regulator of energy homeostasis and feeding behavior (Yin X. et al., 
2022; Yin Z. et  al., 2022). Adipose tissue, a metabolically active 
organ, showing highly rhythmic behavior. MADRID et al. found 
that the expression of LEPR, which is related to fat metabolism, 
showed obvious rhythmic behavior (Garaulet et  al., 2011). In 
contrast, Wang et al. found that the expression of the LEPR gene was 
significantly elevated in PD patients compared to healthy controls 
(Yin X. et al., 2022; Yin Z. et al., 2022). This contradicts our results. 
Leptin maintains cell survival in neuronal SH-SY5Y cells by 
maintaining ATP levels and mitochondrial membrane potential to 
resist MPP+ toxicity (Parkinson’s disease model) (Shin et al., 2011). 
The up-regulation of the LEPR gene may indicate that neurons 
activate feedback protection or that early downregulation of LEPR 
activates a cascade that promotes upregulation. Analyzing the 
expression of LEPR in different stages of PD development is of great 
significance for exploring the occurrence, development, and 
etiology of PD.

Reticulon 3 (RTN3), which is a member of the reticulon family 
of proteins, that is preferentially expressed in neuroendocrine tissues. 
Additionally, it has been discovered that RTN3 interacts with beta-
amyloid converting enzyme 1 (BACE1), an enzyme that starts the 
production of amyloid peptides from amyloid precursor protein and 
reticulon proteins are negative modulators of BACE1 in cells (Sharoar 

TABLE 2 The ceRNA network information of RTN3, LEPR, and AK3.

mRNA miRNA lncRNA

RTN3 hsa-miR-205-5p GAS5 MALAT1 AC009133.5 SNHG16

hsa-miR-206 AL162431.2 RMRP MALAT1 LINC00641

hsa-miR-1-3p AL162431.2 RMRP MALAT1 LINC00641

hsa-miR-218-5p No lncRNA target

LEPR hsa-miR-30e-5p MALAT1 AL137129.1 NORAD XIST

hsa-miR-30d-5p MALAT1 AL137129.1 NORAD XIST

hsa-miR-30a-5p MALAT1 AL137129.1 NORAD XIST

hsa-miR-30b-5p MALAT1 AL137129.1 NORAD XIST

hsa-miR-30c-5p MALAT1 AL137129.1 NORAD XIST

AK3 hsa-miR-1271-5p MALAT1 LINC02381

hsa-miR-182-5p SNHG1 AL137129.1 NORAD

hsa-miR-186-5p No lncRNA target

hsa-miR-340-5p No lncRNA target

hsa-miR-181c-5p SNHG5 NEAT1 MALAT1

hsa-miR-181a-5p SNHG5 NEAT1 MALAT1

hsa-miR-181b-5p SNHG5 NEAT1 MALAT1

hsa-miR-181d-5p AC021078.1 SNHG5 NEAT1 MALAT1

hsa-miR-19a-3p C5orf56 AC135050.6 MCM3AP-AS1

hsa-miR-19b-3p C5orf56 AC135050.6 MCM3AP-AS1

TABLE 3 Gene and transcription factors (TFs).

Gene TFs

AK3 TCF7L2, PAX5, ZKSCAN1, ELF1, RELA, ZNF384, TCF3, MYC, 

KDM5B, HNF4A, MYOD1, MYOG, CTCF

LEPR EGR1, SP1, GATA2, RFX5, YY1, GABPA, MYOG, ZNF143

RTN3 FOXP2, MAFK, JUND, CEBPB, NFIC, REST, TEAD4, MAX, 

BHLHE40, E2F4, GATA3, NRF1, FOS, MXI1, TAL1, ARID3A, ATF1, 

TBP, MAFF, MAZ, CUX1, E2F1, GTF2B, FOXA1, CTCFL, SETDB1, 

GATA1, JUN, CTCF, ZNF143
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and Yan, 2017). Sleep deprivation affects transcriptome levels in the 
blood, disrupting their circadian regulation and exacerbating the 
effects of acute total sleep deprivation. RTN3 is one of the genes 
affected by circadian rhythms (Möller-Levet et al., 2013). Studies have 
revealed that RTN3 is a particular receptor for the breakdown of 
endoplasmic reticulum tubules (Grumati et al., 2017). RTN3 belongs 
to the reticulin family, which is most abundant in the brain, and it is 
frequently activated in response to endoplasmic reticulum stress. 
Down-regulation of RTN3 has been demonstrated to enhance the 
clearance of cytoplasmic PrP aggregates, restore the activity of the 
ubiquitin proteasome system, and reduce endoplasmic reticulum 
stress, and the clearance of cytoplasmic PrP aggregates has been 
shown to suppress apoptosis. Therefore, the targeted suppression of 
RTN3 expression helps to lower the stress level of neuronal cells and 
stop the progression to apoptosis (Chen et al., 2011). In this study, the 
expression of RTN3 was up-regulated in PD patients, which may 
serve as a potential target for future treatment of organelle oxidative 
stress and inhibition of neuronal apoptosis in PD patients. Some 
studies have found that PD patients have more peripheral natural 
killer (NK) cells than non-PD controls, and Rachael H Earls et al. 
demonstrated that NK cells successfully internalize and destroy α-syn 
aggregates via the endosome/lysosome route (Earls and Lee, 2020; 
Earls et al., 2020). In this study, immunoinfiltration analysis revealed 
that the number of activated NK cells in the peripheral blood of 
Parkinson’s disease patients was greater than in the control group. 
This finding proves and supplements the results of prior 
investigations. In the correlation analysis between biomarkers and 
immune cells, RTN3 showed a high positive correlation with 

activated NK cells. The increased expression of RTN3 in PD patients 
may be  a significant target in the process of encouraging the 
aggregation of NK cells, offering a fresh perspective on how α-syn is 
degraded. Sacha Bohler et al. have suggested that acetaminophen 
overdose is a potential risk factor for Parkinson’s disease (Bohler 
et al., 2019). Acetaminophen can up-regulate the expression of RTN3 
(Yu et al., 2018). Aya Yassin Labib et al. found that acetaminophen 
had a neuroprotective effect on rotenone-induced Parkinson’s disease 
in rat models (Labib et al., 2021). Different doses of acetaminophen 
may have different effects on PD, which requires us to find out the 
answer in further large-scale clinical studies and related experiments.

Adenylate Kinase 3 (AK3) is a Protein Coding gene. Diseases 
associated with AK3 include Reticular Dysgenesis and Orofacial Cleft 
8. AK3 functions to participate in the maintenance of cellular 
nucleotide homeostasis by catalyzing interconversion between 
nucleotides. Down-regulation of genes in the substantia nigra may 
be  regarded as a result of dopaminergic cell death. Paula Garcia-
Esparcia et  al. discovered that the expression of AK3 was down-
regulated in the substantia nigra at stages 3–6 (Garcia-Esparcia et al., 
2015). In GEO database and q-PCR verification, AK3 was down-
regulated in PD groups. Doxorubicin results in decreased expression 
of AK3 mRNA (Vijay et al., 2016; Verheijen et al., 2018). A prominent 
feature of Parkinson’s disease is α-syn protein aggregation, and there 
have been cases where patients undergoing Doxorubicin are prone to 
Parkinson-like symptoms. It may be due to protein aggregation caused 
by Doxorubicin (Garg and Sinha, 2022).

In this study, by means of GSVA and GSEA enrichment analysis, 
three core biomarkers were significantly enriched in key biological 

FIGURE 10

Prediction of drugs that affect biomarkers expression and molecular docking. (A) The network interaction map showed the drug target prediction. 
Biomarkers are shown in green. Drugs that upregulate target genes are represented in red; drugs that downregulate target genes are represented in 
blue; and drugs that affect target genes are represented in yellow. (B) Molecular docking of AK3 and doxorubicin. (C) Molecular docking of RTN3 and 
acetaminophen. (D) Molecular docking of LEPR and bisphenol A.
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processes such as OXIDATIVE_PHOSPHORYLATION, DNA_
REPLICATION and DNA_REPAIR. Some studies have confirmed 
that the oxidative phosphorylation activity of rat brain mitochondria 
is regulated by rotenone and melatonin, showing a significant 
circadian rhythm (Spira and Spiegel, 1992). This finding not only 
highlights the central role of mitochondrial function in the 
pathological mechanism of PD, but also reveals the underlying 
circadian regulation mechanism. At the same time, it is particularly 
worth mentioning that the regulatory effect of melatonin on health 
and disease states has also been fully confirmed (Reiter et al., 2021). 

Studies have shown that melatonin can promote the transition from 
aerobic glycolysis to mitochondrial oxidative phosphorylation in 
solid tumor cells and other pathological cells (including Alzheimer’s 
disease, fibrosis lesions, macrophage hyperactivation, etc.). This 
mechanism may be  the cornerstone of its inhibition of disease 
development and maintenance of health. In addition, the roles of 
key enzymes in DNA repair and replication, as well as their 
important roles in the pathogenesis of neurodegenerative diseases, 
have also been investigated (Catarzi et al., 2022). The changes in the 
activities of these enzymes not only reflect the stability of the DNA 

FIGURE 11

The expression levels of the four genes (AK3, CYP4F2, LEPR and RTN3) were analyzed in the GEO datasets and verified by q-PCR. (A) The expression 
level of genes in GSE22491. (B) The expression level of genes in GSE100054. (C) Gene expression level of AK3 was determined by q-PCR. (D) Gene 
expression level of CYP4F2 was determined by q-PCR. (E) Gene expression level of LEPR was determined by q-PCR. (F) Gene expression level of RTN3 
was determined by q-PCR. *p  <  0.05; **p  <  0.01; ***p  <  0.001; ****p  <  0.0001; ns  =  no significance.

https://doi.org/10.3389/fnagi.2024.1458476
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Zhang et al. 10.3389/fnagi.2024.1458476

Frontiers in Aging Neuroscience 18 frontiersin.org

repair system, but also may be used as biomarkers for the early 
diagnosis of neurodegenerative diseases such as PD, providing a 
new perspective and direction for the early intervention and 
treatment strategies of the disease. Taken together, these findings 
not only enrich our understanding of the pathogenesis of PD and 
other neurodegenerative diseases, but also provide valuable 
scientific evidence for the development of future disease diagnosis 
and treatment strategies, especially for the exploration of new 
therapeutic targets based on mitochondrial function and DNA 
repair systems.

In our study, three key genes related to circadian rhythm were 
identified by bioinformatics analysis, which were AK3, RTN3 and 
LEPR. In addition, we constructed a diagnostic prediction model 
and proved that the model had good diagnostic prediction ability. 
Functional enrichment showed that these three biomolecular 
markers played an important role in the pathogenesis and 
development of PD. Analysis of immune infiltration AK3, RTN3 
and LEPR may be involved in the progression of PD by regulating 
NK cells. However, how these genes contribute to PD progression 
by influencing related genes still needs to be further investigated 
in clinical trials. The mechanism of the influence of the three genes 
on circadian rhythm needs to be further studied in the experiment. 
These key genes may serve as new biomarkers of PD in the future 
and provide more references for the exploration of the 
pathogenesis of PD in the future. And we will continue to pay 
attention to the research progress of circadian rhythm and 
Parkinson’s disease.

There are some limitations to this study. First, this study mainly 
uses bioinformatics analysis to process transcriptome data in public 
databases, and although the gene-chip results may be flawed, the 
data used is rigorously processed and screened. Since this study is a 
preliminary exploration, a small sample size is used for rapid 
verification, and the results will provide a basis for subsequent large-
scale studies. Although this study had a small sample size and was 
not disaggregated by sex, we have taken various measures to ensure 
the accuracy and reliability of the data. Secondly, we realized that 
the sample size of the current study was limited, so we tried different 
data sets for verification, and verified by experimental means. The 
combination of the three obtained a credible result to further ensure 
its potential application value. Finally, since the current AUC value 
of the model is 0.7, although it shows certain predictive ability, in 
order to ensure the applicability of the model in clinical practice, 
we recognize that a larger number of samples are needed for further 
experiments and validation. In the future, we will increase the study 
sample size, classify the sexes, and add more experimental 
validation, such as protein level verification, gene editing 
experiments, etc., to ensure the robustness and generalization ability 
of the model.
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FIGURE 12

Mechanistic diagram of circadian rhythm-related molecular markers.
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