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Purpose: Studying perivascular spaces (PVSs) is important for understanding

the pathogenesis and pathological changes of neurological disorders. Although

some methods for automated segmentation of PVSs have been proposed,

most of them were based on 7T MR images that were majorly acquired in

healthy young people. Notably, 7T MR imaging is rarely used in clinical practice.

Herein, we propose a deep-learning-based method that enables automatic

segmentation of PVSs on T2-weighted 3T MR images.

Method: Twenty patients with Parkinson’s disease (age range, 42–79 years)

participated in this study. Specifically, we introduced a multi-scale supervised

dense nested attention network designed to segment the PVSs. This model

fosters progressive interactions between high-level and low-level features.

Simultaneously, it utilizes multi-scale foreground content for deep supervision,

aiding in refining segmentation results at various levels.

Result: Our method achieved the best segmentation results compared with the

four other deep-learning-based methods, achieving a dice similarity coefficient

(DSC) of 0.702. The results of the visual count of the PVSs in our model

correlated extremely well with the expert scoring results on the T2-weighted

images (basal ganglia: rs = 0.845, P < 0.001; rs = 0.868, P < 0.001; centrum

semiovale: rs = 0.845, P < 0.001; rs = 0.823, P < 0.001 for raters 1 and 2,

respectively). Experimental results show that the proposed method performs

well in the segmentation of PVSs.

Conclusion: The proposed method can accurately segment PVSs; it will facilitate

practical clinical applications and is expected to replace the method of visual

counting directly on T1-weighted images or T2-weighted images.

KEYWORDS

perivascular spaces, Virchow-Robin spaces, deep learning, multiscale supervised, dense
nesting, 3T MR image
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1 Introduction

Perivascular spaces (PVSs), also known as Virchow–Robin
spaces, are fluid-filled spaces that surround small blood vessels
in the brain and traverse through the brain substance (Ballerini
et al., 2018). PVSs are primarily distributed in areas such as the
white matter, basal ganglia (BG), and brainstem (Salzman et al.,
2005). They play a role in cerebrospinal fluid (CSF) circulation
and clearance of metabolic waste from the brain (Iliff et al., 2013;
Rangroo Thrane et al., 2013; Yang et al., 2013). In magnetic
resonance imaging (MRI), PVSs tend to appear as longer linear
structures when the direction of penetration is parallel to the
scanning plane and as small dot-like structures when they are
perpendicular to the scanning plane; PVSs usually have a signal
intensity similar to that of CSF (Figure 1). It is important to note
that the size and number of PVSs are related to aging (Francis et al.,
2019) and various diseases, including Alzheimer’s disease (AD)
(Hansen et al., 2015; Boespflug et al., 2018), Parkinson’s disease
(PD) (Shibata et al., 2019; Shen et al., 2021), multiple sclerosis
(MS) (Wuerfel et al., 2008; Conforti et al., 2014; George et al.,
2021), and small vessel disease (SVD) (Doubal et al., 2010; Zhu
et al., 2010). PVS changes may reflect the pathogenesis of certain
neurodegenerative diseases (Charidimou et al., 2013). Therefore,
accurate identification and quantification of PVSs are crucial when
studying these diseases.

Visual rating scales remain the gold standard for assessing
PVSs burden, and numerous scales have been developed for this

purpose (Patankar et al., 2005; Chen et al., 2011; Rowley, 2013;
Wardlaw et al., 2013; Laveskog et al., 2018). Visual scoring is a
simple and intuitive method; however, it only provides information
about the presence and degree of PVSs. It does not offer more
detailed quantitative information regarding parameters such as
volume, morphological features, and distribution of features in
the brain (Bouvy et al., 2016). Additionally, when using visual
rating scales, scans are compared based on the category and not
on the number of PVS. If the number of PVS increases over
time but remains within the same category, visual scoring will not
detect changes over time (Moses et al., 2023). Consequently, fully
automated methods should be developed to compensate for and
improve the shortcomings of the visual scoring method for rating
PVSs.

In recent years, some researchers have proposed methods for
automatic PVSs segmentation based on deep learning. However,
most studies focused on 7T MRI (Park et al., 2016; Hou et al.,
2017; Zhang et al., 2017; Lian et al., 2018; Spijkerman et al.,
2022), with a relatively limited number of studies conducted
on 3T MRI (Boutinaud et al., 2021; Rashid et al., 2023).
Additionally, most of the study participants were healthy young
people (Park et al., 2016; Hou et al., 2017; Zhang et al., 2017;
Lian et al., 2018; Boutinaud et al., 2021; Spijkerman et al., 2022).
Moreover, 7T MRI is rarely used in routine clinical practice.
Therefore, we aimed to develop an automatic segmentation
model for PVSs in T2-weighted 3T MRI based on patients with
PD.

FIGURE 1

Examples of PVSs on magnetic resonance images. T1WI represents T1-weighted images, and T2WI represents T2-weighted images; (A,B) Indicate
that the PVSs appear as lines and dots, respectively. PVSs, perivascular spaces.
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TABLE 1 Magnetic resonance image acquisition parameters

3D T1-weighted
image

High-resolution
T2-weighted

image

TE (ms) 2.32 97

TR (ms) 1780 4010

TI (ms) 900 NA

Flip angle (◦) 8 150

Field of view (mm) 240× 240 220× 220

Matrix size (mm) 256× 256× 256 320× 320

Slice thickness (mm) 0.9 2.0

Slice gap (mm) 0 0

Scan time (min) 4.09 8.11

Voxel size (mm) 0.94× 0.94× 0.90 0.69× 0.69× 2.00

Bandwidth (Hz/Px) 200 223

Slice orientation Sagittal Axial

2 Materials and methods

2.1 Data

We prospectively collected cranial MR images of 20 patients
with PD. The average age of the patients was 63.0 ± 10.3 years
(mean ± SD, range: [42–79], median = 64 years), with a sex
ratio of 1:1. As recommended by the 2023 STRIVE-2 guidelines
(Duering et al., 2023), for all participants, 3D T1-weighted and
high-resolution T2-weighted images were collected using a 3T MR
scanner equipped with a 64-channel head coil (Magnetom Prisma;
Siemens Healthineers, Germany). Detailed information on the MRI
acquisition parameters is provided in Table 1.

2.2 Production of ground truth for PVSs

To develop and assess the proposed machine learning-based
method for extracting PVSs, we initially created ground truth
PVSs masks through a comprehensive process involving visual
inspection. An expert manually segmented the PVSs of the 20
subjects using ITK-SNAP software (version 3.8.0). These segments
were then refined by two experienced neuroradiologists, each
with over 5 years of clinical practice experience. The experts
meticulously reviewed the preliminary ground truth that was
formulated by combining the T2-weighted images. Disagreements
were resolved through discussion to ensure the precision of the
ground truth for effective model training.

2.3 Visual counting of PVSs burden

Three independent raters counted the PVSs on T2-weighted
images and the model segmentation results for all participants.
Among the raters, one was a senior neurologist and the other
two were senior neuroradiologists, each with over 20 years of
clinical practice experience. Both the senior neurologist and

neuroradiologist were provided the T1-weighted and T2-weighted
images for all participants. They independently counted the
PVSs in selected slices on T2-weighted images. Another senior
neuroradiologist counted the PVSs in the same slices as those in
the model segmentation results. Slice selection: for the BG, the slice
shows the anterior commissure; for the centrum semiovale CSO,
the slice was 1 cm above the uppermost part of the lateral ventricles.
The number of PVSs in these slices correlates well with the number
of PVSs in the entire volume of the region (Adams et al., 2013).

2.4 Network architecture

We assembled a series of U-shaped sub-networks to create a
densely nested structure. This design caters to the varying optimal
receptive fields required for targets of different sizes, with the
depth of each U-shaped subnetwork being ideal for specific target
sizes. This concept was further enhanced by placing multiple
nodes along the encoder-to-decoder pathways. These nodes were
interconnected and formed nested networks. As depicted in
Figure 2, each node processes the features of its own layer as well
as those of adjacent layers, enabling a thorough multilayered fusion
of features. Consequently, this architecture effectively preserves the
representation of smaller targets in the deeper layers, leading to
improved outcomes, and we propose the incorporation of multi-
scale Highlighting Foregrounds (HFs) to enhance deep supervision
within the densely nested U-Net framework. Based on the above
characteristics, we named the model MfNS_De. Our modified
network, depicted in Figure 2, is based on an encoder-decoder
structure. In both the training and testing phases, the network
processed individual slices of T2-weighted (T2w) modalities as
inputs. We chose axial slices for the 2D input because of the
discontinuities in the third dimension, a characteristic inherent to
our images.

In our network decoder, we integrated modified label images
processed using the multi-scale HF approach at intermediate
layers (as shown in Figure 2, right). These intermediate output
convolutional layers transform feature maps from different
decoder layers into multi-scale segmentation probability maps.
Concurrently, multi-scale HFs were applied to down sample the
label or ground truth images to various scales (Figure 2, right).
The foreground/background label images created using multi-scale
HFs were then utilized to generate losses by comparison with their
corresponding outputs. For the loss function, we used a soft dice
score.

2.5 Training details

We have implemented the proposed network on an NVIDIA
Tesla V100-SXM2 computer using PyTorch. To compare the model
performance between our network and others, we employed five-
fold cross-validation. All subjects were initially categorized into
five groups, with the age distribution being fairly uniform across
these groups. During each cycle of model training, one group was
designated as the test set, while another one was randomly chosen
as the validation set, and the remaining three groups were used
as the training sets. The composition of the training, validation,

Frontiers in Aging Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fnagi.2024.1457405
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-16-1457405 August 23, 2024 Time: 15:38 # 4

Cai et al. 10.3389/fnagi.2024.1457405

FIGURE 2

Framework of the proposed segmentation network.

and test sets remained the same in all comparison networks. The
hyper-parameters of the networks are set as follows: mini-batch = 4,
optimiser = Adagrad, learn rate = 0.05, epoch = 1000. Furthermore,
the version of nnU-Net at the time is nnU-Net v2, which is
configured as 3D full-resolution, to ensure a fair comparison. The
model was trained for 1,000 epochs, and good convergence was
achieved after 50 epochs. Therefore, we selected the model at epoch
50 as the well-trained model for the test data. When calculating the
performance metrics (e.g., DSC, SEN, and PPV), we used the same
computational method for each model to ensure the consistency
and comparability of the results.

2.6 Evaluation metrics

Segmentation performance was evaluated using the dice
similarity coefficient (DSC), sensitivity (SEN), and positive
predictive value (PPV), as defined below:

DSC =
2TP

2TP + FP + FN
, SEN =

TP
TP + FN

, PPV =
TP

TP + FP

Where TP, FP, and FN denote the true positive, false positive, and
false negative, respectively. DSC reflects the overall segmentation
performance, SEN indicates the capability of detecting the PVSs
voxels, and PPV represents the capability of discarding the

confounding background voxels. The correlation of PVSs count
between the model segmentation results and the original T2-
weighted images was obtained by calculating the Spearman’s
correlation coefficient.

3 Results

3.1 Segmentation performance

Table 2 and Figure 3 present the segmentation results obtained
using our MfNS_De method and the four other comparison
methods (IAANet, TriSegNet, U-Net, and nnU-Net). We could
obtain the following observations: first, our method achieved
approximately 23%, 11%, 4%, and 2% average DSC enhancement,
respectively. Second, the proposed MfNS_De outperformed the
original U-Net mainly because of the use of two key modules
in the proposed method: the densely nested U-Net structure and
the multi-scale feature learning strategy supervised by multi-scale
down sampling of the label images.

Figure 4 shows the segmentation results for several typical
PVSs. Clearly, IAANet and TriSegNet could not detect many PVSs
of normal signals (Figure 4A). Additionally, IAANet, TriSegNet,
and U-Net faced difficulty in distinguishing some of the fine sulci
from the PVSs (Figures 4B, C), resulting in many sulci being
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TABLE 2 Segmentation results obtained by five different models: the best scores are highlighted as boldface.

Subject DSC SEN PPV

IAANet TriSeg
Net

U-Net nnU-
Net

MfNS
_De

IAANet TriSeg
Net

U-Net nnU-
Net

MfNS
_De

IAANet TriSeg
Net

U-Net nnU-
Net

MfNS
_De

1 0.492 0.643 0.694 0.722 0.714 0.577 0.689 0.666 0.802 0.631 0.429 0.603 0.724 0.656 0.821

2 0.510 0.596 0.720 0.687 0.737 0.661 0.492 0.673 0.609 0.755 0.415 0.755 0.774 0.788 0.717

3 0.458 0.533 0.676 0.678 0.703 0.435 0.843 0.804 0.838 0.633 0.483 0.390 0.583 0.570 0.793

4 0.431 0.574 0.640 0.677 0.685 0.519 0.710 0.617 0.816 0.630 0.369 0.482 0.664 0.579 0.717

5 0.498 0.662 0.646 0.652 0.675 0.432 0.669 0.535 0.522 0.649 0.587 0.654 0.816 0.869 0.697

6 0.412 0.555 0.642 0.668 0.718 0.445 0.780 0.627 0.614 0.786 0.383 0.431 0.658 0.732 0.665

7 0.491 0.611 0.636 0.630 0.683 0.442 0.580 0.598 0.548 0.679 0.551 0.645 0.680 0.741 0.682

8 0.409 0.313 0.629 0.651 0.671 0.431 0.535 0.645 0.559 0.651 0.389 0.221 0.613 0.779 0.701

9 0.561 0.647 0.732 0.753 0.711 0.493 0.544 0.689 0.693 0.630 0.651 0.797 0.781 0.824 0.803

10 0.617 0.582 0.649 0.676 0.703 0.729 0.605 0.662 0.737 0.750 0.535 0.561 0.637 0.624 0.740

11 0.600 0.500 0.580 0.630 0.699 0.636 0.376 0.472 0.527 0.645 0.567 0.745 0.752 0.785 0.775

12 0.581 0.538 0.581 0.591 0.675 0.613 0.452 0.488 0.486 0.634 0.552 0.665 0.719 0.752 0.735

13 0.445 0.598 0.659 0.690 0.663 0.541 0.622 0.643 0.667 0.600 0.378 0.575 0.677 0.714 0.726

14 0.374 0.568 0.649 0.715 0.687 0.460 0.744 0.709 0.763 0.659 0.315 0.459 0.597 0.674 0.726

15 0.411 0.576 0.646 0.667 0.691 0.562 0.563 0.717 0.717 0.678 0.323 0.589 0.589 0.624 0.702

16 0.474 0.673 0.700 0.776 0.745 0.621 0.792 0.744 0.822 0.706 0.383 0.585 0.661 0.735 0.770

17 0.431 0.681 0.706 0.733 0.750 0.525 0.655 0.715 0.716 0.706 0.365 0.709 0.696 0.750 0.799

18 0.425 0.654 0.665 0.695 0.702 0.542 0.697 0.723 0.796 0.675 0.350 0.616 0.616 0.617 0.733

19 0.484 0.674 0.715 0.710 0.744 0.535 0.696 0.732 0.643 0.738 0.441 0.654 0.699 0.792 0.751

20 0.439 0.608 0.649 0.666 0.686 0.551 0.656 0.742 0.668 0.618 0.365 0.567 0.576 0.664 0.769

Mean 0.477 0.589 0.661 0.683 0.702 0.537 0.635 0.660 0.677 0.673 0.442 0.585 0.676 0.713 0.741

Std 0.066 0.081 0.040 0.043 0.025 0.082 0.116 0.084 0.108 0.050 0.096 0.134 0.068 0.082 0.042

In the three evaluation metrics (DSC, SEN, PPV), bold values indicate the highest corresponding evaluation scores for the models.
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FIGURE 3

Comparison of segmentation results from five different models.

incorrectly categorized as PVSs. Moreover, the IAANet was unable
to distinguish some lacunar infarctions (Figure 4C). Similarly,
TriSegNet and nnU-Net were prone to detecting some slightly
higher-signal non-PVS voxels as PVSs (Figures 4C, D), leading to a
large number of misreported voxels. Notably, MfNS_De effectively
resolves the above problems, and its segmentation results are more
consistent with the ground truth.

Figure 5 shows a 3D view of different PVSs burdens, illustrating
the distribution of whole-brain PVSs. In Figures 5B, C, IAANet
and TriSegNet demonstrate a significantly higher whole-brain PVSs
burden than the ground truth, and the PVSs morphology appears
more irregular, which is consistent with the results shown in
Figure 4. In contrast, the 3D view demonstrated by MfNS_De
and nnU-Net closely resembles the ground truth. However, in
Figure 5B, we can see that MfNS_De performs better than nnU-Net
for detecting PVSs at the brain’s edges.

3.2 Visual count comparison

We evaluated the ability of our MfNS_De model to detect
PVSs by comparing them with expert visual counts. Figure 6 shows
the scatter plots and Spearman’s correlation coefficients for PVSs
counts in the BG and CSO. There was a very high correlation
between counts by visual raters and our model’s detection of PVSs
in the same section (BG:rs = 0.845, P < 0.001; rs = 0.868, P < 0.001;
CSO:rs = 0.845, P < 0.001; rs = 0.823, P < 0.001 for raters 1
and 2, respectively), and this result almost reached an inter-rater
correlation (rs = 0.920, P < 0.001; rs = 0.915, P < 0.001 for BG
and CSO, respectively). Overall, the PVSs count from our model’s
automatic segmentation was lower than that from T2-weighted
MRI, which could be because the model ignored very small and
low-signal PVSs. The data collected had a heavy PVSs burden, with
counts reaching 132 (CSO) and 38 (BG) based on our model’s
segmentation results. As shown in Figure 6, one can notice that
even for scans with a heavy PVSs burden, the PVSs counts from the
automatic segmentation of the model were satisfactory. If humans
were to visually rate scans with many PVSs on the original T2-
weighted images alone, it would be a very time-consuming and
labor-intensive task, and the results might also be more variable
owing to subjective judgment.

4 Discussion

An increasing number of studies have indicated that PVSs
are associated with cerebrospinal fluid circulation, clearance of
metabolic waste from the brain, and certain neurodegenerative

FIGURE 4

Illustration of typical PVSs segmentation by five different models. (A–D) Indicate different subjects, respectively. Red arrows indicate PVSs that are
not successfully segmented; blue arrows indicate the identification of the sulcus as PVSs; red circle indicates lacunar infarction; and blue circles
indicate the identification of some of these slightly higher signaling voxels as PVSs. PVSs, perivascular spaces.
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FIGURE 5

3D results of the segmentation of large amounts of PVSs (A), medium amounts of PVSs (B), and small amounts of PVSs (C) using five different
models, shown in axial view. PVSs, perivascular spaces.

FIGURE 6

Scatter plots of visual counts of the PVSs between T2-weighted images and our MfNS_De segmentation results. Purple and blue denote centers of
semiovales (CSO) and basal ganglia (BG), respectively; rs denotes Spearman’s correlation coefficient.

diseases (Iliff et al., 2013; Rangroo Thrane et al., 2013; Yang et al.,
2013; Francis et al., 2019). Accurate and convenient evaluation
of PVSs has been widely discussed in recent years. In this study,
we proposed an automatic PVSs segmentation method of the
whole brain in T2-weighted 3T MRI based on deep learning
and achieved excellent segmentation results. We compared the
segmentation accuracy between the MfNS_De method and the

other four methods (IAANet, TriSegNet, U-Net, and nnU-Net).
Our method achieved about 23%, 11%, 4%, and 2% average DSC
improvement, respectively.

nnU-Net utilizes the original U-Net structure to optimize
segmentation results through pre-processing and post-processing.
It achieved the best automatic segmentation performance on 33
of the 53 anatomical structures evaluated, demonstrating strong
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FIGURE 7

Typical cases of MfNS_De method segmentation failure. Blue
arrows indicate low-signal PVSs. PVSs, perivascular spaces.

generalization characteristics. nnU-Net does not require expert
knowledge or computational resources beyond standard network
training, and no manual task-specific adaptation is necessary,
which is why we chose nnU-Net for comparison. Our results
showed that nnU-Net exhibited higher sensitivity than all the other
models, including MfNS_De, but at the cost of a lower PPV. In
other words, nnU-Net accurately detects PVS but also includes
more false positive regions, which can be clinically harmful.
Therefore, we still consider DSC to be a more reasonable metric.
It is noteworthy that nnU-Net’s DSC of 0.68 does not reach
MfNS_De’s value of 0.702, indicating that we outperform nnU-Net
in the PVS segmentation task.

The nested design of our network architecture allows multi-
scale feature learning, which is crucial in image segmentation tasks,
where objects of interest vary in size and shape. This network can
effectively capture features at different scales, thereby improving its
accuracy and robustness in segmenting small objects. The densely
nested U-Net architecture enhances feature fusion from different
layers. By combining features across various depths of the network,
the model can leverage both low-level texture and edge details,
as well as high-level contextual information. This comprehensive
feature integration is particularly effective in achieving precise
and detailed segmentation results, making it a powerful tool for
various image segmentation applications. Moreover, multi-scale
HFs facilitate the detection and segmentation of small objects by
focusing on features at various scales. This is particularly useful for
capturing the nuances of smaller objects that may be lost on a single
scale or using a conventional U-Net model.

As shown in Figures 4, 5, IAANet and TriSegNet either
frequently detect many anomalous voxels as PVSs or miss many
true PVSs. The U-Net cannot distinguish between a small number
of blended boundaries. Similarly, nnU-Net tends to detect many
slightly higher-signal non-PVS voxels as PVSs, which results in
nnU-Net’s SEN scores being slightly higher than those in our

method; however, its DSC and PPV scores were lower than
those in our method owing to a higher false positive rate.
Our method clearly outperforms these four comparison models.
Specifically, we proposed the MfNS_De model, which introduces
a novel approach to image segmentation that is particularly
effective for small objects, such as PVS. Its unique architectural
feature, namely densely nested layers, facilitates a comprehensive
understanding of both high-level and low-level image details, which
is crucial for accurately segmenting small objects. The integration of
features from different network depths yields precise and detailed
segmentation results. Additionally, deep supervision with multi-
scale HFs introduces a novel approach for segmenting small objects,
combining the strengths of multiple layers of models with the
precision of multi-scale analysis. The integration of multi-scale
HFs allows the effective capture of detailed features at various
scales, which is crucial for the precise identification of smaller
objects that are often missed when using traditional methods.
This combination significantly reduces false positives and improves
segmentation accuracy. Overall, the proposed MfNS_De model
effectively improves the segmentation accuracy by integrating
different network depth features as well as multi-scale salient
foreground depth supervision methods. The segmentation results
show that the proposed strategy improves the segmentation
performance, and the MfNS_De method detects PVSs in the
whole brain so that a 3D view of the PVSs can be obtained
(Figure 5), which helps doctors visualize the morphology, number,
and distribution of PVSs in the brain.

Numerous studies have investigated the automatic
segmentation of PVSs (Hou et al., 2017; Zhang et al., 2017;
Lian et al., 2018; Boutinaud et al., 2021; Spijkerman et al., 2022;
Rashid et al., 2023). Lian et al. (2018) used a fully convolutional
neural network (FCNN) machine learning approach on a dataset
of T2-weighted magnetic MRI acquired using a 7 T scanner. The
DSC of their method was 0.77, which is the highest result among
the articles we retrieved thus far. Given that 7TMR imaging is
rarely used in clinical practice, the segmentation of PVSs in 3T
scanners is beneficial for studying various diseases. However, the
number of current research on automatic PVSs segmentation in 3T
scanners is limited (Boutinaud et al., 2021; Rashid et al., 2023); in
the literature we have retrieved, the reported DSC has not exceeded
0.70, except for some specific PVS (PVS clusters and large PVSs)
(Boutinaud et al., 2021). Most articles have not disclosed the dice
score, a measure of overall segmentation performance and the
most rigorous metric for evaluating the performance of PVSs
segmentation algorithms (Pham et al., 2022). This also reinforces
the clinical value of our 3T MRI model.

We found some literature that showcases several excellent
methods for brain tumor segmentation. Liu et al. (2022) presented
a glioma segmentation method based on adversarial learning.
It fuses contrast-enhanced T1-weighted and Flair MRI images,
using a semantic segmentation network as a discriminator to
extract tumor-related information. Zhu et al. (2023) proposed
a brain tumor segmentation method based on the fusion of
deep semantics and edge information. It primarily utilizes an
improved Swin Transformer for semantic segmentation, combines
convolutional neural network for edge detection, and employs
graph convolution for feature fusion. The method aims to
enhance segmentation accuracy using multimodal MRI data
by fully leveraging deep semantic features and edge features.
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Afterward, Zhu et al. (2024) proposed a new brain tumor
segmentation method that consists of three modules, the Modality
Information Extraction Module (MIE) for weighting different
modality information, the Spatial Information Enhancement
Module (SIE) for enhancing spatial information extraction through
dilated convolutions, and the Boundary Shape Correction Module
(BSC) for improving segmentation accuracy by selecting and
constraining critical boundary points. I believe our upcoming PVS
segmentation work can draw new ideas from these articles to build
a more efficient PVS segmentation model.

Our study has some limitations. First, as shown in Figure 7,
failed segmentation may occur in a few cases. The MfNS_De
method may not detect PVSs with very low signals on T2-weighted
images, leading to a lack of continuity in the segmentation results
for long PVSs with uneven signal strengths along the extension
direction. Moreover, a possible impact to model generalizability
since the images were from PD patients. For future work, we need
to consider a large sample to improve the model’s generalizability,
including children, normal persons, and patients with other
diseases. Finally, high-resolution T2 (slice thickness: 2 mm/slice
gap: 0 mm) can reduce motion artifacts and display the anatomical
structures of the BG more clearly (Rasouli et al., 2018; Vos et al.,
2018). Therefore, we set the slice thickness of the T2-weighted
images to 2mm, but this may also cause us to miss some unscanned
PVSs.

5 Conclusion

In this study, we introduced a multi-scale supervised dense
nested attention network designed to segment the PVS based on
T2-weighted 3T MRI. Our method achieved the best segmentation
results compared with the four other deep-learning-based methods,
reaching a DSC of 0.702. The results of the visual count of PVSs
in our model showed an extremely high correlation with those
of experts on T2-weighted images (BG: rs = 0.845, P < 0.001;
rs = 0.868, P < 0.001; CSO: rs = 0.845, P < 0.001; rs = 0.823,
P < 0.001 for raters 1 and 2, respectively). We believe that this
method will facilitate practical clinical applications and is expected
to replace the method of direct visual counting directly on T1-
weighted images or T2-weighted images.
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