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Background: This study utilized recent advancements in

electroencephalography (EEG) technology that enable the measurement

of prefrontal event-related potentials (ERPs) to facilitate the early detection

of mild cognitive impairment (MCI). We investigated two-channel prefrontal

ERP signals obtained from a large cohort of elderly participants and compare

among cognitively normal (CN), subjective cognitive decline (SCD), amnestic

MCI (aMCI), and nonamnestic MCI (naMCI) groups.

Methods: Signal processing and ERP component analyses, specifically adapted

for two-channel prefrontal ERP signals evoked by the auditory oddball task, were

performed on a total of 1,754 elderly participants. Connectivity analyses were

conducted to assess brain synchronization, especially in the beta band involving

the phase locking value (PLV) and coherence (COH). Time-frequency, time-trial,

grand average, and further statistical analyses of the standard and target epochs

were also conducted to explore differences among the cognition groups.

Results: The MCI group’s response to target stimuli was characterized by greater

response time variability (p < 0.001) and greater variability in the P300 latency

(p < 0.05), leading to less consistent responses than those of the healthy

control (HC) group (CN+SCD subgroups). In the connectivity analyses of PLV

and COH waveforms, significant differences were observed, indicating a loss

of synchronization in the beta band in response to standard stimuli in the

MCI group. In addition, the absence of event-related desynchronization (ERD)

indicated that information processing related to readiness and task performance

in the beta band was not efficient in the MCI group. Furthermore, the observed

decline in the P200 amplitude as the standard trials progressed suggests the

impaired attention and inhibitory processes in the MCI group compared to the

HC group. The aMCI subgroup showed high variability in COH values, while the

naMCI subgroup showed impairments in their overall behavioral performance.
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Conclusion: These findings highlight the variability and connectivity measures

can be used as markers of early cognitive decline; such measures can be

assessed with simple and fast two-channel prefrontal ERP signals evoked by

both standard and target stimuli. Our study provides deeper insight of cognitive

impairment and the potential use of the prefrontal ERP connectivity measures

to assess early cognitive decline.

KEYWORDS

mild cognitive impairment, event-related potential, two-channel prefrontal EEG, brain
connectivity, synchronization, EEG beta band, auditory oddball paradigm

1 Introduction

Cognitive impairment and its progression to dementia have
become important public health concerns in aging populations.
As life expectancy increases and the number of elderly individuals
grows, the prevalence of age-related cognitive disorders has also
risen (Alzheimer’s Association, 2013; Prince et al., 2015).

Mild cognitive impairment (MCI) is a transitional stage
between normal cognitive decline with aging and dementia
and is characterized by cognitive decline in areas such as
memory, attention, language, problem-solving, and decision-
making (Gauthier et al., 2006). Severe or progressive impairment
can substantially impact an individual’s daily functioning and
quality of life. Therefore, early detection and medical intervention
are crucial for preventing cognitive decline and improving quality
of life (Tisher and Salardini, 2019).

There are several subtypes of MCI, and studying the
characteristics of each subtype can reveal important clinical
markers regarding the risk of progression to dementia. One of
the subtypes of MCI, amnestic MCI (aMCI), is characterized
by substantial memory impairment, while function in the other
cognitive domains is relatively preserved (Golob et al., 2007; Li
et al., 2017; Yener et al., 2019). In contrast to aMCI, nonamnestic
MCI (naMCI) primarily affects nonmemory cognitive functions,
such as attention, executive function, and language (Corbo and
Casagrande, 2022). Moreover, a growing number of individuals
have reported subjective cognitive decline (SCD); despite the
absence of MCI, these individuals subjectively experience memory
problems (Babiloni et al., 2010). SCD is an established medical term
included in the clinical practice guidelines (CPG), and SCD has
been considered an intermediary stage between cognitively normal
(CN) and MCI (Si et al., 2020; Lee J. S. et al., 2022). Ronnlund’s
study of 2,043 individuals found that SCD was associated with a
2- to 5.7-fold increased risk of Alzheimer’s disease (AD)-related
dementia, confirming a significant correlation between SCD and
the onset of dementia (Ronnlund et al., 2015). The characteristics
of both SCD and CN individuals, collectively referred to as healthy
controls (HCs), also need to be compared with those of MCI
individuals.

To assess cognitive decline and identify potential markers for
early detection, neurophysiological methods utilizing bio-signals,
such as electroencephalography (EEG) and event-related potentials
(ERPs), have been extensively explored in MCI research (Bonanni

et al., 2008; van der Flier et al., 2014; Gu and Zhang, 2017;
Barry et al., 2019; Schumacher et al., 2020; Jiao et al., 2023).
These techniques can directly and noninvasively measure brain
activity and provide valuable insights that aid in the early detection
and subtype differentiation of MCI as well as in the assessment
of cognitive function during various tasks or interventions.
Specifically, ERPs are electrical activities in the brain that occur in
response to a specific event or stimulus. They provide a consistent
and reliable pattern of neural activity evoked by auditory or visual
stimuli (Gu and Zhang, 2017).

However, most previous studies have utilized multichannel
EEG systems, which can be cumbersome, uncomfortable, and less
practical, particularly for use in elderly individuals with cognitive
decline. Older individuals generally display characteristics such as
higher EEG signal variability and noise levels, as well as reduced
ERP amplitudes (O’Donnell et al., 1992; O’Connell et al., 2012;
K.E.S.Group, 2017), which may pose challenges for obtaining
reliable measurements in real-world clinical settings.

Recent advancements in EEG technology have introduced
portable and user-friendly EEG devices, such as hairband types of
devices that measure activity in the prefrontal lobes using only two
channels (Choi et al., 2019; Yi et al., 2019; Doan et al., 2021; Bae
et al., 2022). These devices offer numerous advantages for cognitive
assessment in elderly populations. Focusing on signals from a
limited number of channels can achieve better control for noise and
variability in the signal during measurement. Most importantly,
the simplicity of this technology can enhance compliance among
older populations due to convenience and quick measurement
procedures.

In a study using a single channel EEG, ERPs of 15 CN subjects
and 8 MCI subjects were measured with five types of auditory
stimuli. This yielded ERP features in the Fpz region and enabled
subsequent classification of MCI and CN subjects using random
forest and support vector machine methods (Khatun et al., 2019).
In another study involving 87 CN subjects and 35 individuals with
dementia, a dementia prediction model was developed through
a correlation analysis of two-channel prefrontal EEG and ERP
biomarkers with Mini-Mental State Examination (MMSE) scores
(Doan et al., 2021).

Despite the increasing availability of a few channel EEG devices,
there is a paucity of research analyzing two-channel prefrontal ERP
data. Moreover, prior studies of MCI using two-channel signals had
several limitations.
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First, there has been little discussion on how to analyze two-
channel prefrontal ERP data from a signal processing perspective
of elderly populations who may suffer from dementia or MCI. In
a study involving 91 MCI subjects and 30 CN subjects, ERP data
from the Cz and Pz regions were analyzed, revealing an increased
P300 latency in MCI subjects during an auditory oddball task
(Papaliagkas et al., 2008).

However, measuring data in only the left and right prefrontal
lobes could result in differences in the P300 component because it
is one of the most prominent ERP components in the parietal lobe.
For example, it has been reported that prefrontal ERPs elicited with
the oddball task had significantly smaller amplitudes of the P300
than those of the P200 and waveforms are different from those of
parietal region (Winterer et al., 2003). It has also been reported that
the P200 is more prominent in the frontal lobe in older individuals,
while the P300 is more prominent in the parietal or occipital lobe
in younger individuals (McEvoy et al., 2001).

Therefore, appropriate signal processing analyses for ERP data
measured in the prefrontal lobe should be discussed. A previous
study demonstrated that identifying and utilizing the optimal
electrode configuration can significantly improve the accuracy of
classifying MCI from CN (Lee K. et al., 2022). This implies that the
results may vary based on the selected channel. However, there are
limitations in applying conventional EEG analysis methods (such
as independent component analysis, interpolation techniques, and
rereferencing) when using two-channel device for the ease of
measurement (Kiiski et al., 2012; Robbins et al., 2020). In addition,
the prefrontal ERP data of elderly populations with cognitive
decline often exhibit a less distinct P300 and may have different
characteristics compared to typical ERP data (McEvoy et al., 2001;
Winterer et al., 2003). As a result, it is necessary to utilize alternative
analysis methods that comprehensively consider these issues as well
as to ensure data cleaning through visual inspection with robust
criteria (K.E.S.Group, 2017; Bae et al., 2022).

Second, there have been very few attempts to analyze
connectivity with respect to the two-channel EEG data.
Connectivity analysis of the left and right ERP signals could
also provide new insights.

The phase locking value (PLV) measures the consistency
of phase relationships, and coherence (COH) quantifies the
degree of phase synchronization between two EEG signals at
specific frequencies. These connectivity indices serve as valuable
metrics for evaluating the degree of functional connectivity and
synchronization of neural oscillations between different brain
regions or neural populations (Burgess, 2013). The utility of the
PLV and COH indices for identifying neural network and brain
connectivity abnormalities associated with neurological disorders,
such as dementia, AD, and epilepsy, has been discussed (Stam et al.,
2003; Fonseca et al., 2011; Handayani et al., 2018).

Analysis of the PLV and COH indices offers advantages over
traditional ERP component analysis in older populations. In
older individuals, EEG signals often exhibit higher levels of noise
and variability due to age-related changes in the brain and the
aforementioned challenges in EEG measurement (O’Donnell et al.,
1992; O’Connell et al., 2012). PLVs and COH values are relatively
robust to noise and volume conduction, enabling researchers to
extract meaningful connectivity patterns (Kaminski et al., 2016). In
addition, PLVs and COH values enable frequency-specific analyses,
which is crucial as age-related changes in the brain may affect

neural oscillations differently across frequency bands (Vysata et al.,
2012). Furthermore, while ERP component analysis focuses on the
amplitude and latency of specific event-related responses, PLVs and
COH values reflect functional connectivity between brain regions.
These approaches offer a more comprehensive understanding of
how different brain areas interact during cognitive tasks in aged
population.

In such connectivity analyses, values are calculated according to
different frequency bands. Among these frequency bands, the beta
band is related to various cognitive functions, such as attention,
memory, and information processing. The beta band is also most
commonly associated with active, conscious motor behavior and
sensorimotor control (Khanna and Carmena, 2017; Barone and
Rossiter, 2021). Furthermore, beta rhythms are known to be
involved in perceptual integration and multisensory processing
(Townsend et al., 2022). While analysis of the beta range can
indicate significant differences, little research has been conducted
on its characteristics in two-channel prefrontal ERP data.

In a group of 20 CN subjects and 22 mild probable AD
individuals, an ERP analysis of responses evoked with a visual
oddball task revealed that theta waves in the F3 region in AD
individuals were less phase-locked than those in CN individuals
(Yener et al., 2007). In another ERP study involving 21 CNs and 22
MCI patients, a larger delta response was observed in CN subjects
during the auditory oddball task (Kurt et al., 2014).

Third, a detailed analysis of each ERP evoked by standard
and target stimuli is currently lacking. Responses to auditory
stimuli can significantly differ depending on whether the stimuli
are classified as standard (frequent or expected events) or target
(rare or unexpected events) (Barry et al., 2000). The physiological
and neurological explanations for these responses are grounded in
our brain’s inherent bias for novelty and its capacity for predictive
coding (Winkler and Czigler, 2012). Responses to standard stimuli
can reflect habituation, sensory processing, and baseline neural
activity, while responses to target stimuli can be used to investigate
neural mechanisms related to attentional processes and the
cognitive evaluation of novel or infrequent events (Skosnik et al.,
2007). While ERP difference waves are useful for isolating target-
specific neural activity, analyzing the ERPs evoked by standard
and target stimuli separately can provide richer and more valuable
insights into the underlying neural processes. Analyses should
incorporate diverse perspectives, such as time-frequency analysis
and time-trial analysis, as well as ERP component and connectivity
analysis.

Fourth, most previous studies have conducted research in a
laboratory environment and included small number of participants,
which makes it challenging to consider clinical applications of the
findings (Yener et al., 2007; Papaliagkas et al., 2008; Papadaniil
et al., 2016; Khatun et al., 2019). Since it is difficult to replicate
the laboratory environment in real-world contexts (such as clinical
practice), analyzing ERP responses in actual clinical studies, which
have a larger and more diverse population, is a more reliable
way to determine their potential clinical relevance and usefulness.
Additionally, previous studies have only compared MCI and CN
groups without including more detailed comparisons of data from
aMCI, naMCI, and SCD subgroups.

To address the four limitations outlined in the preceding
paragraphs, the present study aimed to investigate and compare
two-channel prefrontal ERP signals obtained from numerous
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elderly participants in a clinical study, subdivided into the CN,
SCD, aMCI, and naMCI subgroups. In particular, we focused on
analyzing the response characteristics evoked by standard and
target stimuli in the beta band, which has been implicated in various
cognitive processes and connectivity within the brain.

2 Materials and methods

2.1 Participants and experimental design

The participants aged 54 to 90 years were recruited from
the Gwangju Alzheimer’s and Related Dementia (GARD) cohort
in South Korea from 2019 to 2022. The experimental protocol
was approved by the Ethics Committee of the Institutional
Review Board of Chonnam National University Hospital,
South Korea, and the approval number was CNUH-2019-279.
This trial was conducted in accordance with the principles of
the Declaration of Helsinki. Participants were recruited through
phone calls, brochures, flyers, and poster advertisements and
were asked to sign informed consent forms after receiving a full
explanation of the study. Experimental workflow in accordance
with the Strengthening the Reporting of Observational Studies in
Epidemiology (STROBE) Statement is shown in Figure 1.

This study analyzed ERP data from 1,754 participants, all
of whom underwent a clinical interview and were assigned a
Clinical Dementia Rating (CDR) score. In addition, all individuals
underwent cognitive function evaluations using several cognition
test tools (Park et al., 2019): the Korean version of the MMSE
(K-MMSE), which is used to measure global cognitive decline
and has simple 30 questions; the Seoul Neuropsychological
Screening Battery II (SNSB II), which encompasses five cognitive
domains, including attention, language, memory, visuospatial
abilities, and frontal/executive function; the Korean Dementia
Screening Questionnaire-Cognition (KDSQ-C), which is known
for its sensitivity in detecting early-stage dementia; the Korean
version of the Geriatric Depression Scale (K-GDS), which is
to evaluate geriatric depression; and the Korean version of the
Instrumental Activities of Daily Living scale (K-IADL), which is
used to assess participants’ daily functioning.

All participants were divided into 2 main groups: the HC and
MCI groups. These groups were further divided into 4 subgroups:
CN and SCD subgroups (within the HC group) as well as the
aMCI and naMCI subgroups (within the MCI group). If the CDR
score was 0, the participant was placed into the HC group and
then undergoes a clinical evaluation by a physician. If the primary
symptom reported is subjective memory complaints, the physician
diagnosed participants with SCD based on the existing CPG and a
comprehensive evaluation of various clinical factors (Si et al., 2020;
Lee J. S. et al., 2022). Meta-analysis indicates that the CDR is an
effective tool for staging cognitive decline, with cutoff points of
0.5 and ≥ 1.0 used to screen for MCI and dementia, respectively
(Huang et al., 2021). Therefore, a CDR score of 0.5 was considered
to reflect MCI, except for participants who met the following
criteria: (1) two or more white matter hyperintensities (WMHs) on
magnetic resonance (MR) images, (2) a GDS score of 17 or more,
(3) cerebral diseases such as stroke or cerebral hemorrhage, and (4)
internal medical conditions that may affect cognitive function. In

addition, participants were placed in the aMCI subgroup if their
z scores in the memory domain of the SNSB II were below −1.5
(Park et al., 2019). On the other hand, participants were placed in
the naMCI subgroup if they had z scores of −1.5 or less in at least
one of the other four domains. Otherwise, participants with CDR
scores greater than 0.5 were classified having dementia.

2.2 ERP recording using a portable device

ERP signals were measured using a portable device, NeuroNicle
FX2, which was manufactured by LAXTHA in Daejeon, Republic
of Korea. The device has been widely used in many hospitals,
public institutions and centers for dementia, and its reliability
and that of the calculated EEG variables have been confirmed in
previous studies (Choi et al., 2019). In addition, the device is also
optimized for simple and easy measurement. For ERP recording,
two noninvasive monopolar scalp electrodes were used to measure
the EEG signals of the prefrontal regions, specifically Fp1 and
Fp2, according to the international 10/20 electrode system. The
reference electrode was placed on the right earlobe. To ensure signal
quality, digital infinite impulse response Butterworth filters were
applied to the device. These included a 2nd-order band-stop filter
with a range of 55 Hz to 65 Hz to eliminate power line noise, a 1st-
order high-pass filter with a cutoff frequency of 2.6 Hz to remove
low-frequency drift, and an 8th order low-pass filter with a cutoff
frequency of 43 Hz to attenuate high-frequency noise (Widmann
et al., 2015). The input range was ± 393 µV with 0.6 µV or less
input noise, and all contact impedances were kept below 10 k�.
The ERP signals were acquired at a sampling rate of 250 Hz with 15-
bit resolution. Our research team previously analyzed the reliability
of EEG signals at the Fp1 and Fp2 regions using the same EEG
equipment employed in the present study (Choi et al., 2019).

During recording, participants sat in an upright seated position
with their eyes closed for a duration of 5 min and 21 s. To minimize
artifacts caused by blinking, muscle movement, and external noise,
trained clinical research nurses closely monitored the participants
and the ERP signals in a quiet room with regular illumination.
If any events occurred, such as participant movement, dozing
off, or external noise, the nurses notified the participant, and the
corresponding portion of the ERP signal was excluded from the
analysis. Our data are available upon request to facilitate replication
of our findings.

2.3 Task and stimuli

In this study, we employed an active auditory oddball task
to elicit selective-attention ERPs. Prior to the experiment, all
participants underwent hearing ability tests. The oddball task
consisted of 256 monotonic standard auditory stimuli at 750 Hz
and 64 rare randomly distributed target auditory stimuli at
2,000 Hz. The ratio of the two stimulus types was set at 4:1,
and their intensity was maintained at 80 dB. Each stimulus had
a duration of 50 ms, and the interstimulus interval was set
at 1,000 ms. Participants were instructed to press a designated
response key upon recognizing the target stimuli. The time indices
corresponding to the occurrence of the standard or target stimuli,
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FIGURE 1

Experimental workflow in accordance with the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement. HC,
healthy control; CN, cognitively normal; SCD, subjective cognitive declines; MCI, mild cognitive impairment; aMCI, amnestic mild cognitive
impairment; naMCI, non-amnestic mild cognitive impairment.

as well as the time indices of participants’ responses, were recorded
separately for subsequent calculation of behavioral measures.

In this study, we calculated the number of correct responses
and the error rate from both data recorded in standard trials
(standard epochs) and data recorded in target trials (target epochs).
Additionally, the average response time and its standard deviation
(SD) were computed for correction behavioral responses for target
stimuli (see Supplementary Table 1 for more details).

2.4 Pre-processing of two-channel ERP
signals from the prefrontal lobe

The prefrontal two-channel ERP data obtained from elderly
individuals not only are of poor quality but also consist
of waveforms with small amplitudes. As a result, applying
conventional EEG analysis approaches is difficult. Methods such as
principal component analysis or independent component analysis,
commonly used for EEG noise removal, cannot be directly applied.
Interpolation techniques or rereferencing based on common
averaging references are also not viable options (Kiiski et al., 2012;
Robbins et al., 2020). Furthermore, the P300 component, which
is typically prominent in the parietal lobe, may exhibit different
characteristics in the prefrontal lobe.

To address these issues, we developed a preprocessing and ERP
component extraction method suitable for use with two-channel

ERP data obtained from the prefrontal lobe of elderly individuals.
This method builds upon our previous work (Bae et al., 2022).
The developed signal preprocessing methods included filtering,
epoching, baseline correction, calculation of response error rate,
artifact rejection, random selection, and averaging. A 0.1∼30 Hz
finite impulse response bandpass filter was applied to reduce
noise components in the high frequency and low frequency band.
All recorded ERP signals underwent visual inspection, and data
contaminated by eye or muscle noise, as well as unexpected external
signals, were excluded from the analysis. More detailed information
on each pre-processing method can be found in the Supplementary
material. A total of 193 participants were automatically excluded
in data pre-processing steps, and data from an additional 92
participants were excluded based on visual inspection criteria.

For the pre-processing of ERP signals and ERP components as
well as connectivity, time-frequency (TF), time-trial (TT), grand
average, and further statistical analyses, an ERP analysis program
was developed in MATLAB R2023a based on EEGLAB functions.

2.5 ERP component analyses

The proposed method for ERP component extraction begins
with optimizing the search range or time window to identify the
ERP components. Given that in the prefrontal regions, the P200
component may be more prominent than the P300 component

Frontiers in Aging Neuroscience 05 frontiersin.org

https://doi.org/10.3389/fnagi.2024.1456169
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-16-1456169 October 14, 2024 Time: 17:17 # 6

Bae et al. 10.3389/fnagi.2024.1456169

TABLE 1 Demographic and neuropsychological characteristics of the 2 main groups and 4 subgroups.

HC
(n = 969)

MCI
(n = 384)

p-value CN
(n = 727)

SCD
(n = 242)

aMCI
(n = 252)

naMCI
(n = 132)

Age (years) 72.07± 6.21 73.86± 6.66 p < 0.001 72.32± 6.19 71.34± 6.21 74.26± 6.79 73.10± 6.36

Sex (male, %) 523, 53.97 232, 60.42 0.034 (χ2
= 4.630) 415, 57.08 108, 44.63 163, 64.68 69, 52.27

Education level (years) 11.87± 4.57 12.36± 4.70 0.077 11.80± 4.60 12.11± 4.51 12.20± 4.72 12.68± 4.68

Attention score 9.71± 2.13 8.57± 2.02 p < 0.001 9.67± 2.10 9.80± 2.20 8.66± 1.92 8.41± 2.20

Language score 0.20± 0.29 −0.09± 0.45 p < 0.001 0.19± 0.30 0.21± 0.26 −0.08± 0.45 −0.11± 0.44

Visuospatial score 0.51± 0.43 0.16± 0.74 p < 0.001 0.49± 0.45 0.57± 0.32 0.15± 0.77 0.18± 0.66

Memory score 0.27± 0.57 −0.49± 0.62 p < 0.001 0.26± 0.56 0.29± 0.59 −0.74± 0.54 0.01± 0.47

Frontal/executive score 0.25± 0.56 −0.22± 0.66 p < 0.001 0.24± 0.56 0.27± 0.57 −0.23± 0.67 −0.18± 0.64

K-MMSE score 27.78± 1.86 26.42± 2.72 p < 0.001 27.78± 1.84 27.76± 1.92 26.23± 2.74 26.78± 2.65

KDSQ-C score 3.24± 2.49 3.28± 2.79 0.797 3.10± 2.40 3.66± 2.72 3.37± 2.81 3.11± 2.75

K-GDS score 8.17± 6.72 8.68± 6.71 0.208 7.65± 6.45 9.76± 7.26 8.92± 6.82 8.23± 6.52

K-IADL score 0.05± 0.27 0.06± 0.29 0.736 0.06± 0.28 0.05± 0.25 0.08± 0.35 0.02± 0.10

The scores for attention, language, visuospatial, memory and frontal/executive functions were derived from the Seoul Neuropsychological Screening Battery II (SNSB II). K-MMSE, Korean
version of the Mini-Mental State Examination; KDSQ-C, Korean Dementia Screening Questionnaire-Cognition; K-GDS, Korean version of the Geriatric Depression Scale; and K-IADL, Korean
version of the Instrumental Activities of Daily Living scale.

and that the waveform characteristics in this region may differ
from the typical ERP waveforms frequently observed in the parietal
lobe, it was necessary to define appropriate time windows for
component analysis.

Previous reports of smaller ERP amplitudes and slower
latencies in older adults were considered during a visual inspection
of the ERP signals recorded in this study; we observed that the P200
component often lasted up to 300 ms, while the P300 component
rarely appeared before 300 ms. Given these observations, we set the
time windows as follows: 60∼200 ms for the N100, 180∼300 ms for
the P200, and 300∼600 ms for the P300. To ensure the reliability
of the identified peaks, a minimum amplitude threshold of 2 µV
was set. Peaks smaller than this threshold or those detected at the
boundaries of the time window were not considered ERP peaks.
Notably, even if the P300 was not clearly visible, the analysis
continued if the N100 or P200 components were present in the
target ERP data.

In this study, ERP waveforms were generated by averaging
across all epochs for each dataset. The latencies and amplitudes of
each of the N100, P200, and P300 components were then calculated.
Additionally, the mean amplitude of the P300 component, as well
as the SDs of the P300 latencies and amplitudes across trials, were
computed (see Supplementary Table 1 for more details). All ERP
waveforms and components were obtained separately for both the
standard and target epochs.

2.6 ERP connectivity analyses

The PLV is a widely used index to measure the strength of
phase synchronization in neural activity, and it has the advantage
of being robust to signal noise and volume conduction. ERPs
are transient EEG signals observed in response to specific stimuli
and are thus susceptible to noise and variability. The PLV
enables a direct examination of ongoing phase dynamics and

synchronization, offering a complementary perspective to ERP
component-based analyses.

To calculate the PLV, a finite-impulse response bandpass filter
was first applied to the ERP signals in the frequency domain of
interest, followed by the application of the Hilbert transform to
independently extract the phase component from each channel
and calculate the phase difference between them. Finally, the PLV
between two signals was defined as the average value, as shown in
Equation 1.

PLV(t) =
1
N

∣∣∣∣∣
N∑

n = 1

exp(jθ (t, n))

∣∣∣∣∣ (1)

where θ is the phase difference at a specific time t of the nth epoch,
and N is the total number of epochs. The PLV reflects the degree of
phase synchronization on a scale of 0 to 1, where 0 represents no
synchronization and 1 represents perfect synchronization.

In this study, PLV waveforms over time were generated for both
standard and target epochs in the 4∼8 Hz for theta, 8∼13 Hz for
alpha, and 13∼30 Hz for beta frequency bands. In addition, the
maximum value of the PLV and the corresponding time at which
it occurred and the mean PLVs within the P200, P300 and positive
time windows were calculated for each of the three frequency bands
(see Supplementary Table 1 for more details).

The COH is an index that reflects the consistency or variability
of the phase angles between two time series, taking different
frequencies into account (Thatcher et al., 2005). In this study, COH
analysis focused on two channels in the prefrontal lobe; thus, the
potential impact of electrode distance on COH values was not
considered (Fonseca et al., 2011). The COH is defined as the square
cross-spectrum of the signals from two channels divided by the
product of the power spectral densities (PSDs) of each signal, as
shown in Equation 2.

Cxy
(
f
)
=

∣∣Wxy
∣∣2(f )

Wxx
(
f
)∗Wyy(f )

(2)
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where Wxy is the cross-spectral density of the two signals, Wxx is
the PSD of x, Wyy is the PSD of y, and f is the frequency, and Cxy
(f) is the COH between x and y channels at frequency f. A value of 0
means there is no linear dependence between x and y at frequency f.

In this study, the COH waveforms over frequency for both
standard and target epochs in the theta, alpha, and beta frequency
bands were generated. In addition, the maximum value of the
COH and the corresponding frequency at which it occurred and
the means and SDs of the COH values were calculated for each
of the three frequency bands. Furthermore, the mean and SD of
COH values across all frequency bands were calculated by Welch’s
averaged periodogram method, and this calculation was performed
using the open source software toolbox HERMES for MATLAB (see
Supplementary Table 1 for more details).

2.7 Time-frequency and time-trial
analyses

For the TF analysis of the ERP signal, event-related spectral
perturbation (ERSP) and inter-trial coherence (ITC) were
calculated based on the fast Fourier transform with a window size
of 64 using Hanning tapers.

ERSP was calculated by comparing brainwave activity across
frequency bands during two specific periods. The first period was
the baseline subwindow from 200 ms before the onset of the
stimulus to the moment the stimulus was presented (−200 to 0 ms
relative to stimulus onset), and the second period was the period
after stimulus onset ( > 0 ms relative to stimulus onset). ERSP
analysis provides information about the frequency power present
at specific time points. If ERSP is increased compared to that in
the baseline period, it is classified as event-related synchronization
(ERS), and if ERSP is decreased, it is classified as event-related
desynchronization (ERD).

ITC was calculated by averaging the phase information in the
frequency domain across multiple trials. It provides a measure of
the degree of periodicity or correlation at a specific frequency and
time interval (Basar et al., 2015). ITC provides a direct indication
of the degree of phase synchronization, with a value of 1 indicating
perfect synchronization between the signals. In this study, TF plots
of ERSP and ITC were generated as color maps for both the
standard and target epochs. Furthermore, permutation analysis of
the baseline subwindow was performed to identify areas exhibiting
significant differences.

Additionally, the ERP data were visualized from a temporal
perspective to identify the brainwave activity associated with
an event in the TT analysis of ERP signals. TT analysis
provides insights into temporal changes, patterns, and significant
fluctuations associated with the event, providing a comprehensive
understanding of the dynamic nature of brain responses. In this
study, TT plots of the ERP values were generated as color maps for
both the standard and target epochs.

2.8 Grand average analyses

Grand average analyses enable visual identification of macro
changes in each group with greater confidence and detail. First,

each ERP waveform, obtained through the proposed signal
processing method, was averaged separately for the 2 main groups
and 4 subgroups to generate the grand average ERP waveforms.
Next, grand average PLV waveforms were generated over time
for each of the 4 subgroups in the theta, alpha, and beta bands.
Subsequent analyses examined significant differences between the
2 main groups based on the comparison of averages across
100 ms intervals (0∼700 ms). Additionally, to gain a macroscopic
perspective considering all values from the grand average waveform
shape, we examined all time points where significant differences
between the 2 main groups. This detailed analysis allowed a more
comprehensive examination of the temporal changes over the
specified period.

In a similar manner, grand average COH waveforms over
frequency were generated for each of the 4 subgroups. Subsequent
analyses examined significant differences between the 2 main
groups based on the comparison of averages across seven
frequency ranges (4∼8 Hz for theta, 8∼10 Hz for low alpha,
10∼13 Hz for high alpha, 13∼16 Hz for low beta, 16∼20 Hz
for middle beta, 20∼23 Hz for high beta and 23∼30 Hz
for very high beta band). Additionally, all frequency ranges
were analyzed to identify significant differences between the 2
main groups to comprehensively examine the frequency-specific
differences between the groups. In addition, grand average
TF plots of ERSP and ITC, as well as grand average TT
plots, were also generated across the 4 subgroups and 2 main
groups by averaging the values from the two channels. For
the color maps representing the grand averages of ERSP and
ITC values, significant values with a permutation statistics p
value below 0.01 are indicated in colors, while nonsignificant
values are plotted in green. For the grand average plots of
TT, sorted epochs with a 10-epoch moving window were
applied for smoothing.

2.9 Statistical analyses

The demographic and neuropsychological measures for the 4
subgroups are summarized using means and SDs. The analyzed
variables, including behavioral measures, ERP components, and
connectivity, are summarized in Supplementary Table 1.

To compare the mean differences of these variables between the
HC and MCI groups, independent-sample t tests were conducted
after checking the normality of the data with the Shapiro-Wilk
test and equal variance test. In cases where Levene’s test for
equal variance was violated, Welch’s t tests were employed. In
addition, ANCOVAs were conducted to analyze the between-group
differences while controlling for potential effects of covariates,
including age, sex, and education level.

Furthermore, the mean differences among the 4 subgroups
were analyzed using ANCOVA with the same three covariates
mentioned above, employing a parallel lines model. Post hoc tests
were conducted using Bonferroni’s method to further examine
specific group differences. In cases where variables exhibited
abnormal distribution, a logarithmic transformation was applied.
The threshold of significance for all statistical tests was set to α

= 0.05.
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3 Results

3.1 Demographic and
neuropsychological characteristics

Table 1 shows the demographic and neuropsychological
characteristics, including scores on the five cognitive domains of
the SNSB II, the K-MMSE, the K-GDS, the KDSQ-C and the
K-IADL, of the 2 main groups and 4 subgroups in terms of the
means and SDs. There were 1,353 total participants (CN = 727,
SCD = 242, aMCI = 252, and naMCI = 132). The HC group had
969 participants (523 males and 446 females), and their mean age
was 72.07 years; the MCI group had 384 participants (232 males
and 152 females), and their mean age was 73.86 years (p < 0.01).
The MCI group exhibited lower SNSB II scores in the five cognitive
domains and lower K-MMSE scores than the HC group (p < 0.01).
The KDSQ-C, K-GDS and K-IADL scores showed no statistically
significant differences between groups.

3.2 Comparison of the mean differences

Table 2 summarizes the mean differences in the analyzed
variables, including behavioral measures, ERP components and
connectivity, between the HC and MCI groups for each standard
and target epoch.

The results of independent-sample t tests showed that Cor_no,
Err_rate and COH_std (p < 0.01) in the standard epoch and
Cor_no, Err_rate, P300_lat_std, COH_std (p < 0.05) and RT_std
(p < 0.01) in the target epoch significantly differed between the
groups. The ANCOVA results showed that all the variables that
significantly differed in independent-sample t tests also showed
significant differences in the ANCOVAs. In addition, a significant
difference was found in PLV_P_B from the beta band in the
standard epoch. Neither standard nor target epochs showed
significant differences in the connectivity variables calculated in the
alpha and theta bands.

The results of ANCOVA including only variables with
significant differences using three covariates for comparing mean
differences among the 4 subgroups are presented in Figure 2.
In the standard epoch, Cor_no showed significant differences
(p < 0.01) among the 4 subgroups, with the order being
CN > SCD > aMCI > naMCI. Additionally, COH_std showed
significant differences (p < 0.05) among the 4 subgroups, with
the order being aMCI > naMCI > SCD > CN. Furthermore,
P300_lat_std and COH_std_B also demonstrated significant
differences (p < 0.05) among the 4 subgroups. According to the
results of Bonferroni’s post hoc test, Cor_no was significantly
higher in the CN subgroup than in the naMCI subgroup (p< 0.01),
P300_lat_std was significantly higher in the aMCI subgroup than in
the SCD subgroup (p< 0.05), and COH_std was significantly lower
in the CN subgroup than in the aMCI subgroup (p < 0.05).

In the target epoch, Cor_no showed significant differences
(p < 0.05) among the 4 subgroups, and Cor_no for SCD
was smaller than that for CN but larger than that for the
MCI group. In addition, RT_std revealed significant differences
(p < 0.01) among the 4 subgroups, with CN exhibiting the smallest
variability. SCD showed greater variability than CN but less

than the MCI group. Furthermore, COH_std showed significant
differences (p < 0.05) among the 4 subgroups, with the order
being aMCI > naMCI > SCD > CN. According to the results
of Bonferroni’s post hoc test, RT_std was significantly lower in
the CN subgroup than in the naMCI subgroup (p < 0.01), and
COH_std was significantly lower in the CN subgroup than in the
aMCI subgroup (p < 0.05).

3.3 Grand average ERP waveforms

Grand average ERP waveforms for both standard and target
stimuli in the 2 main groups and 4 subgroups are shown in Figure 3.
In response to standard stimuli, the N100 component was the most
dominant, and the P200 component was also noticeable, but the
P300 component was rarely seen. In response to target stimuli, the
N100, P200 and P300 components were clearly noticeable; however,
in contrast to the results of the individual ERP component analyses,
the P200 amplitude was slightly larger than the P300 amplitude.
In addition, the P200 component was similar between the 2 main
groups, but the P300 latency was slightly longer in the MCI group
than in the HC group. In terms of the responses of the 4 subgroups,
the P300 latency tended to be longer in the aMCI subgroup than in
the other three groups.

3.4 Grand average waveforms for
connectivity analyses

Grand average PLV waveforms for both the standard and
target epochs in the beta, alpha and theta bands with significant
difference time intervals between the 2 main groups and among
the 4 subgroups are shown in Figure 4. For the standard PLV
waveforms in the beta band, significant differences based on the
comparison of averages between the HC and MCI groups were
observed (0∼300 ms and 500∼700 ms). Furthermore, significant
differences from the analysis across all time points were evenly
distributed throughout the entire time range. In the analysis of the
4 subgroups, PLVs were highest throughout the entire time range
in the CN subgroup, followed by SCD, naMCI, and aMCI. On the
other hand, PLV waveforms in the theta and alpha bands were not
significantly different between the HC and MCI groups. For the
target PLV in the beta band, significant differences were observed
between the HC and MCI groups based on the comparison of
averages within the 0∼100 ms interval. However, no significant
difference was found in the alpha and theta bands. In the 4
subgroups, both standard and target PLVs were the highest in the
CN subgroup and the lowest in the aMCI subgroup.

Grand average COH waveforms for both the standard and
target with significant difference frequency ranges in the 2 main
groups and 4 subgroups are shown in Figure 5. In terms of
the standard COH waveforms, the MCI group had lower values
than the HC group overall, and significant differences in COH
waveforms were found in the region containing the middle and
high beta bands. In the analysis of the 4 subgroups, COH values
were highest in the CN subgroup, followed by SCD, naMCI, and
aMCI. However, the theta and alpha bands showed no significant
group differences. In terms of the target COH waveforms, the
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TABLE 2 Mean differences in the analyzed variables between the HC and MCI groups for each standard and target epoch.

Variable Standard Target

HC MCI p-valuea p-valueb HC MCI p-valuea p-valueb

Cor_no 254.13± 2.78 253.47± 3.70 0.002** 0.002** 62.54± 2.70 62.09± 2.98 0.011* 0.016*

Err_rate 0.73± 1.09 0.99± 1.45 0.002** 0.002** 2.29± 4.22 2.98± 4.66 0.011* 0.012*

RT_mean – – – – 343.60± 63.91 344.55± 65.49 0.807 0.542

RT_std – – – – 78.08± 19.36 82.26± 19.99 0.001** 0.001**

N100_lat 147.19± 16.48 147.14± 14.43 0.959 0.864 144.05± 23.46 143.96± 22.86 0.956 0.943

N100_amp ±3.57± 1.32 ±3.60± 1.31 0.745 0.752 −4.05± 1.73 −4.10± 1.80 0.641 0.422

P200_lat 244.60± 32.45 244.72± 34.75 0.965 0.744 251.16± 25.92 252.61± 22.52 0.343 0.432

P200_amp 3.29± 1.69 3.25± 1.34 0.670 0.502 6.09± 3.77 6.00± 3.53 0.702 0.827

P300_lat 435.09± 92.48 438.25± 92.57 0.603 0.315 397.28± 75.24 404.69± 76.82 0.127 0.194

P300_lat_std 79.04± 16.62 80.83± 18.00 0.110 0.104 52.13± 25.00 55.45± 26.89 0.043* 0.036*

P300_amp 3.21± 3.15 3.28± 3.18 0.733 0.924 7.64± 7.21 7.89± 6.72 0.580 0.640

P300_amp_std 2.71± 1.45 2.81± 1.50 0.310 0.291 2.95± 2.02 2.99± 2.01 0.732 0.616

P300_amp_mean 0.49± 1.80 0.61± 1.94 0.281 0.736 1.25± 4.01 1.52± 3.52 0.232 0.348

PLV_max_B 0.73± 0.15 0.71± 0.15 0.054 0.053 0.80± 0.13 0.78± 0.13 0.078 0.060

PLV_time_B 310.82± 202.99 308.25± 203.94 0.834 0.747 299.30± 188.46 315.25± 189.60 0.161 0.192

PLV_P200_B 0.65± 0.16 0.63± 0.17 0.057 0.056 0.66± 0.16 0.64± 0.17 0.069 0.058

PLV_P300_B 0.64± 0.16 0.62± 0.17 0.058 0.053 0.64± 0.16 0.63± 0.17 0.173 0.146

PLV_P_B 0.64± 0.16 0.62± 0.17 0.051 0.049* 0.65± 0.16 0.63± 0.17 0.101 0.092

COH_max_B 0.71± 0.17 0.69± 0.17 0.179 0.180 0.74± 0.16 0.72± 0.16 0.143 0.112

COH_freq_B 16.30± 4.35 16.43± 4.70 0.627 0.739 16.93± 4.70 16.88± 4.57 0.869 0.833

COH_mean_B 0.55± 0.21 0.53± 0.21 0.099 0.077 0.56± 0.21 0.54± 0.21 0.216 0.150

COH_std_B 9.19± 5.82 9.48± 5.80 0.406 0.268 10.18± 5.62 10.16± 5.36 0.964 0.774

COH_mean 0.63± 0.17 0.61± 0.17 0.169 0.157 0.64± 0.17 0.63± 0.17 0.212 0.170

COH_std 8.78± 4.03 9.45± 4.22 0.007** 0.006** 9.88± 4.15 10.42± 4.29 0.032* 0.023*

aObtained from an independent-sample t-test. bObtained from ANCOVA that included age, sex and education level as covariates. RT_mean and RT_std were computed in only the target epoch. The connectivity variables in this table show only values calculated
from the beta band. **P < 0.01; *P < 0.05.

Fro
n

tie
rs

in
A

g
in

g
N

e
u

ro
scie

n
ce

0
9

fro
n

tie
rsin

.o
rg

https://doi.org/10.3389/fnagi.2024.1456169
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-16-1456169 October 14, 2024 Time: 17:17 # 10

Bae et al. 10.3389/fnagi.2024.1456169

FIGURE 2

The ANCOVA results of the 4 subgroups. Only the variables that were analyzed and showed significant differences are displayed. Age, sex, and
education level were used as covariates, and the Bonferroni method was employed for post-hoc analysis. *p < 0.05, **p < 0.01.

FIGURE 3

Grand average ERP waveforms for both standard and target epochs in the (a) 2 main groups and (b) 4 subgroups.

MCI group also had lower values than the HC group overall,
but no significant difference based on the comparison of averages
between the HC and MCI groups was found. In the 4 subgroups,
both standard and target COH values were the highest in the CN
subgroup and the lowest in the aMCI subgroup.

3.5 Grand average for TF and TT analyses

Grand average TF plots of ERSP for both standard and target
epochs in the 2 main groups and the 4 subgroups are shown in
Figure 6. In the standard TF plots of ERSP in the 2 main groups,
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FIGURE 4

Grand average PLV waveforms for both standard and target epochs in the (a) beta band, (b) alpha band, and (c) theta band with significant difference
time intervals (marked with an asterisk) based on the comparison of averages across seven 100 ms intervals between the 2 main groups and in the
(d) beta band among the 4 subgroups. All time points on the grand average PLV waveform, where significant differences between the 2 main groups
were observed, are marked by the yellow area. *P < 0.05.

ERS occurred in the delta and theta bands from approximately 170

to 550 ms, and ERD occurred in the beta bands from approximately

200 to 400 ms. Among the 4 subgroups, only the aMCI subgroup

showed a slightly different trend than the other groups, with no

ERD in the approximately 10∼14 Hz range between approximately

320 and 400 ms. In the target TF plots of ERSP, ERS occurred in

Frontiers in Aging Neuroscience 11 frontiersin.org

https://doi.org/10.3389/fnagi.2024.1456169
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-16-1456169 October 14, 2024 Time: 17:17 # 12

Bae et al. 10.3389/fnagi.2024.1456169

FIGURE 5

Grand average COH waveforms for both standard and target epochs with significant difference frequency ranges (marked with an asterisk) based on
the comparison of averages across seven frequency ranges between the (a) 2 main groups and (b) 4 subgroups. All frequency ranges on the grand
average COH waveform, where significant differences between the 2 main groups were observed, are marked by the yellow area. *P < 0.05.

the delta and theta bands at approximately 120–550 ms in both the
HC and MCI groups. However, ERD was mainly seen in the middle
and high beta band between approximately 300 and 500 ms in the
HC group but not in the MCI group. Notably, this trend was more
pronounced in the aMCI subgroup than in the naMCI subgroup.

Grand average TF plots of ITC for both standard and target
epochs in the 2 main groups are shown in Figure 7. In terms of
the standard TF plots of ITC, both the HC and MCI groups had
similar significant differences in the delta and theta bands between
approximately 100 and 300 ms, with an ITC value of more than
0.3, and in the alpha bands at approximately 150 ms. Similarly, in
the target TF plots of ITC, significant differences were found in the
delta and theta bands between 100 and 300 ms with an ITC value of
approximately 0.5.

Grand average TT plots for both standard and target epochs
in the 2 main groups and 4 subgroups are shown in Figure 8.
In the standard TT plots of both groups, the N100 component
occurred at approximately 150 ms with a maximum amplitude
of approximately −3 µV, and the P200 component occurred at
approximately 200 to 400 ms with a maximum amplitude of
approximately 3 µV. However, both groups showed a decreased
amplitude and a weakening of the strength of the P200 as trials
containing the standard stimulus progressed. By the end of the
trial, the P200 appeared at only approximately 200 to 300 ms.
At this time, the MCI group exhibited a more blurred and
scattered P200, which reflects a greater degree of weakening than

the HC group. In the target TT plots of both groups, the N100
occurred at approximately 150 ms with a maximum amplitude of
approximately −5 µV, and the P300 component, including the
P200, occurred at approximately 200 to 450 ms with a maximum
amplitude of approximately 5 µV. In contrast to the standard
TT plot, both groups showed little decrease in ERP amplitude or
strength with increases in the number of target stimuli trials.

4 Discussion

In this study, we analyzed ERP signals obtained from thousands
of elderly participants in clinical study who were subdivided
into the CN, SCD, aMCI, and naMCI subgroups. Specifically, we
measured two-channel prefrontal ERP signals using a portable,
convenient and fast method, which is well suited for use with
older adults experiencing cognitive decline. Pre-signal processing
and ERP component detection algorithms specifically adapted for
two-channel prefrontal ERP signals were performed. Subsequently,
waveform, connectivity, TF and TT analyses of the ERP signals
obtained in the standard and target epochs were conducted. We
focused on the differences between groups, with a particular
emphasis on signals in the beta band.

The 2 main groups significantly differed in age and sex but
not education level. On cognitive function scales across various
categories of neuropsychological measures, the MCI group scored
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FIGURE 6

Grand average TF plots of ERSP for standard epochs in the (a) 2 main groups and (b) 4 subgroups, and for target epochs in the (c) 2 main groups and
(d) 4 subgroups. Significant values compared to the baseline window are indicated in colors, while non-significant values are plotted in green.

significantly lower than the HC group. This indicates a decline
in overall cognitive function. However, no significant differences
were found in the severity of depression symptoms or activities
of daily living between the groups. The mean difference analyses
between the 2 main groups revealed that the MCI group had a
lower number of correct responses and a higher error rate than
the HC group in both the standard and target conditions. These
findings align with the expected differences in cognitive function
between the two groups, and they are consistent with the results
of a previous study (Papadaniil et al., 2016). In addition, despite
the consistent and prompt responses required in the task, the MCI

group exhibited significantly higher variability in response time
to target stimuli than the HC group. Within the HC group, SCD
exhibited grater variability than CN, highlighting the differences
between these two subgroups. In contrast to previous studies, which
have reported significant differences in response time between HCs
and individuals with dementia (Patterson et al., 1988; Toda et al.,
1993), we did not find significant differences in response time in
this study. This suggests that there was no substantial difference in
stimulus evaluation, response selection, or response performance
between the HC and MCI groups (Toda et al., 1993). However, it
is worth noting that despite instructing both groups to respond
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FIGURE 7

Grand average TF plots of ITC for both standard and target epochs in the 2 main groups. Significant values compared to the baseline window are
indicated in colors, while non-significant values are plotted in green.

as quickly and consistently as possible, we found that the MCI
group exhibited significantly higher variability in response times
to target stimuli than the HC group. This increased variability
in response time may provide a more meaningful reflection of
the differences among the 4 subgroups than the mean response
times.

Regarding the P300 latency in the target condition, the MCI
group tended to exhibit longer latencies than the HC group,
although this difference was not statistically significant. However,
the SD of the P300 latency was significantly larger in the MCI group
than in the HC group. These findings indicate that individuals
with MCI exhibited greater variability in the latency of the
P300 component elicited by the 64 target trials, resulting in
less consistent responses compared to those of the HC group.
Furthermore, the percentile of the SD of the COH value was
significantly higher in the MCI group than in the HC group
in both the standard and target epochs. This indicates that the
variability in synchronization between the left and right prefrontal
lobes was greater in the MCI group than in the HC group. This
could be interpreted as a lower phase angle consistency in the MCI
group, suggesting a less stable and less consistent phase relationship
between the prefrontal lobes.

As described above, the differences between the HC and MCI
groups primarily involved differences in variability. In contrast, we
did not find evidence of longer P300 latencies in the MCI group,
nor did we identify this variable as a suitable biomarker, as has been
reported in previous studies (Gironell et al., 2005; Bennys et al.,

2007; Morrison et al., 2018). The differences in P300 amplitude
between MCI patients and HC are particularly intriguing and have
been the subject of conflicting reports. These discrepancies are
likely due to variations in study design and measurement regions,
as the oddball task used may not have required full cognitive
capacity from MCI patients, potentially affecting the observed P300
amplitude. In this study, we focused on individuals with MCI rather
than dementia, as MCI patients exhibit less pronounced cognitive
decline than those with dementia. Additionally, the lack of observed
P300 differences may be partially attributed to the generally smaller
ERP responses in the prefrontal cortex compared to the occipital
lobe. Furthermore, the oddball task used in our study may have
been relatively easy for the MCI patients and might not have
required full cognitive load.

ANCOVA revealed that the mean PLV in the positive time
window after stimulus onset of the beta band for the standard
epoch was significantly lower in the MCI group than in the
HC group. This indicates that the phase synchronization over
time since stimulus presentation was weaker in the beta band
in individuals with MCI. However, no phase synchronization
differences were observed in the other frequency bands (alpha
and theta). The ANCOVA and post hoc comparisons among the
4 subgroups revealed significant differences between the CN and
naMCI subgroups in terms of behavioral measures, specifically
the SD of response time. Additionally, significant differences were
observed between the CN and aMCI subgroups in terms of the SD
of COH values for both the standard and target epochs. naMCI
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FIGURE 8

Grand average TT plots for standard epochs in the (a) 2 main groups and (b) 4 subgroups, and for target epochs in the (c) 2 main groups and (d) 4
subgroups.

is characterized by declines in executive function and cognitive
control (Corbo and Casagrande, 2022). Therefore, it was expected
that the naMCI subgroup in this study would exhibit impairments
in overall behavioral performance, such as responding to auditory
stimuli and pressing buttons in the oddball task. On the other hand,
aMCI primarily manifests as cognitive decline related to memory
and is often associated with hippocampal damage. It also confers
a higher risk of progression to AD (Golob et al., 2007; Li et al.,
2017). These characteristics could impact brain connectivity and
result in reduced synchronization between brain regions involved
in memory processes (Yener et al., 2019). This could potentially
explain the greater variability in COH values observed in the aMCI

subgroup compared to the naMCI subgroup within the MCI group.
Similarly, within the HC group, the SCD subgroup appeared to
exhibit impaired memory-related functions compared to the CN
subgroup.

In the grand average standard ERP waveform analysis, the N100
component was most prominent, followed by the P200 component.
These findings align with those of previous studies (Oray et al.,
2002; Morrison et al., 2018), and the waveforms of the HC and
MCI groups were nearly identical. On the other hand, in the
grand average target ERP waveform analysis, the P200 amplitude
observed was slightly larger than the P300 amplitude. The P200
component naturally evokes during early sensory processing,
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resulting in a relatively consistent pattern across participants.
However, the P300 component exhibits greater variability among
participants due to differences in their cognitive functions. This
could be considered one of the distinctive characteristics of ERP
data obtained from the prefrontal lobe of older adults. The observed
P300 tendency in the prefrontal lobe may slightly differ from many
previous studies (Golob et al., 2002; Gironell et al., 2005) that
primarily focused on the parietal lobe due to its distinct physiology
and anatomy. It has also been reported that younger individuals
often exhibit a more prominent P300 in the parietal or occipital
lobe, while older individuals tend to display a more prominent
P200 in the frontal lobe (McEvoy et al., 2001). The grand average
target ERP waveform across the 4 subgroups revealed that the
P300 component of the aMCI subgroup exhibited a notably longer
latency than that of the other three groups. The observation of a
longer P300 latency in the MCI group compared to the HC group
appeared to be driven more by the aMCI subgroup than by the
naMCI subgroup.

In the grand average standard PLV waveform analysis,
significant differences were observed across nearly all time ranges
in the beta band. This finding suggests that the phase-amplitude
coupling in the beta band between the left and right prefrontal
lobes was impaired in the MCI group compared to that in the HC
group. Additionally, no significant differences were found in the
alpha and theta bands in any time range. This suggests that the
MCI group experienced a loss of synchronization in the beta band,
while other frequency bands remained unaffected (Handayani et al.,
2018). In the grand average target PLV waveform analysis within
the beta band, significant differences were found only within a
narrow time range at the onset of the P200 and P300 components.
This indicates that the inter-network connectivity of the MCI group
was weaker than that of the HC group, specifically during the
short time span corresponding to these two components, which
were dominant in the target epochs. The analysis of the grand
average standard and target PLV waveforms within the beta band
across the 4 subgroups indicated that the CN subgroup exhibited
the highest level of phase synchronization of neural activity in
nearly all time windows, with stronger brain connectivity in the
HC group compared to the MCI group. These findings suggest
that the HC group, particularly CN more so than SCD, may
process information faster and more efficiently between different
brain regions than the MCI group. Conversely, the aMCI subgroup
exhibited the lowest level of phase synchronization. Previous
studies have applied quantitative EEG (QEEG) and reported a loss
of beta band synchronization (Stam et al., 2003; Handayani et al.,
2018), but none have specifically analyzed the PLV in the prefrontal
lobe using ERP data. Additionally, none have conducted a detailed
analysis of each response to standard and target stimuli in the
oddball task.

In the grand average standard COH waveform analysis,
significant differences were observed in the low and middle beta
bands. This suggests that the phase relationship between the left
and right prefrontal signals was weaker in the MCI group than
in the HC group. Similar to the results of the PLV analyses, no
significant differences were found in the alpha and theta bands.
These findings indicate that the HC group exhibited a higher level
of synchronization specifically in the beta band, suggesting that
these individuals might exhibit more efficient information transfer
than the MCI group (Gomez et al., 2009). Similarly, in the grand

average target COH waveform analysis, higher COH values were
observed in only the narrow middle beta band of the HC group
compared to that of the MCI group. This finding indicates a
stronger degree of synchronization in the beta band specifically
in the HC group. The grand average standard and target COH
waveform analysis across the 4 subgroups indicated that the CN
subgroup exhibited the highest level of brain connectivity across
nearly all frequency bands, while the aMCI subgroup demonstrated
the lowest level of connectivity. The most consistent finding in prior
studies on AD has been a reduction in COH values, specifically in
the alpha band. However, these studies have primarily focused on
QEEG data in brain regions other than the prefrontal lobe and have
not reported any significant results in the beta band (Fonseca et al.,
2011).

In this study, PLV analysis was conducted to explore ERP
connectivity over time, and COH analysis was performed to
investigate ERP connectivity over frequency. Interestingly, both
analyses revealed similar trends. Brain connectivity plays a crucial
role in cognition and information processing. Our findings indicate
that brain connectivity was stronger in the HC group than in the
MCI group. This suggests that the HC group may possess the ability
to process information faster and more efficiently between different
brain regions than the MCI group. Furthermore, since the oddball
task used in this study is an experimental task designed to assess
cognitive processing, the higher PLVs and COH values observed
imply that the connectivity between brain regions involved in
cognitive function might be enhanced. This is particularly relevant
because neurophysiological diseases are commonly associated with
disruptions in neural synchrony (Hogan et al., 2003). The observed
lack of synchronization in the beta band between the two prefrontal
ERP signals in individuals with MCI might contribute to the decline
in cognitive function.

In particular, beta oscillations are frequently associated with
sensorimotor processing and integration, as well as the regulation
of cognitive states and sensorimotor control (Khanna and
Carmena, 2017; Barone and Rossiter, 2021). Additionally, beta
oscillations play a crucial role in maintaining stability in the
motor system during periods of inactivity. Therefore, the observed
significant differences in the beta band, coupled with the lack
of differences in other frequency bands, imply that there might
be marked distinctions in cognitive states and sensorimotor
mechanisms between the HC and MCI groups. However, recent
studies have indicated that the role of beta oscillations is unlikely
to be limited to pure sensory or motor processes. Instead, beta
oscillations have been implicated in a wide range of functions
(Barone and Rossiter, 2021). Therefore, further research is needed
to establish a causal role of beta oscillations in the sensorimotor
system and to achieve a comprehensive understanding of their
functional importance.

Additionally, the difference in brain connectivity or degree
of synchronization between the 2 main groups was more
pronounced during the standard epoch than during the target
epoch. Specifically, significant differences were observed in brain
connectivity or synchronization between the 2 main groups when
responding to standard stimuli but not to target stimuli. Standard
stimuli typically elicit a more predictable and consistent response,
whereas target stimuli are designed to capture attention and evoke
larger ERP responses (Barry et al., 2000). While ERP analysis
can provide insights into basic responses to standard and target
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stimuli, connectivity analysis of these responses may offer greater
insight into differences between the HC and MCI groups in specific
aspects of brain function. In this context, the reduced ability of
the MCI group to make predictions and maintain consistency
with standard stimuli might have contributed to the observed
lower connectivity characteristics. However, further research is
needed to fully understand these dynamics and their implications.
Furthermore, it is possible that the HC and MCI groups exhibited
differences in the consistency of sensitivity to standard stimuli in
the left and right prefrontal lobes (Aksu et al., 2022). The HC group
may have exhibited more consistent sensitivity to standard stimuli
while maintaining focus and anticipation of specific auditory cues.
In contrast, the lower connectivity observed in the MCI group in
response to standard stimuli could be attributed to inconsistent
sensitivity in the two prefrontal lobes.

ERS is characterized by an increase in the intensity of brain
waves within a specific frequency range that occurs for a limited
duration, e.g., during an ERP. It signifies the synchronization of
neural activity in response to a specific event (Pfurtscheller and
Da Silva, 1999). Notably, ERS is closely linked to information
processing and cognitive function (Krause et al., 2000), making
it a valuable indicator of the brain’s response to specific events
and useful for comprehending the underlying mechanisms of
information processing. In the TF plots of ERSP values in this
study, consistent trends of ERS were observed in the delta and
theta bands from 150 ms onward, regardless of stimulus type.
These findings imply that the HC and MCI groups have similar
information processing mechanisms, indicating a comparable brain
response to the oddball task.

On the other hand, ERD is observed in brain activity associated
with cognitive or motor tasks and represents a form of brain
preparedness (Vecchio et al., 2012). In simpler terms, ERD
indicates that the brain is in a state of readiness to process and
respond to a specific task. In the context of cognitive tasks, the
presence of ERD suggests the suppression of brain activity related
to the processing of cognitive stimuli (Dushanova et al., 2009). In
this study, no ERD was observed in the middle beta band between
300 and 500 ms in the MCI group compared to the HC group.
ERD refers to a decrease in the frequency and amplitude of brain
activity during the time associated with a specific event or task. Our
findings suggest that the brain’s information processing related to
readiness and task performance in the beta band was not efficient
in the MCI group as in the HC group. Specifically, among the
subgroups, the aMCI subgroup exhibited minimal brain readiness
in the beta band compared to the other groups.

ITC is a measure of the degree of synchronization of EEG
signals across multiple trials and provides physiological insights
into the level of signal transmission and synchronization between
different brain regions (Basar et al., 2015). In the TF plots of ITC
generated in this study, the HC and MCI groups exhibited nearly
identical maps for the standard and target epochs, with a minor
difference observed in only the alpha band. Consequently, from
the perspective of information processing and cognitive function
reflected by ITC, it is likely that the brain’s processing of auditory
stimuli during the oddball task is similar in the HC and MCI
groups.

In the TT plots of this study, a noticeable decrease in the
amplitude and duration of the P200 component was observed
with increases in the number of trials containing standard stimuli,

while the N100 component remained relatively unchanged. Initially
(during the first 30∼40 trials), the responses to the standard
auditory stimuli were robust. However, as the trials progressed,
there was a decline in ERP amplitudes within the P200 and early
P300 time windows. This decline was more pronounced in the MCI
group than in the HC group, as indicated by the paler colormap.
Given that the P200 component is associated with early sensory
processing in response to auditory stimuli, we could infer that
early sensory and inhibitory processes are more impaired in the
MCI group than in the HC group. On the other hand, the TT
plot of the target stimuli exhibited a strong ERP response, while
the N100 component appeared weaker than that in response to
the standard stimuli. Additionally, the ERP amplitude within the
P200 time window and the early part of the P300 time window
demonstrated only a slight decrease as the trials containing the
target stimuli progressed. This suggests that, unlike responses
to standard stimuli, the effort and attentiveness of participants
devoted to discriminating the target stimuli remained relatively
stable throughout the trials. However, it should be noted that
the MCI group displayed a slightly larger decrease in effort and
attentiveness to the target stimuli than the HC group.

5 Limitations

Since this study focused on analyzing ERP data from only two
channels of the prefrontal lobe, it was not possible to investigate
the functions of other brain regions, such as the parietal, occipital,
and temporal lobes. Furthermore, network analysis of brain regions
using multiple channels was not feasible. Additionally, due to
the limited availability of detailed previous studies analyzing the
standard and target stimuli in the oddball task, it was challenging
to make direct comparisons with and validate prior results.
Nevertheless, the primary objective of this study, which was to
analyze two-channel ERP data collected in the prefrontal lobe and
compare the results of the HC and MCI groups, was adequately
achieved. As we continue to collect follow-up data in our cohort, we
anticipate being able to investigate disease progression in AD in the
near future. Additionally, future research could benefit from a more
comprehensive analysis that incorporates biological biomarkers,
including APOE genotyping data.

6 Conclusion

The findings of the present study highlight the importance
of considering variability and connectivity measures in cognitive
decline research using two-channel prefrontal ERP signals evoked
by standard and target stimuli. Differences between the two groups
were not observed using conventional ERP component analysis;
however, these differences were revealed through assessment of
variability measures and connectivity analysis. The response of
the MCI group to the target stimulus exhibited greater variability
in response time and greater variability in the latency of the
P300, leading to less consistent response performance compared
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to the HC group. In addition, the MCI group showed a loss of
synchronization in the beta band (but not in other frequency
bands) in response to standard stimuli, indicating a less efficient
information transfer process. The observed differences in brain
connectivity using the PLV and COH indices, particularly those
in the beta band, may offer valuable insights into the mechanisms
underlying cognitive impairment. Furthermore, the TF analysis
revealed that information processing related to readiness and task
performance (in the beta band) was less efficient in the MCI group,
while the TT analysis indicated that early sensory and inhibitory
processes were impaired to a greater extent in the MCI group than
in the HC group. The aMCI subgroup exhibited high variability
in COH values, leading to reduced synchronization between brain
regions. In contrast, the naMCI subgroup showed impairments in
their overall behavioral performance, characterized by declines in
executive function and cognitive control.

This work contributes to the new perspectives of brain
network of the early stages of cognitive impairment and the
potential use of ERP connectivity measures in the beta band
for assessing cognitive decline. We would like to emphasize that
the results presented in this work are based on a large number
of elderly participants that may be representative of Korean
population and thus has high clinical power. Use of a simple and
fast a few channel ERP measurement is increasingly promising
as a screening method, either to replace or in combination
with neuropsychological screening tests. This method offers the
advantages of simplicity, portability, and identification of objective
risk factors for cognitive decline and can be repeatedly used
with minimal learning effects compared to questionnaire-based
screening tools.
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