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Introduction: Research has shown that speech analysis demonstrates sensitivity 
in detecting early Alzheimer’s disease (AD), but the relation between linguistic 
features and cognitive tests or biomarkers remains unclear. This study aimed 
to investigate how linguistic features help identify cognitive impairments in 
patients in the early stages of AD.

Method: This study analyzed connected speech from 80 participants and 
categorized the participants into early-AD and normal control (NC) groups. The 
participants underwent amyloid-β positron emission tomography scans, brain 
magnetic resonance imaging, and comprehensive neuropsychological testing. 
Participants’ speech data from a picture description task were examined. A total 
of 15 linguistic features were analyzed to classify groups and predict cognitive 
performance.

Results: We found notable linguistic differences between the early-AD and 
NC groups in lexical diversity, syntactic complexity, and language disfluency. 
Using machine learning classifiers (SVM, KNN, and RF), we achieved up to 88% 
accuracy in distinguishing early-AD patients from normal controls, with mean 
length of utterance (MLU) and long pauses ratio (LPR) serving as core linguistic 
indicators. Moreover, the integration of linguistic indicators with biomarkers 
significantly improved predictive accuracy for AD. Regression analysis also 
highlighted crucial linguistic features, such as MLU, LPR, Type-to-Token ratio 
(TTR), and passive construction ratio (PCR), which were sensitive to changes in 
cognitive function.

Conclusion: Findings support the efficacy of linguistic analysis as a screening 
tool for the early detection of AD and the assessment of subtle cognitive decline. 
Integrating linguistic features with biomarkers significantly improved diagnostic 
accuracy.
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1 Introduction

Alzheimer’s disease (AD) is a primary neurodegenerative disorder 
predominantly affecting individuals over 60 years old. Studies have 
found that approximately 40% of AD risk factors can be modified in 
the early stages of the disease (Livingston et al., 2020), presenting an 
opportunity for interventions aiming to prevent or delay cognitive 
decline. Neuropsychological tests have traditionally focused on 
assessing episodic memory recall and general cognitive functions, 
which have demonstrated acceptable accuracy in AD detection 
(Arevalo-Rodriguez et al., 2021). Additionally, advancements in AD 
biomarkers such as hippocampus volume (Chupin et al., 2009; Liu 
et al., 2020) and amyloid burden (Morris et al., 2016) have substantially 
enhanced accuracy up to 90% in identifying early pathological 
changes. Clinical evidence has suggested that positive biomarkers 
increase but do not predict the likelihood of progression (Dubois 
et al., 2021). In research involving a cohort of cognitively unimpaired 
individuals, subjects with elevated levels of brain amyloid exhibited no 
signs of cognitive decline until approximately 3–4 years from the 
baseline assessment (Donohue et al., 2017). This result highlights the 
complexity of predicting AD progression, which requires a 
multifaceted approach that includes the assessment of biomarkers and 
the identification of subtle cognitive impairments.

AD weakens episodic memory, which worsens as AD progresses. 
The deterioration of other cognitive functions, including language, is 
also observed. In analyses of connected speech in neurodegenerative 
diseases (Boschi et al., 2017; Kavé and Goral, 2016; López-de-Ipiña 
et al., 2013), AD has been characterized by lexical-semantic deficits, 
such as difficulties in word retrieval and reduced lexical diversity. 
These distinctions highlight the potential for a tailored diagnosis 
based on specific language profiles associated with AD. Researchers 
have used linguistic and acoustic features of speech to distinguish 
patients with early-AD from healthy older adults, reporting high 
accuracy rates for AD diagnosis ranging from 80 to 97% (Fristed et al., 
2022; Lindsay et al., 2021; Martínez-Nicolás et al., 2021). The speech 
analysis approach not only facilitates the early detection of cognitive 
decline but also serves as an alternative that is more accessible and 
noninvasive than biomarkers.

In connected speech, changes in language usage and speech 
patterns can be observed well before the clinical diagnosis of AD (Karr 
et al., 2018; Mueller et al., 2018a). Studies have shown that language 
integrity gradually declines in the early stages of AD (Ahmed et al., 
2013b; Beltrami et al., 2018), significantly affecting lexical-semantic 
and syntactic complexity in individuals with mild cognitive 
impairment (MCI). Studies have also achieved high classification 
accuracy by using a large set of linguistic features, but such accuracy 
can be  maintained by selecting only the most essential features 
(Balagopalan et al., 2021; Clarke et al., 2021; Ostrand and Gunstad, 
2021). Hence, this research aims to explore linguistic anomalies as 
early signals of cognitive impairments to facilitate early AD diagnosis. 
Our strategy involves a focused approach to identifying critical 
linguistic features from existing research to ensure accurate detection 
without the need for an extensive feature set.

This study used picture description task to elicit linguistic 
features of connected speech. This task is commonly used to 
evaluate connected speech (Clarke et al., 2021; Filiou et al., 2020; 
Hernández-Domínguez et al., 2018) and requires participants to 
describe what they see in images without the effort of memorizing 

previously heard words or narratives. Filiou et al. (2020) thoroughly 
examined the effectiveness of this task in distinguishing language 
production subtleties, focusing on various linguistic aspects such 
as fluency, semantics, syntax, and lexicon to differentiate the phases 
of AD and MCI. In individuals with AD, the study revealed 
significant semantic and lexical deficits characterized by a reduction 
in the use of precise, content-rich vocabulary and a shift toward 
generic words such as pronouns (Kavé and Goral, 2016). 
Additionally, a significant decline was observed in semantic units 
associated with actions and subjects, indicating a reduction in the 
use of verbs and syntactic complexity, which are critical indicators 
of AD (Ahmed et al., 2013a). This pattern has been observed in 
patients with MCI, for example, often replacing specific nouns with 
pronouns (Mueller et al., 2016; Ostrand and Gunstad, 2021) and 
using indefinite articles and empty expressions (Ahmed et  al., 
2013b; Mueller et al., 2018a). These linguistic patterns suggest a 
decline in semantic integrity, indicating cognitive decline in its 
early stages.

During speech analysis, syntactic complexity has often been used 
as a marker for cognitive decline. Cognitive challenges such as 
difficulties in word retrieval, executive function problems, and 
working memory constraints can be directly linked to the inability to 
form complex utterances and meaningful sentences (Fraser et  al., 
2015). In such a context, mean length of utterance (MLU) is a critical 
metric, providing insights into the complexity of an individual’s 
language. In MLU, longer utterances typically represent higher 
complexity and are commonly used to assess language development 
and identify potential disorders (Ash et al., 2011; Sadri Mirdamadi 
and De Jong, 2015). In the MCI field, a notable shift is observed: 
affected individuals’ number of grammatically accurate sentences 
decreases, often replaced with simple verb tenses (Ahmed et  al., 
2013b). This change in verb usage is a crucial indicator for clinicians 
to classify the syndromic trajectory of language decline, especially in 
the early stages of AD. Mueller et al. (2018b) found that patients with 
MCI tend to use pronouns and verbs frequently in their speech, 
indicating a shift toward the construction of noun phrases without 
nouns. Additionally, individuals with mild AD often show a reduction 
in verb usage and an increase in filled pauses, considered hallmark 
indicators of language degradation (Ahmed et al., 2013a; Sajjadi et al., 
2012; Yuan et al., 2021).

Research has revealed that individuals with AD pause for long 
periods silently and more frequently (Gayraud et al., 2011; Hoffmann 
et al., 2010; Pistono et al., 2019) in their speech. Although brief pauses 
of less than 1 s are a natural part of spoken language, those beyond 2 s 
can significantly interrupt the conversational flow, suggesting 
cognitive impairment or decline (Nasreen et al., 2021; Wang et al., 
2022). Additionally, patients with MCI exhibit more pauses at a greater 
rate than healthy controls (Roark et  al., 2011; Toth et  al., 2018). 
Although the average duration of these pauses is generally longer in 
affected individuals than in nonaffected individuals (Pistono et al., 
2016), some studies have reported no significant differences in pause 
duration between these groups (Roark et al., 2011; Sluis et al., 2020). 
Research has linked silent pauses to episodic memory retrieval, 
indicating that individuals rely on these breaks for memory retrieval 
and planning. Pistono et al. (2019) observed more frequent pauses 
among patients in the prodromal to mild stages of AD who scored 
higher on semantic fluency tests. Pauses May serve as a compensatory 
mechanism for navigating lexical-semantic and memory challenges 

https://doi.org/10.3389/fnagi.2024.1451326
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Chou et al. 10.3389/fnagi.2024.1451326

Frontiers in Aging Neuroscience 03 frontiersin.org

during the early stages of AD and MCI. These insights have 
substantially strengthened the understanding of how AD and MCI 
affect speech fluency and have potential to evaluate cognitive decline 
through speech pattern analysis.

This study examined narrative speech data from participants 
performing the picture description task. The aim was to identify linguistic 
features of cognitive impairment in individuals with MCI and mild AD 
that differentiate them from normal controls (NCs). Several key strategies 
were implemented to ensure applicable results. Clinical diagnoses were 
confirmed using biomarkers. The control group comprised individuals 
with negative amyloid-β PET scans and normal neuropsychological test 
scores, providing a clear contrast with the cognitively impaired group. 
Participants were monitored at a memory clinic for at least 2 years, 
allowing for an observation of symptom progression and more accurate 
diagnoses. This study was unique because it focused on a Chinese-
speaking cohort, addressing a gap in the literature predominantly based 
on English-speaking populations. To mitigate cultural bias often observed 
in the traditional “cookie theft” task, culturally relevant image stimuli were 
employed to elicit speech samples. This approach aimed to encourage 
more natural engagement from participants, potentially yielding richer 
and more representative language samples. By addressing cultural and 
linguistic specificities, this study aimed to contribute valuable insights to 
the field of early AD detection in diverse populations.

2 Materials and methods

2.1 Participants

Picture descriptions were produced by 80 participants from the 
memory clinic of Cardinal Tien Hospital in Taipei, Taiwan, between 
September 2019 and August 2023. Inclusion criteria for all participants 
were age 60–90 years and at least 6 years of education. The early-AD 
group had no history of neurological or psychiatric disorders. The 
control group comprised hospital volunteers. All participants 
demonstrated the absence of objective cognitive deficits on 
neuropsychological testing and maintained biannual follow-up 
appointments at the memory clinic for 24 months. A neurologist 
(YCL) evaluated these participants according to the research 
frameworks of the National Institute on Aging–Alzheimer’s 
Association diagnostic criteria. The participants were classified into 
early-AD and NC groups based on their Clinical Dementia Rating 
(CDR) scores, brain magnetic resonance imaging (MRI), and 
amyloid-β PET scans conducted within 2 years before recruitment. 
Brain MRI was used to exclude other neurological conditions such as 
brain tumors, and amyloid-β PET scans were primarily evaluated 
using visual rating to confirm amyloid positivity.

The early-AD group comprised 48 individuals: 34 with aMCI and 14 
with mild AD. A CDR score of 0.5 indicates MCI, and a score of 1 
indicates mild AD. The CDR Sum of Boxes (CDR-SB) was used to 
monitor the patient’s disease severity progression. An increase of 1 or 
more in CDR-SB scores over 1 year generally indicates clinical progression 
(i.e., a transition from MCI to more advanced stages of cognitive decline). 
Their MMSE (mini-mental state examination) scores were between 20 to 
26. The control group comprised 32 individuals who scored 0 on the CDR 
and greater than 26 on the MMSE, and Table  1 shows the detailed 
demographic information of these participants.

2.2 Neuropsychological testing

The participants underwent a battery of neuropsychological 
tests to assess specific domains of their cognitive function. The 
Digit Span (DS) subtests and Digit Symbol Substitution (DSS) 
subtests of the Wechsler Adult Intelligence Scale-IV evaluated 
auditory attention and working memory. Memory was evaluated 
using the Logical Memory subtests from the Wechsler Memory 
Scale-III, which include immediate recall (WLM-I) and delayed 
recall (WLM-2). Color Trails Tests 1 and 2 (CTT-1, CTT-2), the 
Stroop Color and Word Test, and the animal category fluency 
task (i.e., VF) were employed for executive function. The 
Taiwanese version of the Boston Naming Test (BNT; 30-item 
version) was used for the language domain.

TABLE 1 Participants’ demographic characteristics and clinical features.

NC, N =  32 Early-AD, 
N =  48

p-value

Age, year 72.23 (6.03) 75.02 (6.58) 0.046

Education, year 13.66 (3.49) 10.03 (4.86) <0.001

Gender, no. female 14 / 32 (44%) 31 / 48 (65%) 0.11

MMSE 28.94 (1.27) 21.19 (5.30) <0.001

CDR-SB 0.02 (0.09) 3.20 (2.49) <0.001

Change in CDR-SB score 

over 2 years
0.09 (0.39) 1.46 (1.85) <0.001

Progressive 0 / 32 (0%) 36 / 48 (75%) <0.001

Biomarkers

Amyloid positivity, no. 

positive (%)
0 / 32 (0%) 48 / 48 (100%) <0.001

Standardized uptake value 1.08 (0.08) 1.47 (0.19) <0.001

Hippocampus, volume, 

cm3
5.12 (0.48) 4.36 (0.72) <0.001

ApoEε4 carrier, no.(%) 4 / 30 (13%) 26 / 45 (58%) <0.001

Cognitive functions, mean (SD)

Attention/information processing speed (standard score)

DS 12.06 (2.91) 7.03 (4.18) <0.001

Episodic memory (standard score)

WLM-I 13.59 (2.42) 5.63 (3.48) <0.001

WLM-II 13.56 (2.59) 4.82 (3.52) <0.001

Executive function (raw score)

CTT-1, sec 59.13 (19.45) 159.82 (103.19) <0.001

CTT-2, sec 123.89 (37.04) 262.03 (131.21) <0.001

VF 17.19 (4.42) 9.88 (4.40) <0.001

Language (raw score)

BNT 24.88 (2.73) 19.31 (4.71) <0.001

Values are presented as means (SDs). MMSE, mini-mental status examination; DS, summary 
score of digit span; WLM-1, Logical Memory subtest of Wechsler Memory Scale (part 1, 
immediate recall); WLM-2, Logical Memory subtest of Wechsler Memory Scale (part 2, 
delayed recall); CTT-1, Color Trails Test part 1 (with ascending number sequence only), 
CTT-2, Color Trails Test part 2 (with alternating color change); VF, animal verbal fluency 
score; BNT, Taiwanese version of Boston Naming Test (30 item). Bold values indicate 
statistically significant differences between the NC and Early-AD groups.
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2.3 Acquisition and processing of brain MRI

All participants underwent whole-brain MRI scans (3.0 T, 
MAGNETOM Skyra, Siemens, Taipei, Taiwan). The MRI acquisition 
protocol was as follows: whole-brain axial and sagittal T2-weighted 
fluid-attenuated inversion recovery (FLAIR) sequence (FLAIR 
repetition time [TR]/time to echo [TE] = 3550/98 ms) with a slice 
thickness of 5 mm, axial T1-weighted sequence (TR/TE = 2200/3 ms) 
with a slice thickness of 1 mm, and high-resolution coronal T1-weighted 
three-dimensional (3D) magnetization-prepared rapid gradient-echo 
image (TR/TE = 2200/5 ms) with a slice thickness of 1 mm.

2.4 Evaluation of hippocampal volume

Hippocampal volume was estimated using high-resolution 
coronal T1-weighted 3D images. We employed the PNEURO module 
of PMOD software (version 4.1, PMOD Technologies, Zurich, 
Switzerland) and implemented the following steps for our analysis: 
First, we  denoised the uploaded T1-weighted MRI scans; second, 
we performed segmentation to identify gray matter, white matter, and 
cerebrospinal fluid and split the hemispheres; third, we parcellated the 
brain structures and presented the brain contours; and fourth, 
we calculated the hippocampal volume of interest.

2.5 Amyloid-β PET assessment

Brain amyloid PET was used in this study to determine the 
amyloid burden in the participants. Florbetaben was used as the 
amyloid PET tracer. The positivity of amyloid PET was based on a 
consensus meeting (with one neurologist and three nuclear medicine 
specialists). Quantitative analysis of PET images was performed using 
quantitative analysis via PMOD (version 4.1, PMOD Technologies, 
Zurich, Switzerland). In detail, T1-weighted MRI scans and the PET 
scans delineated the regions of interest on the MRI scans in accordance 
with the Hammers template and superimposed them onto the 
dynamic PET scans to obtain regional time activity curves [27]. Next, 
we  obtained nondisplaceable binding potential images by using 
cerebellum gray matter as a reference region. Finally, we calculated the 
volume-weighted mean cortical amyloid-β load by using the Hammers 
brain atlas, which comprises all cortical regions (i.e., frontal, temporal, 
parietal, occipital, and cingulate cortices). We collected late-phase 
images 50 min after the tracer injection and then performed a second 
scan with a duration of 20 min to measure amyloid-β burden. We also 
determined the standardized uptake value ratio (SUVR) for the entire 
brain and in specific brain regions (i.e., frontal, parietal, temporal, 
occipital, cingulate, and insular). A cutoff value of 1.19 (specificity 
91.83%; sensitivity 94.54%) was established using receiver operating 
curve (ROC) analysis, with visual read results as the standard reference.

2.6 Recording and extraction of linguistic 
features

This study employed a picture description task to elicit connected 
speech and used a digital recorder to record the responses. Participants 
described a set of three images depicting Taiwanese culture (Figure 1), 

with the instruction to report everything they observed in each image. 
The evaluators refrained from providing feedback but encouraged 
participants to elaborate if their responses were insufficient. Three 
trained graduate students transcribed these recordings, which were 
reviewed and refined by a language therapist on our team. The 
transcribers were unaware of the clinical conditions, 
neuropsychological testing results, or neuroimaging biomarkers and 
only recorded words spoken by the participants and the total number 
of words produced. The remaining words were segmented into 
utterances and annotated as pauses, filled pauses (e.g., “uh,” “um,” “er,” 
and “ah”), repetitions, and revisions. Utterances were manually 
segmented based on semantic and syntactic completeness and pause 
duration. A minimum pause duration of 120 ms was used as a 
guideline for potential utterance boundaries. However, the final 
determination of utterance boundaries also considered semantic 
coherence and syntactic completeness. Filled pauses were not 
considered words, and instances of immediate repetition or 
perseveration of the same word or utterance were excluded (e.g., “They 
brew-brew a pot of tea” was recorded as “They brew a pot of tea”). 
Words were grouped by part of speech and tagged using the Chinese 
Knowledge and Information Processing Lab.1 A total of 15 linguistic 
features spanning three speech aspects—lexical content, syntactic 
complexity, and speech disfluency (Table 2)—were extracted from each 
image, and their averages were calculated for statistical analysis.

Various methods were adopted to evaluate lexical content. The total 
number of words (TW) and unique words (UW) produced from three 
images were determined. Lexical richness was assessed using type-token 
ratio (TTR). Nouns, verbs, adjectives, pronouns, and adverbs are 
defined as content words. We calculated the number of content words 
(CW), regardless of whether they appear in incomplete utterances or 
are used in grammatically incorrect forms—incomplete words it was 
not included in the content word count. Content density was measured 
as the ratio of CW to the TW. To analyze the frequency of content words 
(CWF), we used the Academia Sinica Corpus of Contemporary Taiwan 
Mandarin (Lee, 2023), a database that contains Taiwanese Mandarin 
texts from 2015 to 2020, with a corpus exceeding 70 million words.

To assess syntactic complexity, we  calculated several features, 
including total utterances (U), MLU, total sentences (S), mean length of 
sentences (MLS), and features that indicate complex syntactic 
processing. Utterance is defined as the span of speech from the 
beginning of a speech to the subsequent pause or prosodic boundary. 
An utterance May be one word, a phrase, or a clause. Most Chinese 
words consist of two characters, but a word can be  split into two 
utterances because of pauses. MLU was determined by dividing the 
total number of Chinese characters in an utterance by the total 
number of utterances. We counted complete sentences by identifying 
utterances that contained a subject or predicate structure: noun (or 
pronoun) + main verb or noun (or pronoun) + adjective phrase. To 
evaluate the production of complex sentences, we calculated the ratio 
of verbs and pronouns to the total number of CW, termed verbal ratio 
(VR) and pronoun ratio (RP), respectively.

Mandarin Chinese uses morphosyntactic markers, such as bèi and 
ba, to indicate various grammatical relations and constructions, 
particularly passive constructions. For instance, the bèi construction 

1 https://github.com/ckiplab
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typically arranges sentences in the following order: NP1 
(object) + bèi + VP (verb phrase) [+ NP2 (agent)]. The use of bèi 
emphasizes the subject’s passivity in relation to the action described 
by the verb. Additionally, the ba construction presents a different 
syntactic structure: ba + NP (object) + VP. This structure effectively 
moves the object before the VP, emphasizing the action’s impact on 
the object and focusing on its outcome or result. These two passive 
construction markers in speech indicate the use of more complex 
sentence types and are therefore used in this study as indicators of 
syntactic complexity. To measure the use of passive construction, 
we calculated the ratio of passive markers to total utterances, termed 
the passive construction ratio (PCR).

To calculate dysfluency, we assessed the ratios of fillers and long 
pauses to the TW in each speech sample, termed filler ratios (FR) and 
long pause ratios (LPR). Fillers such as “ah” and” um,” which are used 
to express hesitation or uncertainty, were meticulously recorded. 

Additionally, in Mandarin, words such as “this” and “that” can serve 
meaningful and filling purposes, and the transcribers relied on context 
to determine whether they functioned as fillers. Because of the 
meaningfulness of silent pauses, this study considered long pauses as 
those of 2 s or more between utterances (Lofgren and Hinzen, 2022; 
Pastoriza-Domínguez et al., 2022).

2.7 Data analysis

Statistical analysis was performed using R v4.3.2 (R Core Team, 
2023) with the R packages caret 6.0.94 (Kuhn, 2008) for machine 
learning modeling. Group differences were determined by comparing 
the NC and early-AD groups through linear regression models for 
each linguistic feature, adjusting for age and years of education 
as covariates.

FIGURE 1

A set of three pictures on Taiwanese culture as visual stimuli to elicit descriptive responses from study participants for speech analysis.

TABLE 2 Definitions of linguistic measures and analysis of connected speech production.

Type Linguistic features Definition NC Early-AD p-value

Lexical 

content

Total Words (TW) Total word count 113.74 (47.40) 112.08 (63.07) 0.70

Unique Words (UW) Number of unique words 60.08 (18.52) 51.86 (19.96) 0.30

Type-to-Token Ratio (TTR) UW divided by TW 0.56 (0.08) 0.51 (0.11) 0.11

Content Words (CW) Number of content words 53.03 (18.84) 49.32 (25.45) 0.90

Content Density (CD) CW divided by TW 0.48 (0.05) 0.46 (0.06) 0.10

Content Word Frequency (CWF) Mean word frequency of all content words 857.50 (184.46) 1,024.84 (264.60) 0.07

Syntactic 

complexity

Utterance (U) Number of utterances 21.68 (9.85) 29.81 (21.42) 0.00**

Sentence (S) Number of sentences 13.10 (4.83) 11.92 (6.37) 0.60

Mean Length of Utterance (MLU) Mean characters per utterance 8.11 (3.02) 5.53 (1.62) <0.001***

Mean Length of Sentence (MLS) Mean words per sentence 9.34 (1.33) 11.16 (3.45) 0.01*

Passive Construction Ratio (PCR) Number of passive constructions divided by U 0.03 (0.03) 0.01 (0.02) <0.001***

Verb Ratio (VR) Number of verbs divided by CW 0.22 (0.03) 0.22 (0.03) 0.40

Pronoun Ratio (PR) Number of pronouns divided by CW 0.03 (0.02) 0.05 (0.02) 0.04*

Disfluency

Filler Ratio (FR)

The number of filled pauses uttered divided by 

the total verbal output (the sum of TW and the 

number of filled pauses)

0.05 (0.02) 0.06 (0.05) 0.15

Long Pauses Ratio (LPR)
Number of long pauses divided by the total 

verbal output
0.00 (0.01) 0.02 (0.02) 0.01*

Values are presented as means (SDs). Asterisks denote significant impairment relative to normal controls (NCs) at *p < 0.05, **p < 0.01, ***p < 0.001.  
The Linguistic feature column contains the name of the feature. The definition column explains how the feature is calculated.  
p-values from linear regression models adjusted for age and education. Bold values indicate statistically significant differences between the NC and Early-AD groups.

https://doi.org/10.3389/fnagi.2024.1451326
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Chou et al. 10.3389/fnagi.2024.1451326

Frontiers in Aging Neuroscience 06 frontiersin.org

2.7.1 Classification model
The study aimed to distinguish the patients with early-AD from 

the NCs and identify the key linguistic features contributing to this 
classification and their association with cognitive functions. 
We employed three different predictor combinations to construct and 
compare predictive models: (1) Fifteen linguistic features; (2) two 
biomarkers (hippocampal volume and SUVR); and (3) fifteen 
linguistic features combined with the two biomarkers. In all three 
combinations, age and years of education were included as covariates. 
We employed three supervised learning algorithms: the support vector 
machine (SVM) model with a radial basis function kernel; the 
k-nearest neighbors (KNN) model, which classifies samples based on 
the majority class of their nearest neighbors; and the random forest 
(RF) model. The classification tasks were implemented using the caret 
package within the R programming environment. Feature selection 
was conducted using recursive feature elimination (RFE), an iterative 
method that removes the least informative features until the optimal 
subset is established. This process allowed us to identify the most 
relevant predictors for each model and predictor combination.

The dataset was randomly split into training (70%) and testing (30%) 
sets using stratified sampling. This process was repeated 10 times to create 
10 different stratified train-test splits. For each split, the RFE process used 
10-fold cross-validation repeated five times to select the optimal set of 
features. During this process, RFE evaluated feature subsets ranging in 
size from 1 to the total number of features in the training set. For each 
subset size, the performance was evaluated using the cross-validation 
procedure, allowing us to identify the optimal set of features based on the 
best accuracy across all evaluated subset sizes. After completion of the 
RFE process, we obtained a single optimal set of features, which was then 
used for training the final model on the entire training set and 
subsequently for making predictions on the test set. Models were then 
trained on each training set using only the features selected by RFE. The 
model training employed 5-fold cross-validation repeated 10 times for 
hyperparameter tuning using a grid search approach. For each model 
type—SVM with radial basis function kernel, KNN, and RF – we utilized 
the default hyperparameter tuning grids provided by the caret package. 
The SVM model’s cost (C) and sigma (σ) parameters, the KNN model’s 
number of neighbors (k), and the RF model’s number of variables 
randomly sampled as candidates at each split (mtry) were optimized. The 
receiver operating characteristic (ROC) curve was used as the 
performance metric for selecting the best hyperparameters. For each 
hyperparameter, 10 evenly spaced values within the default ranges were 
evaluated. Data preprocessing involved standardizing and centering to 
normalize the input features. Our predictive models’ efficacy was 
evaluated using various metrics, including area under the ROC curve 
(AUC), precision, recall, and F1 score. These metrics were assessed across 
the cross-validation folds applied to the test sets.

Additionally, the contribution of each variable to the models was 
estimated using the varImp function from the caret package, which 
calculates variable importance in a model-specific manner. Variable 
importance for the RF model was calculated using the mean decrease 
in Gini impurity, quantifying each variable’s contribution to node and 
leaf homogeneity. The SVM model with a radial basis function kernel 
assesses importance based on changes in the AUC when each 
predictor is removed. For the KNN model, which lacks an inherent 
importance measure, a model-independent permutation method is 
applied, measuring accuracy decrease upon random permutation of 
each predictor. All importance scores were scaled to a maximum value 

of 100 to facilitate comparison across models. The top five features 
were selected based on the mean importance value calculated across 
the models where the feature was selected.

2.7.2 Regression models
We conducted linear regression analyses on 15 linguistic features 

to determine their effectiveness in predicting scores from MMSE, 
CDR-SB, and various neuropsychological tests (e.g., DS, WLM-I, 
WLM-II, CTT-I, CTT-II, VF, and BNT). Each test score was analyzed 
separately, with age and years of education included as covariates. 
We assessed the multicollinearity among the variables by using the 
variance inflation factor (VIF), excluding any variables with a VIF of 
greater than five to reduce the risks of instability and compromised 
interpretability. After examining nine regression models, we obtained 
similar results across them. This process led to the retention of 10—
UW, TTR, CWF, MLU, MLS, VR, PR, PCR, FR, and LPR—of the 15 
linguistic features. The residuals of the regression models were then 
examined to ensure that the models fulfilled all linearization 
assumptions. The regression tasks were implemented using the caret 
package, and feature selection was based on RFE Model optimization, 
guided by minimizing the root mean square error.

3 Results

Table 1 summarizes the demographic and cognitive characteristics 
of the NC and early-AD groups. On average, the ages of those in the 
early-AD group were greater than those in the NC group. Education 
levels differed significantly, with the NC and early-AD groups averaging 
13.66 and 10.03 years of education, respectively. Gender distribution also 
varied, with females constituting 44 and 65% of the NC and early-AD 
groups, respectively. The average general cognitive performance assessed 
using MMSE scores was 28.94 and 21.19 for the NC and early-AD 
groups, respectively. CDR-SB scores differentiated the two groups: the 
NC group had a negligible average score of 0.02, and the early-AD 
group’s average score was 3.20, suggesting the early-AD group had more 
severe dementia symptoms than the NC group. Specifically, 75% of the 
early-AD group progressed and had elevated SUVR levels and significant 
hippocampal atrophy. Moreover, 58% of the early-AD group carried the 
ApoEε4 allele, significantly higher than the 13% in the NC group. These 
groups showed significant differences across all cognitive assessments, 
reflecting the effect of early-AD on different cognitive domains.

The recordings had an average length of 1.09 min per image. 
Table 2 compares the linguistic measures of the two groups. Syntactic 
complexity analysis showed that the MLU and MLS of the early-AD 
group were significantly shorter and used passive constructions less 
frequently than those of the NC group, indicating that the former used 
less complex speech patterns than the latter. Moreover, statistically 
significant differences between the two groups were observed in 
pronoun use. Disfluency measures showed a higher LPR in the 
early-AD group than in the NC group, indicating increased speech 
disfluency, and FR remained comparable in both groups.

3.1 Crucial features for classification

This study assessed the performance of the models in classifying 
early-AD by using linguistic features and biomarkers. Figure  2 
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presents a correlation heatmap illustrating the relationships among 
linguistic features, biomarkers, and demographic variables utilized in 
early-AD detection. The results show mostly weak correlations 
between biomarkers (Hippocampus volume and SUVR) and linguistic 
features, with a few notable exceptions. Hippocampus volume shows 
a moderate negative correlation with long pauses ratio (r = −0.489) 
and a moderate positive correlation with unique word count 
(r = 0.321).

Table  3 presents the performance metrics of the early-AD 
classification for the SVM, KNN, and RF models. Figure 3 shows the 
ROC curve of the test set used to compare classifier performance. 
Table 4 presents the feature importance and selection frequency across 
different classifiers (SVM, KNN, and RF) and feature sets (Linguistic 
features, Biomarkers, and a combination of both). The additional 
classifier incorporating age and education demonstrated limited 
effectiveness, with AUC values nearing chance levels: SVM, 0.65; KNN, 
0.65; and RF, 0.60. Education remained a notable factor in differentiating 
between the NC and early-AD groups across models. Although 
demographic factors provide some insights, linguistic features offer a 
more robust basis for differentiating between these groups.

When models were exclusively trained utilizing only linguistic 
features, the results indicated that the RF model exhibited the highest 
AUC at 0.88, followed by the SVM model with an AUC of 0.85 and the 
KNN model with an AUC of 0.78. All three models consistently 
identified MLU and LPR as crucial features in differentiating individuals 
with early-AD from those in the NC group, with high importance 
values across all models (MLU: 75.60–88.10; LPR: 80.36–93.42). The 
SVM model also highlighted Education and PCR as important features, 
with importance values of 71.61 and 52.48, respectively. Interestingly, 
the KNN and RF models identified PR as an additional important 
feature, albeit with lower importance values (KNN: 32.24, RF: 40.56).

Using biomarkers alone, the SVM model performed best with an 
AUC of 0.90, followed by the RF model (AUC = 0.87) and the KNN 
model (AUC = 0.84). All three models consistently identified SUVR as 
the most crucial biomarker, showing the highest importance (100.00) 
across all models. A combined approach involving biomarkers and 
linguistic features improved model performance. The SVM model 
achieved the highest AUC of 0.93, followed by the RF model 
(AUC = 0.91) and the KNN model (AUC = 0.87). In this combined 
approach, all three models consistently identified four crucial critical 
features: SUVR, Hippocampus volume, MLU, and LPR. SUVR 
consistently demonstrated the highest importance across all models 
(98.52–100.00), with Hippocampus volume (52.21–84.72) following 
as another significant predictor. Among the linguistic features, MLU 
(46.25–62.50) and LPR (47.11–74.01) emerged as the most critical, 
retaining their relevance across different classifiers.

3.2 Crucial features for predicting 
neuropsychological test scores

Linear regression was conducted to investigate the predictive 
capacity of linguistic features for cognitive impairment. The findings 
in Table  5 demonstrate a significant positive correlation between 
MMSE and linguistic features, including TTR and MLU. LPR and FR 
were positively associated with CDR-SB scores. TTR was associated 
with improved performance across various neuropsychological tests, 
particularly in memory (WLM-I, WLM-II, and DS) and language 
domains (BNT), and displaying negative correlations in the executive 
function domain (CTT1, CTT2, and VF). UW exhibited positive 
correlations with tests in both the memory (WLM-II and DS) and 
language domains (VF and BNT). Conversely, a higher CWF is 
associated with a lower performance on the BNT test. Regarding 
syntactic features, increased VR and decreased MLU were associated 
with poorer outcomes on the CTT-1 and CTT-2 tests. Additionally, 
higher PCR correlated with better performance on the WLM-I, DS, 

FIGURE 2

Correlation heatmap of linguistic features and biomarkers variables in 
early-AD detection. The heatmap displays Pearson correlation 
coefficients, with color intensity and hue indicating the strength and 
direction of correlations, respectively. Dark blue represents strong 
positive correlations (+1), while dark red indicates strong negative 
correlations (−1).

TABLE 3 Performance metrics of machine learning models for early-AD classification using linguistic features and biomarker.

Features Linguistic features Biomarkers Linguistic features & 
Biomarkers

Classifiers RF SVM KNN RF SVM KNN RF SVM KNN

AUC 0.88 0.85 0.78 0.87 0.90 0.84 0.91 0.93 0.87

Specificity 0.62 0.69 0.67 0.65 0.73 0.73 0.71 0.89 0.74

Precision 0.79 0.82 0.79 0.80 0.84 0.82 0.83 0.93 0.84

Recall (sensitivity) 0.89 0.84 0.78 0.85 0.86 0.76 0.90 0.84 0.81

F1 score 0.83 0.82 0.78 0.82 0.85 0.78 0.86 0.88 0.82
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VF, and BNT tests. LPR displayed significant negative correlations 
with WLM-I and positive correlations with both CTT-1 and CTT-2.

4 Discussion

Language deficits are crucial in identifying early-AD, often 
indicating progression to advanced stages. In this study, we examined 
the linguistic features of speech in patients with early-stage AD and 
healthy older adults. We aimed to distinguish between patients with 
early-AD and healthy older adults and elucidate how these features 
correlate with cognitive functions. Our analysis focused on identifying 
the critical linguistic features contributing to this classification and 
exploring their associations with cognitive functions. Consequently, 
our results provide insights into the potential diagnostic utility of 
speech analysis for early-AD detection.

We discovered that the early-AD group exhibited MLU and LPR, 
which were distinct from the NC group. Notably, the attributes 
differentiating the two groups showed reduced syntactic complexity in 
the patients with early-AD. The early-AD group was characterized by 
shorter utterances than those used in the NC group, and the former 
experienced challenges in constructing complex sentences, evidenced 
by their reduced use of passive constructions. Additionally, there was 
also a marked reduction in speech fluency for the early-AD group, 
characterized by long pauses that suggest word retrieval challenges. 
Furthermore, the early-AD group tended to use more high-frequency 
CW than the NC group did and frequently substituted concrete nouns 
with pronouns (“that” or “this”) to maintain fluent speech, pointing to 
a trend toward simplified language usage. These findings align with the 
observed decline in language specificity among patients with early-AD.

4.1 Crucial linguistic features for early 
detection of AD

In our study, we utilized SVM, KNN, and RF classifiers, leveraging 
MLU and LPR as core linguistic indicators. These features alone 

enabled strong predictive performance, with the RF classifier notably 
achieving an 88% detection accuracy on the test set. This outcome 
confirms that linguistic information extracted from speech serves 
effectively as a robust tool for AD prediction. Moreover, integrating 
these linguistic features with biomarkers enhanced the AUC across all 
classifiers tested. Notably, MLU ranked as the most influential 
predictor after the strong predictor SUVR, differentiating between the 
NC and early-AD groups and proving more decisive than 
hippocampus volume. This collaboration between linguistic features 
and biomarkers not only highlights the reliability of linguistic 
measures as crucial predictors but also emphasizes their role in 
boosting the accuracy of AD classification models.

An increase in the duration and frequency of pauses during 
speech is commonly observed with aging (Pastoriza-Domínguez et al., 
2022). These pauses often serve as compensatory strategies to manage 
declining cognitive functions, with a significant increase in LPR 
indicating difficulties in lexical retrieval and memory degradation 
(Pastoriza-Domínguez et al., 2022; Pistono et al., 2016). In this study, 
long pauses are specifically defined as those exceeding 2 s during 
narrative speech, reflecting potential disruptions in speech generation. 
These abnormal pauses were rarely observed in the NC group, with an 
average LPR of 0.35%, and significantly more prevalent in the 
early-AD group (2%) than in the NC group. Similarly, Pistono et al. 
(2019) observed that participants with SD produced more pauses than 
healthy elders in the picture description task, correlating positively 
with semantic fluency and memory performance in the memory-
related narrative tasks. In line with these findings, our study found 
that LPR correlated with cognitive decline in the early-AD group, 
particularly affecting short-term memory and executive functions.

Syntactic complexity is regarded as a higher-order aspect of 
cognitive function, with various syntactic units in speech reflecting 
distinct thoughts and capturing surface-level language characteristics 
(Lofgren and Hinzen, 2022). In our study, MLU served as a critical 
linguistic feature and an alternative measure of speech production 
complexity. We  observed that MLU was notably shorter in the 
early-AD group than in the NC group, indicating a reduction in 
syntactic complexity in their speech. Correspondingly, Wang et al. 

FIGURE 3

The curve of the test set for comparing the performance of three different classifier models: support vector machine (SVM), k-nearest neighbors (KNN), 
and random forest (RF). The left plot (A) shows that when only linguistic features are used, KNN shows the highest AUC. The middle plot (B) shows that 
KNN shows the highest AUC when using biomarkers alone. In the right plot (C), including biomarker data alongside linguistic features substantially 
increased model performance for all three classifiers.
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TABLE 4 Feature importance and selection frequency across different classifiers and feature sets.

Linguistic features Biomarkers Linguistic features and biomarkers

Classifiers Feature Importance Frequency Feature Importance Frequency Feature Importance Frequency

SVM

LPR 93.42 100% SUVR 100.00 100% SUVR 98.62 100%

MLU 75.60 100%
Hippocampus 

volume
81.56 100%

Hippocampus 

volume
84.72 100%

Education 71.61 80% Education 45.13 80% LPR 74.01 100%

PCR 52.48 75% Age 19.61 11% MLU 55.35 100%

TW 37.03 50% Education 54.76 100%

KNN

LPR 92.93 100% SUVR 100.00 100% SUVR 98.52 100%

MLU 74.19 86%
Hippocampus 

volume
97.35 11%

Hippocampus 

volume
71.42 70%

Education 46.22 60% Education 79.20 100% LPR 47.11 78%

PR 32.24 100% MLU 46.25 83%

PCR 27.71 25% PR 43.97 50%

RF

MLU 88.10 100% SUVR 100.00 100% SUVR 100.00 100%

LPR 80.36 100%
Hippocampus 

volume
57.84 100% MLU 62.50 100%

PR 40.56 100% Age 26.01 100% LPR 53.33 100%

TTR 31.77 100%
Hippocampus 

volume
52.21 100%

Age 29.60 100% PR 25.53 100%

Feature importance values represent the average over 10 random data splits.  
Selection frequency indicates the percentage of times each feature was selected and assigned non-zero importance across all model iterations and data splits.
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(2022) found that patients with early-AD with preserved noun 
production ability often pause before nouns during discourse 
production. This study’s findings suggest that patients with early-AD 
May have had difficulty constructing complete sentences, highlighting 
their need to reform syntactic structures and editing breaks. As a 
result, patients with early-AD May produce simple or incomplete 
sentences and additional intra-sentence pauses.

Although some patients with mild AD can form simple 
sentences and produce a comparable number of utterances to 
healthy elderly and individuals with MCI, their speech shows 
significantly reduced syntactic complexity (Ivanova et al., 2023). In 
a related study, Sung et al. (2020) instructed NCs and patients with 
aMCI to identify target images corresponding to their heard 
sentences. The researchers manipulated syntactic complexity in 
sentences, and the participants listened to the active and passive 
sentences within the sentence-image paradigm. The results showed 
poorer accuracy in the aMCI group in processing passive sentences 
than in the normal aging group. The observed reduction in syntactic 
complexity might be associated with deficits in working memory 
and lexical retrieval (Nasiri et al., 2022).

Our study specifically measured the PCR as a Chinese language 
syntactic complexity marker. Our findings revealed that using passive 
constructions is a valuable indicator for classifying the early-AD 
group. These results prove that the PCR is an efficient marker of 
linguistic complexity, aiding in the early detection of cognitive-
linguistic decline. In the context of Chinese language analysis, it’s 

worth noting that the calculation of PCR can be  simplified by 
searching for specific markers indicating passive constructions. This 
approach is more efficient than parsing the entire SVO structure, 
especially in automated analysis systems.

Notably, the speech samples in our study were relatively short (i.e., 
approximately 110 words), which May have limited the ability to 
observe differences in lexical content. Longer speech samples than 
we used might explore more specific linguistic features (e.g., position 
or grammatical constituents) than we  utilized in this study when 
assessing cognitive function. Therefore, further research could aim to 
expand these linguistic analyses with more extensive and diverse 
speech samples to validate and refine these diagnostic tools.

4.2 Linguistic features for predicting 
cognitive impairment

The findings from our regression models highlight the role of 
diverse linguistic features as critical indicators for assessing cognitive 
status in early-AD. Each feature correlates with specific cognitive 
functions, providing insights into AD’s progression and impact. 
Notably, TTR and MLU were associated with general cognitive 
functions, measured by the MMSE. These features also exhibited 
strong correlations with executive function assessments, suggesting 
their potential utility in detecting early cognitive impairments, such 
as MCI. Conversely, LPR was closely correlated with disease severity, 

TABLE 5 Linguistic features associated with cognitive functions.

MMSE CDR-SB WLM-I WLM-II DS CTT1 CTT2 VF BNT

(Intercept) 24.29*** 

(0.49)

1.92*** 

(0.22)
8.82*** (0.43)

8.32*** 

(0.46)

9.04*** 

(0.42)

119.54*** 

(8.39)

206.77*** 

(10.22)

12.80*** 

(0.51)

21.54*** 

(0.36)

Age
−0.92 (0.59) 0.42 (0.26) −1.13* (0.52) −1.08 (0.55) 23.34* (11.43)

−1.72** 

(0.57)

−1.34** 

(0.39)

Education 0.96 (0.59) 0.21 (0.26) 0.60 (0.52) 0.89 (0.55) 19.18 (11.87)

TTR
1.90* (0.79) −0.64 (0.35) 1.48* (0.69) 1.74* (0.73)

2.04*** 

(0.50)

−40.74*** 

(9.05)

−55.89*** 

(15.79)
1.59* (0.70)

1.85*** 

(0.53)

UW 0.82 (0.74) −0.37 (0.32) 1.13 (0.65) 1.46* (0.68) 1.31* (0.55) −29.57 (15.30) 1.39* (0.68) 1.67** (0.49)

CWF
−0.66 (0.72) 0.38 (0.31) −0.15 (0.63) 0.23 (0.66) 24.11 (14.54)

−1.07* 

(0.51)

VR −0.54 (0.61) 0.53 (0.27) −0.93 (0.54) −0.60 (0.57) 17.66 (9.21) 28.44* (12.13) −0.45 (0.57) −0.83 (0.42)

PR 0.13 (0.53) −0.21 (0.23) −0.54 (0.47) −0.59 (0.49) −0.55 (0.37)

PCR
0.91 (0.61) −0.26 (0.27) 0.97 (0.53) 1.14* (0.56) 1.01* (0.43) 1.46* (0.60)

1.35*** 

(0.38)

MLU
1.28* (0.63) −0.44 (0.28) 0.74 (0.55) 1.12 (0.58)

−20.68* 

(8.59)

−29.09* 

(11.01)
0.92 (0.60)

MLS 0.36 (0.59) 0.22 (0.26) −0.06 (0.52) −0.03 (0.55)

LPR
−1.11 (0.59)

0.85** 

(0.26)
−1.17* (0.52) −0.85 (0.55) −0.92 (0.48)

41.78*** 

(8.49)

36.42** 

(12.13)
−0.81 (0.60) −0.72 (0.42)

FR −0.37 (0.60) 0.61* (0.27) −0.73 (0.53) −0.83 (0.56) −1.18 (0.62)

R2 0.49 0.49 0.49 0.51 0.34 0.40 0.51 0.42 0.61

AIC 477.78 345.98 456.83 465.47 443.82 924.69 960.00 479.98 423.13

BIC 511.12 379.33 490.18 498.82 458.11 938.98 983.82 503.80 446.95

All continuous predictors are mean-centered and scaled by 1 standard deviation. The outcome variable is in its original units.  
*** p < 0.001; ** p < 0.01; * p < 0.05. Bold values indicate statistically significant differences between the NC and Early-AD groups.
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measured by the CDR-SB. LPR is associated with both memory and 
executive function assessments, making it a valuable tool for 
monitoring disease progression. As AD advances, speech patterns 
show marked declines in fluency, evidenced by increased LPR. Our 
analysis also revealed that the PCR is linked to assessments in the 
memory (WLM-II, DS) and language domains (VF, BNT). As 
discussed in the literature, PCR is related to the ability to construct 
complex sentences, which is more cognitively demanding than active 
voice (Nasiri et al., 2022), and becomes increasingly challenging as 
AD progresses.

TTR and UW are two features that showed multiple significant 
relationships across different cognitive measures, most relating to 
single-word retrieval and working memory tasks, suggesting their 
importance as markers for word retrieval difficulties. Moreover, the 
increased CWF was primarily associated with poorer BNT test 
performance. An increase in CWF suggests a growing reliance on 
high-frequency words, potentially serving as a compensatory strategy 
for declining lexical access and retrieval abilities. These findings align 
with previous research (Forbes-McKay and Venneri, 2005; Kavé and 
Goral, 2016), which has consistently reported reduced lexical richness 
in individuals with AD.

In summary, our results largely parallel those from studies 
conducted in English and other Indo-European languages, pointing 
to universal aspects of cognitive decline in language production. 
However, it’s crucial to note that the specific manifestations of 
these effects differ between Mandarin and English due to their 
distinct syntactic structures and pronoun usage patterns. 
Mandarin, as a topic-prominent language, allows for subject 
omission in casual speech and employs less varied pronouns 
compared to English (Chen, 2004). These linguistic characteristics 
influence how complexity is expressed in connected speech, with 
potential implications for the development of language-specific 
cognitive assessment tools. While our study observed group 
differences in pronoun ratio, this feature did not emerge as a 
significant predictor in our models for early AD classification or 
cognitive impairment prediction. This finding May be influenced 
by our study’s sample size or the stage of cognitive decline in our 
participants. Further investigation, particularly through 
longitudinal studies tracking changes in pronoun usage over time, 
could provide valuable insights into the progression of language 
changes in AD and MCI.

This study has several limitations. First, we used a relatively small 
sample size, which May account for the variations in classification 
accuracy observed between groups. Thus, to build upon this work, 
further research should consider including a larger and more diverse 
cohort than we  did. The educational level of participants in our 
early-AD group was 3 years lower than that of the control group. 
Despite adjusting such results via statistical methods, this discrepancy 
could still introduce bias into the speech performance of the 
early-AD group. Additionally, examining linguistic features across 
domains or those specific to Chinese speakers would enhance the 
assessment of cognitive decline domains or more accurately 
characterize various AD symptoms than we  did. For example, 
incorporating tasks such as overlearned narrative recall, which 
involves a recollection of a familiar story by using complex sentence 
structures and multiple grammatical elements (Clarke et al., 2021), 
could be beneficial. Acknowledging the role of the distribution of 
pause duration in language production is also crucial (Lofgren and 

Hinzen, 2022; Pastoriza-Domínguez et al., 2022; Pistono et al., 2016). 
Finally, owing to the research scope, we did not investigate acoustic 
features; thus, they could be used in further research to improve the 
accuracy of early-AD detection further.

5 Conclusion

In conclusion, our research indicates the significance of MLU, 
LPR, and PCR as crucial for classification, while MLU, LPR, TTR, and 
PCR serve as key linguistic features for predicting cognitive 
impairments in Mandarin speakers with early AD. These findings 
support the potential of linguistic analysis as a tool for early AD 
detection and monitoring. However, we emphasize the importance of 
considering language-specific features, such as PCR in Mandarin, 
when developing diagnostic tools. Healthcare professionals can 
leverage the power of these linguistic features to employ efficient and 
reliable screening tools, considering the feasibility of integrating 
linguistic analysis tools in routine memory clinic assessments. 
Continued research should investigate the effectiveness and 
discriminatory power of MLU and LPR across various speech tasks 
and languages. Developing these two linguistic features for automatic 
measurement from connected speech would significantly enhance the 
early diagnosis of AD.
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