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Background: The relationship of systolic blood pressure variability (SBPV) with

Alzheimer’s disease (AD) remains controversial. We aimed to explore the roles

of SBPV in predicting AD incidence and to test the pathways that mediated the

relationship of SBPV with cognitive functions.

Methods: Longitudinal data across 96 months (T0 to T4) were derived from the

Alzheimer’s disease Neuroimaging Initiative cohort. SBPV for each participant

was calculated based on the four measurements of SBP across 24 months

(T0 to T3). At T3, logistic regression models were used to test the SBPV

difference between 86 new-onset AD and 743 controls. Linear regression

models were used to test the associations of SBPV with cognition and

AD imaging endophenotypes for 743 non-demented participants (median

age = 77.0, female = 42%). Causal mediation analyses were conducted to explore

the effects of imaging endophenotypes in mediating the relationships of SBPV

with cognitive function. Finally, Cox proportional hazard model was utilized

to explore the association of SBPV with incident risk of AD (T3 to T4, mean

follow-up = 3.5 years).

Results: Participants with new-onset AD at T3 had significantly higher SBPV

compared to their controls (p = 0.018). Higher SBPV was associated with lower

scores of cognitive function (p = 0.005 for general cognition, p = 0.029 for

memory, and p = 0.016 for executive function), higher cerebral burden of

amyloid deposition by AV45 PET (p = 0.044), lower brain metabolism by FDG

PET (p = 0.052), and higher burden of white matter hyperintensities (WMH)

(p = 0.012). Amyloid pathology, brain metabolism, and WMH partially (ranging

from 17.44% to 36.10%) mediated the associations of SBPV with cognition.

Higher SBPV was significantly associated with elevated risk of developing AD

(hazard ratio = 1.29, 95% confidence interval = 1.07 to 1.57, p = 0.008).

Conclusion: These findings supported that maintaining stable SBP in late life

helped lower the risk of AD, partially by modulating amyloid pathology, cerebral

metabolism, and cerebrovascular health.
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Introduction

Alzheimer’s disease (AD) is the most common form of
dementia and one of the principal causes of physical disability,
institutionalization, and decreased quality of life among the elderly
(Hodson, 2018; Qiu et al., 2009). Amyloid pathology (Jack et al.,
2016), brain metabolism (Ou et al., 2019), and vascular health
(Mortamais et al., 2014) have been identified as contributing
factors to AD. It was emphasized that effective interventions in
pre-existing diseases and lifestyle may be promising options for
preventative strategies (Xu et al., 2015; Yu et al., 2020; Alzheimers
Association Report, 2022). Late-life systolic blood pressure (SBP)
was revealed as an important predictor of developing AD (Ou et al.,
2020; Li et al., 2007; Qiu et al., 2003). However, the relationships
of SBP with AD are conflicting (Ruitenberg et al., 2001; Morris
et al., 2001), which might be partially due to the underestimation of
BP dynamics across the life-span. Measurements of SBP variability
(SBPV), as a dynamic feature of SBP, could thus help lower the
bias (de Heus et al., 2019; de Heus et al., 2021). SBPV indicates the
degree to which an individual’s blood pressure fluctuates over time.
It was revealed as an important risk factor for target organ damage,
independent of SBP levels. For example, it was suggested that
higher SBPV was associated with elevated risk of cardiovascular
events (Stevens et al., 2016) and subclinical brain disease (Ma et al.,
2020a; Ma et al., 2020b). These studies illustrate the importance of
SBPV for brain health. Recently, it was indicated that higher SBPV
was associated with elevated risk of cognitive decline or all-cause
dementia (Alperovitch et al., 2014; Rouch et al., 2020; Mahinrad
et al., 2023; Ernst et al., 2021; den Brok et al., 2023), though the
conclusion remained controversial (van Middelaar et al., 2018). Till
now, little is known about whether late-life SBPV could predict AD
dementia or its biomarkers. Moreover, the underlying biological
mechanisms by which SBPV affects cognition and AD is unclear.

Herein, using longitudinal data from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) cohort, we firstly aimed to explore
the relationship of SBPV with AD risk by a) depicting the SBP
trajectory before AD diagnosis and comparing the difference of
SBPV between incident AD patients and their counterparts, and b)
testing the roles of SBPV in predicting incident AD among non-
demented elders. Next, we aimed to verify a prior hypothesis that
SBPV could influence cognition by modulating amyloid pathology,
brain metabolism, and vascular health.

Materials and methods

Participants

Data was derived from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) study1 (Petersen et al., 2010; Weiner et al., 2010).
The primary objective of ADNI is to create positron emission
tomography (PET), magnetic resonance imaging (MRI), genetic,
and biochemical markers which can be used to detect and monitor
AD at an early stage. Volunteers with normal cognition (NC),
mild cognitive impairment (MCI), or mild AD dementia were

1 http://adni.loni.usc.edu/

continuously recruited from multiple centers throughout North
America. At entry, each participant underwent a detailed physical
examination, a comprehensive neuropsychological evaluation, and
an in-person interview to obtain baseline information. Follow-
up measurements were repeated at 12-month intervals (Weiner
et al., 2010). Further insights can be obtained by visiting https://
adni.loni.usc.edu/data-samples/adni-data/. ADNI was approved by
institutional review boards of all participating institutions. Written
informed consent was obtained from all participants or authorized
representatives according to the 1975 Declaration of Helsinki.

In the present study, three steps were conducted to explore the
association of SBPV in late life with cognitive trajectory and risk
of AD. First, data of 2,084 ADNI participants were downloaded
and those diagnosed with AD and aged <65 years old at baseline
(named T0) were excluded. Then, 1550 non-demented and elderly
participants were followed up for 96 months (T0 to T4). To
depict the SBP trajectory before AD diagnosis, participants were
categorized into two groups: participants who were diagnosed with
AD (N = 260) during the follow-up and those who remained
non-demented (N = 167) over the 96 months. Second, 899 non-
demented and elderly participants with records of SBP at T0,
T1, T2, and T3, PP and MMSE records at T3 were included
for cross-sectional analyses, after excluding participants who were
diagnosed with AD before T3: (1) logistic regression models were
conducted between 86 participants with new-onset AD at T3
and 743 controls who were free of dementia at T3. (2) Multiple
linear regression models and mediation analyses were conducted
in 743 non-demented participants. Third, for longitudinal analyses,
participants who were free of dementia at T3 were followed up
for 72 months (T3 to T4). Subsequently, Cox proportional hazards
model was applied for 658 participants, including 97 with incident
AD and 561 who remained non-demented (Figure 1).

Blood pressure measurements

Blood pressures were measured at baseline and at each follow-
up. Participants were instructed to remain calm and avoid talking
during and shortly before blood pressure measurement. Blood
pressure was taken from the same arm, at a similar time of day, by
the same person, using the same device and cuff, whenever possible.
SBPV was defined as the within-individual standard deviation (SD)
of four SBP measurements at T0, T1, T2, and T3 (Figure 1). SBPV
was divided into four quartiles (Q1 to Q4). Pulse pressure (PP) was
calculated as systolic minus diastolic blood pressure.

Cognitive assessments

The general cognitive function was evaluated by the
Alzheimer’s Disease Assessment Scale-13 item cognitive subscale
(ADAS-13), which is a test battery assessing memory function,
reasoning, language function, orientation, and praxis. Composite
scores for memory (MEM) and executive function (EF) were
derived using data from the ADNI neuropsychological battery via
item response theory methods. With the exception of ADAS-13,
higher scores were indicative of enhanced cognitive performance
in all neuropsychological assessments. The composite scores have
been validated previously (Crane et al., 2012; Gibbons et al., 2012).
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FIGURE 1

Timeline of study design and flowchart for the overall selection process. SBPV was defined as the standard deviation of systolic blood pressure at T0,
T1, T2, and T3 and divided into quartiles. SBP trajectory was based on 96-month follow-up. Cross-sectional studies were conducted at T3.
Longitudinal studies were conducted from T3 onwards. Participants who were diagnosed with AD and aged <65 years old at baseline (T0) were
excluded from 2084 ADNI participants. A total of 1550 non-demented and elderly participants were followed up for 96 months (T0 to T4) to depict
the SBP trajectory. A total of 899 non-demented and elderly participants with records of SBP, PP, and MMSE were selected. After excluding incident
AD before T3, 829 were included for logistic regression models. A total of 743 non-demented participants were included for multiple linear
regression models and mediation analyses. For the longitudinal study, Cox proportional hazards models were applied to 658 participants.

AD diagnosis

AD diagnosis is referenced to the National Institute of
Neurological and Communicative Disorders and Stroke
and Alzheimer’s Disease and Related Disorders Association
(NINCDS/ADRDA) criteria (Dubois et al., 2007). In the present
study, 86 participants were diagnosed with AD at T3 and 97 were
diagnosed with AD from T3 to T4 (Figure 1).

PET Imaging

Amyloid deposition and fluorodeoxyglucose (FDG)
metabolism were visualized using 18F-florbetapir and 18F-
FDG PET respectively. All image acquisition procedures were
described in detail on the ADNI website.2 The mean florbetapir

2 http://adni.loni.usc.edu/methods/documents/

AV45 uptake within each region was calculated by co-registering
the florbetapir scan to the corresponding MRI. 18F-florbetapir
AV45-PET images were acquired in four frames of 5 min each,
50–70 min p.i. for 18F-florbetapir and 90–110 min p.i. for 18F-
florbetaben. FDG-PET images (via averaging counts of angular,
temporal, and posterior cingulate regions) were acquired on a PET
template at the Montreal Neurological Institute with an isotropic
resolution of 3 mm using FLIRT (Della Rosa et al., 2014).

Brain MRI of hippocampus and white
matter hyperintensities (WMH)
measurement

All participants underwent high-resolution MRI of the brain
scan at study entry (Jack et al., 2008). Structural brain images
were obtained using a 1.5-T MRI system with T1-weighted MRI
scans using a sagittal volumetric magnetization-prepared rapid
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acquisition gradient-echo sequence. The original MPRAGE (T1-
weighted) structural volumetric MRI files were downloaded from
UCSF.3 Here, the hippocampus was defined as the region of
interest. This region was known to be affected by AD and their
atrophy in AD has been previously validated via MRI studies (Pini
et al., 2016; Katabathula et al., 2021). The WMH measurement
approach has been described in detail on the ADNI site.4 Briefly,
(1) non-brain tissues were removed from T1-weighted and FLAIR
images; (2) the image pair was spatially aligned; and (3) artifacts
were removed in MRI. Then, images were warped to a standard
template space. At each location in the cerebral white matter,
the prior probability of WMH occurrence and the FLAIR signal
characteristics of WMHs were modeled. The prior information,
along with the signal intensities of the FLAIR image, was used to
identify WMH.

Covariate measurements

The covariates include age, gender, years of education,
APOEε4 carrier status (number of APOE 4 alleles: 0, 1), clinical
diagnosis (CN = 0, MCI = 1), intracranial volume (ICV), total
white matter volume, SBP, and PP. Status of all covariates based on
records at T3.

Statistical analyses

Data were presented as mean (standard deviation, SD), median
(interquartile range, IQR), or number (percentage, %) when
appropriate. Chi-square tests (for categorical variables), Kruskal-
Wallis test (for continuous variables with skewed distribution),
and one-way ANOVA (for continuous variables with Gaussian
distribution) were used to compare differences in participant
characteristics among four SBPV groups (participants were divided
into four groups according to SBPV quartiles). First, logistic
regression model was conducted to determine the difference
in SBPV between new-onset AD at T3 and their counterparts.
Second, SBP trajectories prior to AD diagnosis were depicted for
participants with incident AD and those who remained free of
AD during 96-month follow-up (T0 to T4). The SBP data from
the year of AD onset and from 1 to 8 years before AD onset
were used to plot the SBP trajectory for participants with incident
AD. The trajectory of SBP for those who remained non-demented
was plotted using 8-year follow-up (T0 to T4) data. Third, the
Cox proportional hazards models were conducted to assess roles
of SBPV groups in predicting AD incidence (T3 to T4). Risk
estimate was expressed as hazard ratios (HR) and corresponding
95% confidence interval (CI). We tested the proportional hazards
assumption. The cumulative incidence curve for the cohort was
measured using the Kaplan–Meier method and the curve difference
was also calculated using the log-rank test.

Next, multiple linear regression models were used to examine
the cross-sectional relationships of SBPV with cognitive function,

3 https://ida.loni.usc.edu/pages/access/studyData.jsp

4 http://adni.loni.usc.edu

and imaging endophenotypes (including AV45-PET, FDG-PET,
hippocampus volume, and WMH) at T3. All dependent variables
were checked for normal distribution and a transformation was
done to approximate a normal distribution (Kolmogorov-Smirnov
test p-value > 0.01) when the distribution is skewed. Models
were visually checked for linearity of residuals, homogeneity of
variances, and normality of residuals. There is no collinearity
between the independent variables (variance inflation factor < 5).
Finally, causal mediation analyses were performed to investigate
the potential roles of AD imaging endophenotypes in modulating
the relationship of SBPV with cognitive impairment based on MLR
models (Baron and Kenny, 1986). The first equation analyzed
the mediator (imaging endophenotypes) with the independent
variable (SBPV). The second equation regressed the dependent
variable (cognitive score) to the independent variable. The third
equation regressed the dependent variable on both the independent
and mediator variables. Mediation effects were established if the
following criteria were simultaneously reached: 1) SBPV was
significantly related to the mediator; 2) SBPV was significantly
correlated to cognitive function; 3) the association of SBPV
with cognition was attenuated when the mediator was added
to the regression model. The indirect effect was estimated, with
significance determined using 10,000 bootstrapped iterations with
potential covariates adjusted. Additionally, the interaction terms of
SBPV × APOE 4 (Sible and Nation, 2023; Ronnemaa et al., 2011)
and SBPV × gender (Ernst et al., 2021) were added to the model
to test the interactive effects. If the interaction analysis indicates
significant results, further subgroup analyses based on APOE 4
genotype status or gender will be conducted.

The above-mentioned analyses were adjusted for age, gender,
education levels, APOE 4 carrier status, and clinical diagnosis.
ICV was added as a covariate when the dependent variable was
hippocampus volume. When the dependent variable was WMH,
total white matter volume was included as a covariate. SBP and
PP at T3 were additionally adjusted for sensitivity analyses. R
version 4.2.1 and GraphPad Prism 9.4.1 software were used for
statistical analyses and figure preparation. The “glm”, “survival”,
“survminer”, “ggplot2”, “nortest”, “car”, “performance”, “lm”, and
"mediation" packages in R software were used to conduct the
above analyses. Two-tailed tests were conducted, each with a
significance level of 0.05.

Results

SBPV and AD risk

During the 96-month follow-up, 260 participants were
diagnosed with AD, and 167 stayed non-demented at T4.
Characteristics of these two groups at T0 are shown in
Supplementary Table 1. Group differences were statistically
significant in APOEε4, clinical diagnosis, SBP, and PP (p < 0.05).
SBP trajectory prior to AD diagnosis was plotted (Figure 2A).
Compared to participants who remained non-demented
(SD = 1.58), a higher SBPV (SD = 3.28) was observed before
AD diagnosis. Next, the SBPV calculated from T0 to T3 was
compared between 86 new-onset AD at T3 (n = 86, median
age = 77.5, female = 37%) and 743 controls who were free of
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FIGURE 2

(A) SBP trajectories between those with incident AD vs those who remain non-demented for 8 years. The SBP trajectory for participants with
incident AD was plotted using SBP data from the year of AD onset and from 1 to 8 years before AD onset. The trajectory of SBP for those who
remained non-demented was plotted using 8-year follow-up (T0 to T4) data. Participants with incident AD have greater SBP fluctuations than those
who remain non-demented; (B) Association of SBPV with AD patients and those who remain free of AD. Participants who incident AD at T3 were
associated with greater SBPV compared to non-AD participants; (C) Association of SBPV with AD risk from T3 to T4. Participants with higher SBPV
demonstrated a heightened risk of incident AD.

dementia at T3 (n = 743, median age = 77.0, female = 42%)
(Supplementary Table 2). Group differences were observed in
APOEε4 percentage and SBPV (p < 0.05). In the fully-adjusted
model, those incident AD exhibited higher SBPV (OR = 1.31,
95%CI: 1.06 to 1.63, p = 0.015, Figure 2B) compared with their
controls. Finally, since T3, 658 non-demented participants were
further followed up for 72 months (T3 to T4). Group differences
were observed in age, SBP, and PP (Supplementary Table 3). The
fully-adjusted Cox proportional hazards model after adjusting
for age, gender, education, APOE 4, cognitive diagnosis, SBP, and
PP at T3 showed that higher SBPV was associated with increased
risk of incident AD (HR = 1.28, 95% CI: 1.05 to 1.56, p = 0.012,
Figure 2C). In addition, a marginally significant interaction effect
of SBPV × gender on AD risk was found (p = 0.078). Further
subgroup analysis suggested that SBPV was associated with an
increased risk of AD only in the female group (p = 0.005). No
interaction effects were found for SBPV × APOE 4.

Relationships of SBPV with cognition and
imaging endophenotypes

At T3, 743 participants who were free of dementia were
included. The median age of the participants was 77.0 years
(IQR: 73.0-81.0) and 315 (42.40%) were female. The education
attainment (median = 16 years) and APOE 4 percentage (34.19%)
were relatively higher than general population (Wang et al.,
2021). Participants in the high SBPV group tended to be older
and exhibited poorer cognition (general cognition by ADAS13,
memory, and executive function), higher levels of SBP and PP at

T3, and higher burden of WMH. Group differences were observed
in total white matter volume (p < 0.05) (Table 1).

After adjusting for age, gender, education, APOE 4, and
cognitive diagnosis at T3, we found that higher SBPV was associated
with lower scores of general cognition by ADAS13 (β = 0.13,
p = 0.005), memory function (β = −0.06, p = 0.029), and executive
impairment (β = −0.07, p = 0.016). Moreover, higher SBPV was
significantly associated with higher levels of brain Aβ burden
(β = 0.02, p = 0.044), lower cerebral metabolism (β = −0.01,
p = 0.052), and higher burden of WMH (β = 0.17, p = 0.012)
(Figure 3). Sensitivity analyses after further adding PP and SBP in
the model did not change the association of SBPV with general
cognitive function (β = 0.11, p = 0.021) and WMH (β = 0.15,
p = 0.032), but weakened that for memory (p = 0.083), executive
function (p = 0.088), and cerebral metabolism (p = 0.070).
Significant interaction effect of SBPV × gender on Aβ burden
(p = 0.048) was found. Further subgroup analysis indicated that
significant association between SBPV and Aβ burden was only in
the male group (p = 0.005). No significant association was found
between SBPV and hippocampus and no interaction effects were
found for SBPV × APOE 4.

Mediation analyses

Amyloid pathology by AV45 PET partially mediated the
relationships of SBPV with general cognition (p = 0.041,
proportion = 17.44%), memory function (p = 0.039,
proportion = 19.45%), and executive function (p = 0.039,
proportion = 21.43%). Brain metabolism by FDG PET

Frontiers in Aging Neuroscience 05 frontiersin.org

https://doi.org/10.3389/fnagi.2024.1448034
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-16-1448034 October 3, 2024 Time: 14:27 # 6

Li et al. 10.3389/fnagi.2024.1448034

TABLE 1 Characteristics of participants according to quartiles of SBPV at T3.

Characteristics All
participants

Q1a Q2a Q3a Q4a P-value∗

N 743 187 185 185 186

Age (years, median (IQR)) 77.00
(73.00–81.00)

76.00
(72.00–80.00)

76.00
(73.00–80.00)

76.00
(73.00–81.00)

78.00
(74.00–82.00)

0.004

Sex (female, %) 315 (42.40) 80 (42.78) 81 (43.78) 69 (37.30) 85 (45.45) 0.398

Education (years, median (IQR)) 16.00
(14.00–18.00)

16.00
(14.00–18.00)

16.00
(14.00–18.00)

16.00
(14.00–18.00)

16.00
(14.00–18.00)

0.535

APOEε4 (yes, %) 254 (34.19) 62 (33.16) 66 (35.68) 65 (35.14) 61 (32.62) 0.918

Clinical diagnosis (MCI, %) 135 (18.17) 36 (19.25) 23 (12.43) 43 (23.24) 33 (17.74) 0.058

SBP (mmHg, mean ± SD) 133.91 ± 16.67 130.31 ± 12.71 132.65 ± 14.12 133.10 ± 15.10 139.59 ± 21.88 < 0.001

DBP (mmHg, median (IQR)) 72.00
(66.00–80.00)

71.00
(66.00–79.00)

72.00
(66.00–80.00)

72.00
(65.00–80.00)

74.00
(66.00–81.25)

0.250

PP (mmHg, mean ± SD) 61.00 ± 15.21 58.17 ± 12.93 59.50 ± 12.95 60.82 ± 13.00 65.52 ± 19.85 < 0.001

ADAS-13 b (score, median (IQR)) 11.00 (7.00–16.33) 10.00 (6.34–15.34) 10.00 (6.00–15.67) 11.67 (7.33–17) 12.00 (8.33–16.84) 0.012

ADNI-MEM c (score, mean ± SD) 0.68 ± 0.80 0.72 ± 0.79 0.79 ± 0.77 0.66 ± 0.86 0.56 ± 0.76 0.037

ADNI-EF c (score, mean ± SD) 0.61 ± 0.90 0.63 ± 0.88 0.73 ± 0.86 0.67 ± 0.90 0.42 ± 0.92 0.004

AV45-PET d (mmł, median (IQR)) 0.76 (0.71–0.91) 0.74 (0.70–0.89) 0.76 (0.70–0.90) 0.75 (0.71–0.95) 0.78 (0.72–0.95) 0.182

FDG-PET e (mmł, median (IQR)) 1.28 (1.23–1.32) 1.30 (1.26–1.33) 1.27 (1.23–1.32) 1.27 (1.23–1.32) 1.27 (1.23–1.32) 0.098

Hippocampus f (mmł, mean ± SD) 6904 ± 1066 6937 ± 1074 6942 ± 1010 6913 ± 1113 6813 ± 1072 0.770

ICV f (mmł, mean ± SD) 1534202 ± 15593 1541124 ± 146627 1526667 ± 175928 1532509 ± 155608 1536906 ± 143274 0.893

Total WMH g (mmł, median (IQR)) 4.31 (2.09–10.75) 3.45 (1.85–7.92) 3.62 (2.00–7.32) 3.95 (2.19–9.54) 7.77 (3.01–14.10) 0.002

Total white matter volume g (mmł,
mean ± SD)

465.00 ± 57.43 472.60 ± 58.81 466.10 ± 57.40 472.30 ± 53.08 448.10 ± 57.70 0.012

Values are mean ± standard deviation (SD), median (IQR (interquartile range)), or n (% of the group). *Chi-square tests (for categorical variables), Kruskal-Wallis test (for non-normally
distributed continuous variables), and one-way ANOVA (for normally distributed continuous variables) were used to compare characteristics. a, SBPV was calculated over T0 to T3 and divided
into quartiles. Participants were divided into four groups according to SBPV quartiles. b, N = 738 c, N = 741 d, N = 329 e, N = 409 f, N = 510, g, N = 368. SBPV, systolic blood pressure
variability; SD, standard deviation; IQR, interquartile range; APOE, apolipoprotein E gene; MCI, mild cognitive impairment; SBP, systolic blood pressure; DBP, diastolic blood pressure; PP,
pulse pressure; ADAS-13, Alzheimer’s Disease Assessment Scale 13; ADNI, Alzheimer’s Disease Neuroimaging Initiative; EF, executive function; MEM, memory; PET, positron emission
tomography; AV45, 18F florbetapir AV45 PET was used to estimate cerebral amyloid beta load; FDG, Fluorodeoxyglucose; MRI, magnetic resonance imaging; ICV, intracranial volume; WMH,
white matter hyperintensity.

mediated the relationships of SBPV with general cognition
(p = 0.048, proportion = 26.35%), memory function (p = 0.047,
proportion = 25.17%), and executive function (p = 0.045,
proportion = 30.79%). The relationships of SBPV with general
cognition (p = 0.009, proportion = 26.76%), memory function
(p = 0.011, proportion = 27.63%), and executive function
(p = 0.010, proportion = 36.10%) were also partially mediated by
WMH (Figure 4).

Discussion

We comprehensively investigated the associations of late-life
SBPV with cognition, AD risk, and AD-associated neuroimaging
markers. Our findings indicated that 1) late-life higher SBPV
predicted poor cognition, elevated AD risk, increased amyloid
burden, decreased brain metabolism, and increased WMH burden;
and 2) Aβ pathology, brain metabolism, and WMH mediated the
associations of SBPV with cognitive impairment. These findings
supported that blood pressure management, especially maintaining
a stable SBP trajectory could be a promising approach to preventing
AD in older adults.

Our findings aligned with previous studies, which showed that
higher SBPV predicted an increased risk of AD (Alperovitch et al.,
2014; Mahinrad et al., 2023) among the elderly. These findings
together highlighted the significance of maintaining stable SBP
for AD prevention. Previous studies have reported that SBPV
could be influenced by non-pharmaceutical factors [Mediterranean
diet score (Lau et al., 2015), long sleep duration, and persistent
insomnia (Nagai et al., 2013)] and antihypertensive medications
[calcium-channel blockers and non-loop diuretic drugs (Webb
et al., 2010; Webb and Rothwell, 2012)]. Additionally, we recently
reported that the relationships of late-life BP with AD pathology
and neurodegeneration could be modified by antihypertensive
treatments (Guo et al., 2024). Further research is required to
investigate whether such interventions could alter the associations
of SBPV with AD. On the other hand, one study failed to reveal
correlation between SBPV and AD risk (van Middelaar et al., 2018).
The discrepant results could potentially be explained by that this
study was conducted on an older population (aged 70 to 78 years).
In addition, future studies are warranted to explore whether AD
patients related to high SBPV represented a specific AD type.

Mediation analyses revealed potential pathways by which
SBPV was involved in cognitive impairment via modulating
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FIGURE 3

Associations of SBPV with cognition and AD imaging endophenotypes at T3. Participants with higher SBPV were associated with poorer global
cognition (A), memory (B), executive function (C), as well as higher amyloid load (D), lower cerebral FluoroDeoxyGlucose (FDG) metabolism (E) and
higher white matter hyperintensities (WMH) (F) compared to those with lower SBPV.

Aβ pathology, brain metabolism, and WMH. Several possible
biological mechanisms could explain these relationships. First,
higher BPV may cause hemodynamic instability and induce shear
stress on the vascular wall, possibly leading to microvascular
damage. The cerebral microcirculatory dysfunction can damage
the blood–brain barrier. Higher SBPV has been linked to arterial
stiffness as well. Microvascular damage, arterial stiffness, and
blood-brain barrier breakdown can further affect Aβ clearance
(Gupta and Iadecola, 2015; Zlokovic, 2011; Tedla et al., 2017). In
addition, BPV is an upstream determinant of artery remodeling.
Hypoperfusion and hypoxia due to artery remodeling increase the
secretion of proinflammatory cytokines and reactive oxygen species
and induce microglia overactivation. The upregulation of the
neuroinflammatory cascade and the reactive gliosis can enhance Aβ

production (Nagai et al., 2017; Sible et al., 2021; Nagai et al., 2015;
Nelson et al., 2014); Second, higher BPV may result in inconsistent
perfusion and repeated episodes of tissue hypoxia-ischemia,
leading to over-activation of the microglia (Rouch et al., 2020;
Lattanzi et al., 2018b). There was a negative correlation between
microglial activation and glucose metabolism (Fan et al., 2015).
Reduced glucose metabolism can reflect poorer integrated synaptic
activity (Rocher et al., 2003), which was associated with cognitive
impairment related to neurodegenerative processes (Jack et al.,
2010; Savva et al., 2009; Terry and Katzman, 2001); Third, arterial
stiffness driven by higher BPV can further cause a “tsunami effect”
towards the cerebral parenchyma, ultimately leading to WMH (Saji
et al., 2016; Lattanzi et al., 2018a). Besides, higher BPV exposes the
vessels to chronic stress. This may cause chronic hypoperfusion and

impaired blood-brain barrier function, leading to WMH (Hilkens
et al., 2024). WMH can disrupt brain white matter communication
pathways associated with cognitive function (Wiseman et al., 2018;
Vergoossen et al., 2021). Interestingly, previous studies identified
the presence of a mediating effect of Aβ pathology on cognitive
impairment associated with WMH (Ottoy et al., 2023), as well as
a mediating effect of WMH on cognitive impairment related to
Aβ pathology (Bernal et al., 2023). Future studies are warranted to
explore whether WMH is involved in the pathway linking SBPV, Aβ

pathology, and cognitive impairment.
The major strength of our study is that, to reduce the

risk of reverse causality and immortal time bias, individuals
who developed AD during the SBPV calculation period were
excluded. The relationships of SBPV with AD risk and its
neuroimaging markers were firstly comprehensively explored.
Limitations should be acknowledged as well. First, this is an
observational study. The results only reflect but cannot be
equivalent to the causal relationships. Further investigations via
in vivo or in vitro experiments should be conducted to confirm
our findings about the impact of SBPV on metabolism of AD
pathology. Randomized clinical trials are needed to test the
efficiency of BPV management in preventing cognitive decline or
dementia. Second, the competing risk due to cardiovascular disease
mortality and confounding effects due to cardiovascular diseases
and antihypertensive medications cannot be analyzed because
of the limited data. According to previous publications, SBPV
was significantly associated with cardiovascular disease mortality
and events (Stevens et al., 2016). Antihypertensive medications
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FIGURE 4

Mediation analyses with ADAS and cognitive domains as cognitive outcomes. The relationship of SBPV with cognitive measures, including (A, D, G)
global cognition measured by ADAS as well as cognitive domain of (B, E, H) memory (MEM) and (C, F, I) executive function (EF) was mediated by
(A–C) amyloid load, (D–F) FluoroDeoxyGlucose (FDG) metabolism, and (G–I) white matter hyperintensities (WMH). IE, indirect effect. SBPV, systolic
blood pressure variability; AD, Alzheimer’s disease; SD, standard deviation; IQR, interquartile range; APOE, apolipoprotein E gene; MCI, mild cognitive
impairment; SBP, systolic blood pressure; DBP, diastolic blood pressure; PP, pulse pressure; ADAS-13, Alzheimer’s Disease Assessment Scale 13;
ADNI, Alzheimer’s Disease Neuroimaging Initiative; EF, executive function; MEM, memory; PET, positron emission tomography; AV45, 18F florbetapir;
FDG, Fluorodeoxyglucose; WMH, white matter hyperintensities; MRI, magnetic resonance imaging; ICV, intracranial volume; Aβ,amyloid-beta; Q1-4,
quartiles 1-4; T0, baseline; T1, month 6; T2, month 12; T3, month 24; T4, month 96.

might reduce the risk of dementia (Ding et al., 2020). Third, the
generalizability of the results may be compromised by the fact that
ADNI participants were highly educated volunteers. More large
community-based longitudinal studies are warranted to validate
these associations.

Conclusion

To sum up, the present study indicated high SBPV could
predict AD occurrence. The associations could be mediated
by Aβ pathology, brain metabolism, and brain vessel health.
These findings reinforced the value of maintaining stable SBP
in preventing cognitive decline and incident AD. Further efforts
are warranted to verify these findings in larger community-based
studies.
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