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Objective: To evaluate the effectiveness of multimodal features based on gait 
analysis and eye tracking for elderly people screening with subjective cognitive 
decline in the community.

Methods: In the study, 412 cognitively normal older adults aged over 65  years 
were included. Among them, 230 individuals were diagnosed with non-
subjective cognitive decline and 182 with subjective cognitive decline. All 
participants underwent assessments using three screening tools: the traditional 
SCD9 scale, gait analysis, and eye tracking. The gait analysis involved three 
tasks: the single task, the counting backwards dual task, and the naming animals 
dual task. Eye tracking included six paradigms: smooth pursuit, median fixation, 
lateral fixation, overlap saccade, gap saccade, and anti-saccade tasks. Using the 
XGBoost machine learning algorithm, several models were developed based on 
gait analysis and eye tracking to classify subjective cognitive decline.

Results: A total of 161 gait and eye-tracking features were measured. 22 
parameters, including 9 gait and 13 eye-tracking features, showed significant 
differences between the two groups (p  <  0.05). The top three eye-tracking 
paradigms were anti-saccade, gap saccade, and median fixation, with AUCs of 
0.911, 0.904, and 0.891, respectively. The gait analysis features had an AUC of 
0.862, indicating better discriminatory efficacy compared to the SCD9 scale, 
which had an AUC of 0.762. The model based on single and dual task gait, anti-
saccade, gap saccade, and median fixation achieved the best efficacy in SCD 
screening (AUC  =  0.969).

Conclusion: The gait analysis, eye-tracking multimodal assessment tool is 
an objective and accurate screening method that showed better detection 
of subjective cognitive decline. This finding provides another option for early 
identification of subjective cognitive decline in the community.
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1 Introduction

In our aging society, the number of people with dementia, 
particularly Alzheimer’s disease (AD) is increasing year by year (Cao 
et al., 2020). AD, characterized by progressive cognitive dysfunction 
and unusual behavior, accounts for 60% of cases (Kalaria et al., 2008), 
and the number of Chinese AD patients over 60 years old was about 9 
million in 2019 (Jia et al., 2020). Patients will gradually lose the ability 
to take care of themselves, which places a heavy burden on the family 
and society. The NIA-AA workgroups proposed a model of the clinical 
trajectory of AD, indicating that once a patient is diagnosed with mild 
cognitive impairment (MCI), their cognitive function declines more 
rapidly in the short term compared to the slower progression from the 
preclinical stage to MCI (Sperling et al., 2011). Therefore, our focus is 
on early identification and intervention during the preclinical stage. 
Subjective cognitive decline (SCD) may be considered as a preclinical 
stage of dementia. Patients with SCD experience memory loss 
complaints, but their cognitive decline cannot be  recognized by 
standardized neuropsychological scales (Jessen et al., 2014; Lin et al., 
2019). The average conversion rate from SCD to cognitive impairment 
(CI) is 19.8% (Li et al., 2023). Specifically, about 6.6% of older people 
with SCD will progress to mild cognitive impairment (MCI) annually, 
while the corresponding number to dementia is approximately 2.3% 
(Mitchell et al., 2014). Current research is focused on finding objective 
and simple methods and establishing accurate diagnostic models.

Currently, the diagnosis of SCD relies on a series of assessments, 
such as neuropsychological scales, imaging, behavioral indicators, and 
biomarkers. However, there is no uniform standard at present (Jessen 
et al., 2020). In 2015, a 9-item SCD questionnaire (SCD9) was first 
developed for SCD screening (Gifford et  al., 2015). Researchers 
validated the value of the Chinese version and found that its sensitivity 
could reach more than 0.8 (Hao et al., 2017). However, other studies 
have also indicated that this questionnaire does not encompass all 
complaints related to cognitive decline (Hao et al., 2022). Therefore, it 
is necessary to explore a more suitable method for SCD screening for 
large-scale community surveys in China. Gait and eye tracking are 
two emerging methods to detect cognitive impairment. Numerous 
clinical studies assessing MCI and AD through gait and eye 
movements have produced positive outcomes. The overarching 
concept is that brain regions and neural circuits related to executive 
function and attention have been extensively studied and are well 
recognized. Imaging studies have consistently demonstrated the 
activity of these brain regions during gait and eye movement tasks. 
We hypothesize that behavioral changes may emerge at this stage. 
Furthermore, we  aim to identify more accurate, convenient, and 
validated dual-task gait and eye movement paradigms suitable for 
large-scale community screening. The specific details are 
outlined below.

As people age, certain cognitive domains, including processing 
speed, executive functions, attention, memory, and visuospatial ability 
tend to decline (Harada et al., 2013). Large-scale studies have shown 
that over 50% of individuals over 70 years old reported subjective 
cognitive decline, despite having normal neuropsychological scale 
results (van Harten et al., 2018). Previous research has confirmed the 
correlation between gait characteristics and executive function (Ble 
et al., 2005; Holtzer et al., 2006), with this relationship becoming more 
pronounced in dual-task gait tests (Coppin et  al., 2006). Several 
hypotheses about attention, a component of executive function, have 

been used to explain this more evident relationship (Yogev et  al., 
2008). Recent gait analysis findings related to MCI and AD have also 
supported the above conclusions (Bahureksa et  al., 2017; 
Bovonsunthonchai et al., 2022). A community survey revealed that 
slow gait speed may manifest before the beginning of SCD, making it 
a considerable predictor of future cognitive dysfunction (Merchant 
et  al., 2021). Therefore, it is reliable to study people with SCD in 
conducting different gait tasks.

Eye tracking involves multiple brain regions, including the cortex, 
superior colliculus, and thalamus, with different eye-tracking tests 
engaging distinct brain areas (Tao et  al., 2020). Fixation, smooth 
pursuit, and saccade are the most commonly used methods (Opwonya 
et al., 2022). Attention and executive control both play crucial roles in 
eye movement (Luke et  al., 2018; Mahon et  al., 2018), and eye 
movement abnormalities may appear before memory deficits 
(Crawford and Higham, 2016). Recent reports have indicated that 
eye-tracking tasks can help predict the transition from normal 
cognition (NC) to cognitive impairment (Zola et al., 2013). A study 
found that young AD patients performed worse in a fixation task 
compared to age-matched normal controls (Pavisic et  al., 2017). 
Another meta-analysis suggested that patients with mild cognitive 
impairment exhibited longer latency, lower accuracy and error 
correction rate in anti-saccade task (Zhang et al., 2023). Building on 
a consistent theoretical foundation, we aim to identify differences 
between individuals with SCD and cognitively normal people through 
gait and eye-tracking tests. Our goal is to discover more effective tasks 
for early and efficient identification of the SCD population.

The potential benefits of combining gait analysis and eye-tracking 
techniques for screening individuals with subjective cognitive decline 
are still uncertain. Machine learning demonstrates superior 
performance compared to traditional statistical methods. In our study, 
we  employed the eye-tracking technique for the first time in a 
community-dwelling population and integrated it with dual-task gait 
analysis to obtain multimodal parameters for screening individuals 
with subjective cognitive decline. These parameters were evaluated 
using a machine learning model. Ultimately, we  discovered key 
parameters for distinguishing the SCD population and developed a 
high-accuracy diagnostic model for identifying them.

2 Materials and methods

2.1 Participants

A total of 649 participants aged 65 years or older from three 
communities in Shanxi Province were selected for this study. Inclusion 
criteria for gait analysis and eye tracking included: (1) age ≥ 65 years; 
(2) completion of the cognitive neuropsychological assessments; (3) 
informed consent signed by the participants themselves or their 
attendant. Exclusion criteria for gait analysis included: (1) requirement 
of assistive devices for walking, such as walking sticks; (2) neurological 
diseases that may affect gait, such as cerebrovascular disease, 
Parkinson’s disease, ataxia, motor neuron disease, traumatic brain 
injury; (3) other systemic diseases that may affect gait, such as 
osteoarthritis, tuberculosis of the spine, limb disability, and audio-
visual disorders. Exclusion criteria for eye tracking included: (1) eye 
diseases that may affect eye tracking tests, such as cataract, glaucoma 
or other eye diseases; (2) other systematic diseases that may affect 
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vision or eye movement, such as kinetic nerve paralysis; (3) inability 
to complete the calibration described below before the start of the test.

2.2 Neuropsychological assessment

The cognitive evaluators and neurologists in this study received 
professional training. First, participants scanned the QR code or 
completed the SCD9 scale in the help of volunteers on the spot. The 
Ascertain Dementia 8-item Informant Questionnaire (AD8) and 
Mini-Cog scales were initially assessed by a single assessor. Cognitive 
function was deemed normal if the AD8 score was <2 and the 
Mini-Cog score was ≥3. Participants with abnormal scores on either 
the AD8 or Mini-Cog underwent further assessment. The second 
stage included the Mini-Mental State Examination (MMSE), Activities 
of Daily Living (ADL) scale, and Clinical Dementia Rating (CDR). 
Normal cognition was considered with CDR = 0, while cognitive 
impairment was CDR ≥ 0.5 (Petersen, 2004). The final diagnosis of CI 
was determined by two neurologists who took into account the scales, 
medical history, and educational background to make a comprehensive 
evaluation. The NC participants were further divided into two groups 
based on their responses to two questions regarding overall memory 
function on the SCD9 scale (Cheng et al., 2023). These questions were: 
“Do you  think you  have memory problems?” and “Overall, do 
you tend to forget things you need to do or say?” Responses were 
either “yes” or “no.” A “yes” to both questions indicated subjective 
cognitive decline (SCD), while all other responses indicated 
non-subjective cognitive decline (non-SCD). In total, 412 NC 
individuals were included: 230 with non-SCD and 182 with SCD. The 
flow chart of the study is shown in Figure 1. The study was approved 
by the Ethics Committee of the First Hospital of Shanxi Medical 
University, and all subjects signed an informed consent form.

2.3 Gait analysis

Gait parameters were collected using an artificial motor function 
assessment system (ReadyGo, Beijing CAS-Ruiyi Information 
Technology Co., Ltd.). This system incorporates high-accuracy visual 
sensors and deep learning algorithms to pinpoint 32 skeletal points on 
the human body. It identifies and labels movements such as foot 
lifting, arm swinging, and turning, and then calculates the needed gait 
parameters automatically. The device can capture subjects within a 
1 × 5 m2 area in front of the camera, so we ensure no other person 
appears in this space. Subjects do not need to wear sensors, making 
the process quick and easy. In all tests, subjects were required to walk 
at their normal speed. For the single-task test, subjects walked along 
a 3 meter walkway and turned at a designated point for three times, 
covering a total of 18 meters. For the dual-task test, subjects completed 
two tasks while walking: (i) counting backwards (e.g., 100, 99, 98, 97, 
…), (ii) naming as many animals as possible (e.g., monkey, turtle). 
During the dual-task test, subjects were asked to speak loud enough 
so that the operator could hear them clearly. The walking process 
should not be interrupted, even if the next number or animal name 
was not immediately recalled. We collected gait metrics including 
stance phase, swing phase, step width, step height, speed, step 
frequency, stride speed, turnaround time, coordination, step time 
variation, step width variation, and so on. We also calculated the dual-
task cost (DTC) to reflect cognitive load affecting gait performance.

2.4 Eye tracking

Eye movement parameters were collected using an intelligent 
evaluation system (EyeKnow; Beijing CAS-Ruiyi Information 
Technology Co., Ltd.), with a 120 Hz sampling rate. We used a head-
mounted VR glasses and a tablet computer to complete the test and 
collect data. Before the test, each subject was calibrated using a five-point 
process: top, bottom, left, right, and center, ensuring a maximum 
calibration error of 2° radius. The position of the VR glasses remained 
unchanged after calibration. Subjects performed smooth pursuit, fixation, 
pro-saccade, and anti-saccade tasks in sequence. Fixation included 
median fixation and lateral fixation tasks, while pro-saccade included 
overlap saccade and gap saccade tasks. The specific processes are detailed 
description as follows in Table 1. If needed, a pretest can be conducted to 
help subjects understand the process and requirements. In the smooth 
pursuit task, we analyzed parameters such as tracking accuracy and the 
number of offsets. In the fixation tasks, we analyzed the offsets, the total 
offsets, and offsets time. In the pro-saccade tasks, we analyzed accuracy, 
latency, and speed. In the anti-saccade task, we analyzed accuracy, latency, 
speed, error correction rate, and error correction time.

2.5 Statistical analysis

Data were processed using R software version 4.2.3 (Vienna, 
Austria). Continuous variables were assessed for normality and 
homogeneity of variance. Data that followed a normal distribution 
and had uniform variance were expressed as mean ± standard 
deviation (x ± s) and compared using the independent samples t-test. 
Otherwise, they were expressed as the median (interquartile range) 
[M (QR)] and compared using the Wilcoxon test. Categorical variables 

FIGURE 1

The flow chart for SCD screening. SCD, subjective cognitive decline.
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were described by frequency and rate (%) and compared using the χ2 
test. A p-value <0.05 was considered statistically significant. After 
excluding outliers and missing values, we used the SHAP (SHapley 
Additive exPlanation) method for variable selection, a post-hoc model 
interpretation technique that explains the output of any machine 
learning model. Then, the dataset was divided into a training set and 
a test set with a ratio of 7/3. The XGBoost algorithm was used to build 
a classification model. The model training and evaluation were 
repeated several times to reduce bias from different dataset divisions. 
Accuracy, sensitivity, specificity, and area under the curve (AUC) were 
used as comprehensive measures for model evaluation. Model stability 
was assessed using a 5-fold cross-validation method. In each iteration, 
four subsets are selected as the training set, and the remaining subset 
is used as the test set. The training set is used to train the model, and 
the test set is used to evaluate the performance of the model, and 
evaluation metrics such as accuracy, sensitivity, specificity, and AUC 
are calculated. The evaluation results on the test set in all iterations are 
summarized and average metrics are calculated. A total of 12 models 
were constructed (Single-task gait (ST), Dual-task gait (counting 
backward, CB), Dual-task gait (naming animals, NA), Single-task 
gait + Dual-task gait (ST + DT), Smooth pursuit (SP), Median fixation 
(MF), Lateral fixation (LF), Overlap saccade (OS), Gap saccade (GS), 
Anti-saccade (AS), Anti-saccade + Median fixation + Gap saccade 
(AS + MF + GS), Single-task gait + Dual-task gait + Anti-
saccade + Median fixation + Gap saccade (ST + DT + AS + MF + GS)), 
and different modality combinations were compared. The details and 
results are presented in Table  2. The data collection and model-
building process are shown in Figure 2.

3 Results

3.1 Demographic and clinical 
characteristics

We recruited 649 participants from three communities in 
Shanxi Province for this study. Among them, 412 were diagnosed 

with normal cognition (NC): 230 with non-subjective cognitive 
decline (non-SCD) and 182 with subjective cognitive decline 
(SCD). Table  3 summarizes the baseline characteristics of the 
participants. Age, years of education, and BMI between the two 
groups showed no statistically significant differences (p > 0.05). 
There were more females in the SCD group compared to the 
non-SCD group, with a statistically significant difference 
(p < 0.05). The SCD9 score was significantly higher in the SCD 
group than in the non-SCD, with a statistically significant 
difference (p < 0.05).

3.2 Gait parameters and eye tracking 
parameters with differences between 
non-SCD and SCD groups

We collected a total of 125 gait parameters and 36 eye-tracking 
parameters. Then, 9 gait parameters and 13 eye tracking parameters 
were found significantly different between the two groups, as shown 
in Figure 3. In the single-task test, only the parameter of stride left was 
found significant difference between the two groups. About dual-task 
tests, three parameters including step width-DTC, step time left 
variation, and stride left variation-DTC, had statistical significance in 
two types of tests between two groups. In eye tracking paradigms, 
offsets were significantly different in smooth pursuit, median fixation, 
and lateral fixation between non-SCD and SCD Groups. In the anti-
saccade test, accuracy, completion time, and error correction rate 
showed statistically significant differences in the two groups.

3.3 Performance of gait models for SCD 
detection

To evaluate the effectiveness of single-task and dual-task gait tests 
for SCD detection, we generated four machine learning models and 
evaluated the discriminative abilities of the single-task test, the 
counting backwards dual-task test, the naming animals dual-task test, 

TABLE 1 The specific processes of six eye tracking paradigms.

Paradigms Process Time

Smooth pursuit A green circular bright spot first appeared in the center of the screen. The spot will move back and forth in a horizontal line at 

a speed of 10°/s with a maximum angle of 20°. Participants are required to track the target point in a continuous motion

15 s

Median fixation A green circular dot appeared in the center of the screen at a 0° viewing angle for 10 s. Participants were asked to maintain 

their gaze on the target and avoid letting it move from the center of their sight

10 s

Lateral fixation The system dot appeared at the center for 6 s, then disappeared. Then it reappeared at 15° positions to the left, up, right, and 

down for 6 s each. Participants were asked to maintain their gaze on the target

30 s

Gap saccade The system dot appeared at the center for 0.8 s, then disappeared. Then it reappeared for 0.8 s at 20° positions up, down, left, and 

right at random after a 0.2 s interval. This was for one trail. There were 2 s interval between each trail. Significantly, each test 

started from the central point and then look around. Subjects were asked to look quickly at the target point when it appeared

This test consisted of 

10 trials, totally about 

40 s

Overlap saccade The system dot appeared at the center for 0.8 s, then disappeared. After 0.2 s, the target dot appeared for 0.8 s randomly at 20° 

positions above and below, left and right. This was for one trail. There were 2 s interval between each trail. Subjects were asked 

to look quickly at the target point when it appeared

This test consisted of 

10 trials, totally about 

40 s

Anti-saccade The system dot appeared at the center for 1 s, then disappeared. A green circular highlight appeared randomly at 20° positions 

above and below. When the dot appeared at the top, bottom, left, or right, subjects were asked to look quickly in the opposite 

direction

This test consisted of 

10 trials, totally about 

40 s
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and the combination of single-task and two dual-task tests, as shown 
in Figure 4A. We aimed to determine whether the dual-tasks were 
superior to the single-task and to compare the two dual-tasks in order 
to identify the more effective task for further research. Additionally, 
we sought to understand the extent to which combining a single task 
with a dual-task enhances discriminative ability. The model based on 
naming animals dual-task gait traits (AUC: 0.841) discriminated 
between SCD and non-SCD populations better than the model based 
on single-task gait traits (AUC: 0.823), which had a similar 
discriminatory ability as the counting backwards dual-task gait model 
(AUC: 0.824). The model combining single-task and two dual-task 
gait features (AUC: 0.862) outperformed all other gait models.

3.4 Performance of eye tracking models in 
SCD detection

To evaluate the effectiveness of different eye-tracking paradigms for 
SCD detection, we  generated seven machine learning models and 
evaluated them using metrics such as AUC, accuracy, sensitivity, and 
specificity. Previously, no consensus existed on which eye-tracking task 
was superior, and the specific processes used varied between studies. 
Therefore, we  sought to determine which eye-tracking paradigm is 
superior and whether combined features can improve the results. 
We first evaluated the discrimination abilities of the smooth pursuit, 
median fixation, lateral fixation, overlap saccade, gap saccade, and anti-
saccade tasks. Among the six eye-tracking paradigms, the classification 
model using parameters in the anti-saccade task had the highest 
accuracy (AUC: 0.911), while the next two better models were gap 
saccade (AUC: 0.904) and median fixation (AUC: 0.891). In addition, 
the smooth pursuit paradigm had the lowest accuracy (AUC: 0.842). 
Then, we combined the three paradigms with the highest AUCs to build 
a comprehensive model and found that the classification model using 
the anti-saccade, gap saccade, and median fixation tasks had the highest 
ability (AUC: 0.919), surpassing any single eye-tracking paradigm 
model to discriminate the SCD and non-SCD people, as shown in 
Figure 4B.

3.5 Performance of the multimodal for SCD 
detection

We attempted to compare the diagnostic value of the traditional 
scale with emerging behavioral assessment tools, such as gait analysis 
and eye tracking, in distinguishing SCD populations. Therefore, 
we compared four models: SCD9, gait single-task + dual-task, anti-
saccade + gap saccade + median fixation, and gait single-task + dual-
task + anti-saccade + gap saccade + median fixation. The results are 
shown in Figure 4C. Among the four classification models, the gait 
and eye tracking combination model was the most effective, with an 
AUC of 0.969, superior to single gait or eye tracking models. The 
SCD9 model had the lowest classification ability (AUC: 0.762).

3.6 Validation of gender difference and 
other machine learning models

As shown in Table 3, there was a significant difference in the 
gender factor between the two groups. To assess the impact of gender 
differences, we recalculated the diagnostic model by including gender 
as a factor, with the results displayed in Table 4. From these results, 
there was no significant change in the performance of model after 
adjusting for gender. Additionally, we compared four commonly used 
machine learning models, such as logistic regression, RF, SVM, and 
LightGBM, in addition to XGBoost to explore their detection abilities. 
The results indicated that XGBoost performed best, followed by 
LightGBM. Specific details are shown in Table 5.

4 Discussion

This study used eye-tracking technology for the initial screening 
of SCD and combined it with gait single-task and dual-task tests, 
expecting to explore a new and effective screening method for 
SCD. Nine gait parameters and thirteen eye-tracking parameters were 
found significantly different between non-SCD and SCD individuals. 

TABLE 2 Area under ROC curve and statistics of different models of two groups.

Feature AUC Accuracy (%) Sensitivity (%) Specificity (%)

SCD9 0.762 75.30 72.53 78.36

Single-task gait (ST) 0.823 83.64 86.31 82.64

Dual-task gait (counting backward, CB) 0.824 85.34 86.98 82.89

Dual-task gait (naming animals, NA) 0.841 85.98 87.32 83.37

Single-task gait + Dual-task gait (ST + DT) 0.862 86.43 87.78 85.61

Smooth pursuit (SP) 0.842 83.05 89.13 83.12

Median fixation (MF) 0.891 85.34 89.03 86.23

Lateral fixation (LF) 0.873 84.31 86.89 86.01

Overlap saccade (OS) 0.866 85.03 85.97 84.43

Gap saccade (GS) 0.904 88.18 87.03 91.21

Anti-saccade (AS) 0.911 92.01 89.26 92.86

Anti-saccade + Median fixation + Gap saccade (AS + MF + GS) 0.919 92.44 90.34 93.01

Single-task gait + Dual-task gait + Anti-saccade + Median 

fixation + Gap saccade (ST + DT + AS + MF + GS)

0.969 94.82 96.72 95.21
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Using the machine learning classification models constructed in this 
study, we found that combining gait and eye tracking achieved the best 
result (AUC: 0.969) in distinguishing between non-SCD and SCD 
individuals. This outperformed the traditional SCD9 scale (AUC: 
0.762) in terms of diagnostic accuracy. In previous studies, similar 
positive results have been observed in neurodegeneration diseases 
using these methods. One study investigated cognitive impairment 

using gait, speech, and drawing, achieving a combined model with an 
accuracy was 0.93 (Yamada et al., 2021). Additionally, another large-
scale community study using dual-task gait and eye movement 
achieved an AUC of 0.987 for cognitive impairment detection (Lin 
et al., 2023). Both studies employed machining learning algorithms. 
Thus, we believe that this screening tool is valuable for identifying 
SCD in community-dwelling elderly population in the future.

Currently, research on gait analysis involves various devices to 
collect gait parameters and dual-task paradigms to identify cognitive 
decline. The equipment used in this study integrates video recording, 
parameter acquisition and analysis, with no need of additional 
sensors or video recording equipment, which makes it a more 
practical tool, suitable for the large-scale community screening. In 
this study, two types of dual-task tests were used, including counting 
backwards and naming animals, which have been found to be efficient 
in discriminating subjective cognitive impairment (Åhman et al., 
2020). The ability of counting backwards test modal (AUC: 0.824) to 
detect SCD was not found to be significantly better than the single 
test gait (AUC: 0.823), suggesting its limitation in distinguishing 
SCD. The theory behind dual-task tests assumes that attentional 

FIGURE 2

Process of data collection and model construction for gait and eye tracking test. SCD, subjective cognitive decline.

TABLE 3 Basic information comparisons of two groups.

Demographics Non-SCD 
(N  =  230)

SCD 
(N  =  182)

p-value

Age, years 70.67 ± 5.06 71.01 ± 5.73 0.2646

Females, n (%) 124 (53.9) 123 (67.6) <0.001

Education, years 9.14 ± 4.03 9.76 ± 3.60 0.1394

BMI 23.17 ± 5.76 23.45 ± 4.71 0.3925

SCD9 score 2.84 ± 1.79 6.01 ± 1.49 <0.001

BMI, body mass index; SCD9, a 9-item questionnaire for SCD screening; SCD, subjective 
cognitive decline.
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resources are limited, and performance declines when two attention-
demanding are performed simultaneously (Tombu and Jolicoeur, 
2003). Therefore, it may be  relatively simple and less cognitively 
demanding for the SCD population to conducted counting task 
(Montero-Odasso et  al., 2017), consistent with previous findings 
(Tseng et al., 2014), similar to the task of recitation of the alphabet 
(Ghoraani et  al., 2021). When analyzing data from the naming 
animals dual-task model, we found that it can enhance the ability of 
the single task and counting backwards dual task to discriminate SCD 
individuals with an AUC of 0.841. A cross-sectional study also found 
that the knee peak extension angle in naming animals dual-task test 
differed in distinguishing different cognitive groups (Ali et al., 2022). 
The animal-naming test assesses verbal fluency, requiring extensive 
knowledge and active retrieval processes. In a comparison study of 
three dual-task tests, researchers found that the tasks of subsequent 
100-7 and naming animals had similar effects on gait performance in 
the MCI group (Du et  al., 2023). For SCD subjects, the animal-
naming task posed a higher cognitive demand than counting 
backward. Some gait characteristics were observed to be different in 
the two groups such as stride, step width and step time variation. This 
may be attributed to the shared neural pathways between gait and 
cognition, particularly in the prefrontal cortex, temporal regions, and 
entorhinal cortex (Sakurai et al., 2019), which are connected with 
executive function. Disruption caused by neurodegenerative 
processes may impact both functions (Grande et al., 2019). Future 
studies should further explore other valuable dual tasks for 
differentiating SCD.

Previous studies have shown that eye-tracking techniques are 
valuable in distinguishing between cognitively impaired and 
cognitively normal populations. Oyama et al. (2019) found that 
eye-tracking had good diagnostic performance in detecting patients 
with cognitive impairment (AUC: 0.888). In a study using 
pro-saccade and anti-saccade task, saccade behavior exhibited more 
errors, omissions, and fewer corrections in the MCI group 
compared to cognitively normal individuals, suggesting the 
probability of saccade tasks as cognitive markers of MCI 
(Chehrehnegar et al., 2022). Pro-saccade and anti-saccade involve 
activation of frontal and parietal lobes, lenticular nuclei, and 
occipital cortex which are responsible for planning and executing 
saccadic eye movement (Matsuda et al., 2004). Few of eye-tracking 
research studies have focused on the SCD population, especially in 
community survey. Xue et al. (2022) adopted a visual search task 
and found that gaze duration and times in the area of interest were 
increased in SCD patients, potentially enabling differentiation 
between SCD and NC. Taken together, this suggests the potential 
for recognizing SCD using eye-tracking technologies. In our study, 
we found significant differences of offsets and offset time in the 
median fixation task and offsets and total offsets in the lateral 
fixation task. One possible reason for the different results of the two 
studies is that we used different tasks and stimulators. To better 
understand the paradigms of eye tracking in SCD people, 
particularly at the community level, we utilized six tasks including 
smooth pursuit, median fixation, lateral fixation, overlap saccade, 
gap saccade, and anti-saccade tasks to advance our research. The 

FIGURE 3

9 distinctive gait features and 13 distinctive eye tracking features (p  <  0.05) between the SCD and non-SCD groups. SCD, subjective cognitive decline; 
DTC (dual-task cost)  =  ([single-task parameter  −  dual-task parameter]/single-task parameter)  ×  100%.
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anti-saccade (AUC: 0.911), gap saccade (AUC: 0.904), and median 
fixation (AUC: 0.891) paradigms had the strongest differentiation 
ability. Similar to our results, prior studies on cognitive impairment 
also proved the value of these three tasks (Wolf and Ueda, 2021; Lin 
et al., 2023; Wolf et al., 2023). We initially constructed a combination 
model of anti-saccade, gap saccade, median fixation and found 
better results (AUC: 0.919). The theory of detecting cognitive 
decline using eye-tracking parameters is still unknown. Researchers 
found that eye-tracking parameters have a correlation with 

neuropsychological scale scores. Total eye-tracking scores 
significantly decreased in CI population, correlating favorably with 
the scores on the MMSE (Tadokoro et al., 2021). In addition, eye 
tracking tests show an advantage over scales in that they have less 
impact on educational attainment. Also, fixation, saccade, and 
smooth pursuit, as demonstrated in prior studies, require the 
engagement of various cortical and subcortical regions including 
the frontal cortex and anterior cingulate cortex, reflecting the 
executive function and attention. Hence, eye-tracking assessments 
offer promise in cognitive function evaluation (Tao et al., 2020). To 
further explore whether combining gait and eye movement 
enhances SCD recognition and to investigate a model with superior 
classification, we fused data from the three eye tracking paradigms 
with the best classification performance with gait single-task and 
dual-task paradigms. This integration yielded the most successful 
model with an AUC of 0.969, suggesting the value of multimodal 
analysis. Remarkably, this study was the first to integrate 
eye-tracking tasks with a machine learning algorithm for 
community-based SCD screening. Future investigations should 
delve into paradigms which can offer enhanced classification 
efficacy and develop more intelligent evaluation models using 
eye-tracking technologies.

This study combined eye tracking and gait data, yielding 
improved outcomes. While the accuracy of these behavioral 
parameter models may not be  equal to cerebrospinal fluid 
biomarkers and imaging like PET-CT, they surpass the traditional 
SCD9 scale in advantage of accuracy, objectivity and simplicity. 
These models are anticipated to emerge as validated tools for 
distinguishing SCD, MCI, and dementia in the future. In 
conclusion, our study demonstrates, for the first time, the 
effectiveness of combining eye tracking and dual-task gait analysis 
for SCD assessment, leading to promising results. This innovative 
approach shows significant potential for widespread clinical and 
community screening in the future.

Our study possesses several limitations. Firstly, the sample size 
was only 412 elderly individuals aged over 65 from three communities, 
which may limit the generalizability of the findings. Future research 
should aim to validate the conclusions in larger cohorts. Secondly, the 
average education level of approximately 9 years may not accurately 
represent individuals with lower education levels, such as those who 
are illiterate or have only completed primary education, thus 
restricting the generalizability of our findings to those with lower 
education. Future studies should validate these results across diverse 
populations with varying living conditions and cultural backgrounds. 
Lastly, our study adopted a cross-sectional design, which means 
we could not observe the progression of SCD and its association with 
MCI and dementia. Future endeavors should include longitudinal 
follow-up to understand how multimodal behavioral parameters 
evolve in SCD progression.

5 Conclusion

Overall, we observed that the naming animals dual task showed 
better discriminatory value in SCD detection compared to the 
counting backwards dual task, thereby enhancing the diagnostic 
capability of single-task gait analysis. Among the eye-tracking tasks, 
the anti-saccade, gap saccade, and median fixation paradigms 

FIGURE 4

Power of different detect models to discriminate SCD and non-SCD 
population. (A) Models based on ST, CB, NA, and ST  +  DT features. 
(B) Models based on SP, MF, LF, OS, GS, AS, and AS  +  MF  +  GS 
features. (C) Models based on SCD9, ST  +  DT, AS  +  MF  +  GS, 
ST  +  DT  +  AS  +  MF  +  GS features. ST, the single task gait; DT, the dual 
task gait; CB, the counting backwards dual-task gait; NA, the naming 
animals dual-task gait; SP, smooth pursuit; MF, median fixation; LF, 
lateral fixation; OS, overlap saccade; GS, gap saccade; AS, anti-
saccade.
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exhibited the highest classification efficacy. Combining these three 
paradigms with gait analysis yielded an optimal classification model. 
These findings imply that the integration of eye-tracking and gait 
analysis has the potential to improve early SCD diagnosis, support the 
development of early intervention strategies and brain health 
management, and could be useful for widespread use in community 
screening programs.
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