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Alteration in temporal-cerebellar 
effective connectivity can 
effectively distinguish stable and 
progressive mild cognitive 
impairment
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Background: Stable mild cognitive impairment (sMCI) and progressive mild 
cognitive impairment (pMCI) represent two distinct subtypes of mild cognitive 
impairment (MCI). Early and effective diagnosis and accurate differentiation 
between sMCI and pMCI are crucial for administering targeted early intervention 
and preventing cognitive decline. This study investigated the intrinsic 
dysconnectivity patterns in sMCI and pMCI based on degree centrality (DC) and 
effective connectivity (EC) analyses, with the goal of uncovering shared and 
distinct neuroimaging mechanisms between subtypes.

Methods: Resting-state functional magnetic resonance imaging combined 
with DC analysis was used to explore the functional connectivity density 
in 42 patients with sMCI, 31 patients with pMCI, and 82 healthy control (HC) 
participants. Granger causality analysis was used to assess changes in EC 
based on the significant clusters found in DC. Furthermore, correlation 
analysis was conducted to examine the associations between altered DC/EC 
values and cognitive function. Receiver operating characteristic curve analysis 
was performed to determine the accuracy of abnormal DC and EC values in 
distinguishing sMCI from pMCI.

Results: Compared with the HC group, both pMCI and sMCI groups exhibited 
increased DC in the left inferior temporal gyrus (ITG), left posterior cerebellum 
lobe (CPL), and right cerebellum anterior lobe (CAL), along with decreased DC 
in the left medial frontal gyrus. Moreover, the sMCI group displayed reduced EC 
from the right CAL to bilateral CPL, left superior temporal gyrus, and bilateral 
caudate compared with HC. pMCI demonstrated elevated EC from the right 
CAL to left ITG, which was linked to episodic memory and executive function. 
Notably, the EC from the right CAL to the right ITG effectively distinguished 
sMCI from pMCI, with sensitivity, specificity, and accuracy of 0.5806, 0.9512, 
and 0.828, respectively.

Conclusion: This study uncovered shared and distinct alterations in DC 
and EC between sMCI and pMCI, highlighting their involvement in cognitive 
function. Of particular significance are the unidirectional EC disruptions from 
the cerebellum to the temporal lobe, which serve as a discriminating factor 
between sMCI and pMCI and provide a new perspective for understanding the 
temporal-cerebellum. These findings offer novel insights into the neural circuit 
mechanisms involving the temporal-cerebellum connection in MCI.
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Introduction

Mild cognitive impairment (MCI), the preclinical stage of 
Alzheimer’s disease (AD), is a transitional and intermediary cognitive 
phase between normal aging and AD (Jessen et al., 2014a; Jessen et al., 
2014b). Approximately 10–15% of MCI cases progress to AD annually, 
compared with only 1–2% of healthy individuals (Jessen et al., 2014b; 
Petersen et  al., 2014). Given AD’s irreversible and progressive 
neurodegenerative nature, the in-depth study of MCI is of paramount 
importance. MCI is a heterogeneous condition; not all patients with 
MCI will inevitably transition to AD during their lifetime, as some 
may remain relatively stable, and a small subset may even regain 
normal cognitive function after prolonged follow-up (Mitchell and 
Shiri-Feshki, 2009; Petersen et al., 2014). According to the outcomes, 
MCI is classified into stable MCI (sMCI), which maintains MCI status, 
and progressive MCI (pMCI), which advances into AD (Pereira et al., 
2016). The underlying neural mechanisms that govern the progression 
from MCI to AD remain unclear. Consequently, understanding the 
neuroimaging mechanisms of sMCI and pMCI is crucial for predicting 
MCI outcomes and enabling early and timely intervention.

In recent years, resting-state functional magnetic resonance 
imaging (fMRI) studies have suggested AD as a potential classic 
disconnection syndrome (Wang et al., 2007; Gu et al., 2020). This means 
that the changes in brain function in AD are not confined to the changes 
in a single brain area, but rather involve the changes in the whole brain 
network (Costumero et al., 2020). Similarly, MCI involves alterations 
and disruptions in the entire brain network (Xue C. et al., 2019; Xue 
et  al., 2020). The brain connectivity patterns from the metabolic 
network have demonstrated decreasing inter-and intra-hemispheric 
connections in both sMCI and pMCI (Huang et al., 2018). Malotaux 
et al. reported that pMCI involved significantly higher connectivity, 
particularly within the default mode network (DMN), than sMCI 
(Malotaux et al., 2023). In pMCI, DMN connectivity increased over 
time, and the rate of connectivity change was correlated with the rate of 
cognitive decline. Cai et al. reported that sMCI and pMCI had varying 
degrees of alterations in the executive control network (Cai et al., 2017). 
However, to date, few studies have investigated the alterations in whole-
brain functional connectivity (FC) patterns or directional connectivity 
networks associated with sMCI and pMCI.

Degree centrality (DC), a metric derived from graph theory, can 
assess topological properties in the whole-brain functional network. 
The DC represents the number of direct connections (or significant 
suprathreshold correlation weights) of a given voxel within the voxel-
linker, measuring the importance of individual nodes. This reflects the 
“hub” characteristic of brain functional networks (Zuo and Xing, 2014). 
DC provides an unbiased approach for exploring anomalies across the 
complete connectivity matrix of the full-brain functional connectome. 
It allows for the study of functional brain abnormalities at the whole-
brain level without prior hypotheses (Zuo et al., 2012). This method is 
confirmed to have a high level of sensitivity, specificity, and test–retest 
reliability. It has been utilized to examine the neurobiological 
mechanisms underlying brain network alterations in various 

neurological disorders including the AD spectrum and Parkinson’s 
disease (Lou et al., 2015; Zhou J. et al., 2021; Shan et al., 2023).

Furthermore, FC solely depicts interactions between distinct brain 
regions, whereas effective connectivity (EC) delves into the direction 
and intensity of information flow among these regions, providing a 
deeper understanding of the interaction patterns of different brain 
regions (Friston et al., 2013; Huang et al., 2021). EC-based findings align 
more closely with actual brain function mechanisms (Friston et al., 
2013). Granger causality analysis (GCA), an approach for assessing EC, 
models interactions between significantly distinct brain regions (Liao 
et al., 2010). In recent years, this time-series analysis technique has 
played a significant role in fMRI causal modeling studies of brain 
regions using fMRI (Liao et al., 2010; Wang et al., 2017). GCA does not 
presuppose theoretical assumptions about the existence and direction 
of influence between any two regions. Xue et al. explored the changes 
of EC between the hippocampus and other brain regions in MCI and 
AD, and found abnormalities in the transmission and reception of 
information in the hippocampus (Xue J. et al., 2019). Yu et al. used GCA 
to explore the changes of EC of triple networks in aMCI and AD, and 
found that the EC (excitatory and inhibitory) obtained from GCA could 
distinguish AD and amnestic MCI (Yu et al., 2019). However, most of 
the previous studies were based on predetermined assumptions and 
focused on EC of single brain regions and networks, while EC analysis 
based on whole brain FC was rare in AD spectrum analysis. Therefore, 
by combining DC and GCA, an evaluation of abnormally FC in the 
brain network of sMCI and pMCI can yield a comprehensive and 
detailed understanding of their brain network changes, providing a 
more holistic insight into the pathophysiological processes of AD.

In this study, we aimed to delineate the intrinsic dysconnectivity 
pattern within whole-brain functional networks among patients with 
sMCI and pMCI. Initially, we employed DC to identify the brain 
regions manifesting altered FC within the complete brain networks of 
sMCI and pMCI. Subsequently, we  utilized seed-based GCA to 
analyze EC, thereby comprehending the causal relationships of these 
alterations. Furthermore, we explored the links between the altered 
DC and EC indices and cognitive function in individuals with sMCI 
and pMCI. Our hypothesis posits that the EC attributes of brain 
nodes, as determined by DC, can evaluate the central neural 
mechanisms associated with the characteristics of sMCI and pMCI, 
potentially aiding clinical diagnosis and early intervention.

Materials and methods

Participants

The research data used for our study were sourced from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database.1 

1 http://adni.loni.usc.edu
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ADNI is a longitudinal multiterm study designed to develop 
biomarkers for early detection and monitoring of AD, encompassing 
clinical, imaging, genetic, and biochemical aspects. In the ADNI 
dataset, there are more than 400 MCI subjects scanned at screening 
time. After the baseline scan, follow-up scans were acquired every 3, 
6 or 12 months for up to 84 months. The present investigation selected 
a 4-year period as the timeframe for monitoring the transition of 
MCI. pMCI participants were defined as participants who transitioned 
from MCI to AD within 4 years, while sMCI participants were defined 
as participants who maintained their MCI status for at least 4 years 
(Thung et  al., 2016; Chen et  al., 2023). Healthy control (HC) 
participants were included if they maintained HC status for a 
minimum of 4 years. More detailed inclusion and exclusion criteria for 
HC and MCI individuals can be found on the ADNI website.2

The current rs-fMRI dataset (n = 170) consisted of 96 HC 
participants, 42 patients with sMCI, and 32 patients with 
pMCI. Among them, 16 were excluded because of excessive head 
motion (cumulative translation or rotation >3.0 mm or 3.00). Finally, 
the study analyzed 154 participants, including 82 HC, 41 sMCI, and 
31 pMCI individuals.

Ethics approval and consent to participate

Ethical approval for the ADNI study was granted by the 
institutional review committees of all participating institutions. 
Participants or their authorized representatives provided written 
informed consent (adni.loni.usc.edu).

Neuropsychological assessment

The episodic memory (EM) and executive function (EF) were 
calculated according to the model provided by the ADNI website (see 
text footnote 1). The details regarding EM and EF were provided in 
Supplementary material.

MRI data acquisition

Detailed scanning information can be obtained from http://adni.
loni.usc.edu/wp-content/uploads/2010/05/ADNI2 MRI Training-
Manual-FINAL.pdf and http://adni.loni.usc.edu/wp-content/
uploads/2017/07/ADNI3-MRI-protocols.pdf.

Functional data preprocessing

Preprocessing of fMRI data was performed using Data Processing 
and Analysis for Brain Imaging3 software in MATLAB 2013b.4 The 
details regarding image preprocessing were provided in 
Supplementary material.

2 http://adni.loni.usc.edu/data-samples/access-data/

3 DPABI, http://rfmri.org/DPABI.

4 http://www.mathworks.com/products/matlab/

DC analysis

Voxel-wise DC calculations were performed using DPABI 
software on preprocessed data to assess network centrality, capturing 
FC features of neural network nodes. The details regarding DC 
calculation were provided in Supplementary material.

A one-way analysis of variance (ANOVA) within the gray matter 
mask was performed using DPABI to compare the differences in DC 
across the sMCI, pMCI, and HC groups, with age, sex, years of 
education, and gray matter volume as covariates. Nonparametric 
permutation testing was performed with 1,000 iterations. The 
significance threshold was set at a level of p < 0.05, using threshold-
free cluster enhancement (TFCE) combined with family-wise error 
(FWE) correction, and a cluster size of >100 voxels (2,700 mm3). 
Post-hoc comparisons were conducted using a two-sample t-test with 
the mask resulting from ANOVA, with age, sex, years of education, 
and gray matter volume as covariates. The threshold was set at a 
p < 0.05 with TFCE-FWE correction and a cluster size of >20 voxels 
(540 mm3).

GCA

To explore directionality effects, GCA was employed to assess 
changes in EC. Based on the results of the DC analysis, we selected 
regions of interest (ROIs), that is, the brain regions with significant 
alterations in the ANOVA. All ROI coordinates were in the MNI 
space. EC was analyzed using a resting-state hemodynamic response 
function5 and was used to analyze EC.

In this study, the seed time series of the ROIs was defined as the 
seed time series x of the ROI, while the time series y represented the 
whole-brain voxel time series. The linear direct effects of x on y 
(Fx → y) and y on x (Fy → x) were calculated for each voxel in the 
brain. Consequently, two Granger causality maps were generated for 
each ROI based on the impact metric for each participant. The 
residual-based F was normalized (F′) and converted into Z scores for 
each voxel (Zy → x and Zx → y). These Z scores were derived by 
subtracting the global mean F′ values and dividing them by the 
standard deviation.

For analyzing causal connectivity at a group level, mean values of 
the Zy → x and Zx → y maps were computed for each group. Thus, a 
total of six Granger causality maps was obtained, encompassing two 
maps for each direction (Zy → x and Zx → y) and two for each group 
(the ROIs included both Zy → x and Zx → y for patients with sMCI or 
pMCI and HC participants). These Granger causality maps were 
subsequently entered into DPABI software for group comparisons.

One-way ANOVA within the gray matter mask was conducted 
using DPABI to evaluate differences in EC across three groups 
(patients with sMCI and pMCI and HC participants), while 
considering age, sex, years of education, and gray matter volume as 
covariates. The significance threshold was set with p < 0.05 (TFCE-
FWE corrected), and a cluster size of >100 voxels (2,700 mm3). The 
two-sample t test was used for post-hoc comparisons with the mask 
resulting from ANOVA, with age, sex, years of education, and gray 

5 rs-HRF, https://www.nitrc.org/projects/rshrf.
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matter volume as covariates. The significance level was set with 
p < 0.05 (TFCE-FWE corrected) and a cluster size of >20 voxels 
(540 mm3).

Statistical analysis

Statistical Package for the Social Sciences (SPSS) software, version 
22.0 (IBM, Armonk, New York, NY, USA) was employed for statistical 
analysis. ANOVA and the chi-square test were utilized to compare 
demographic and neurocognitive scales among the three groups: 
sMCI, pMCI, and HC. Bonferroni correction was applied for post-hoc 
comparisons, and a p value of <0.05 was considered 
statistically significant.

Correlation analyses were performed in SPSS, investigating 
relationships between altered DC and EC and cognitive domains, 
adjusting for age, sex, and years of education as covariates (Bonferroni 
corrected, p < 0.05).

Receiver operating characteristic (ROC) curve analysis was 
carried out using SPSS 25.0 to assess the sensitivity and specificity of 
the altered DC and EC indexes in differentiating sMCI from pMCI.

Results

Demographic and neurocognitive 
characteristics

Table 1 presents the data of demographic and neurocognitive 
characteristics of all participants, including 31 patients with 

pMCI, 41 patients with sMCI, and 82 HC participants. The HC 
group exhibited a significant difference in years of education 
compared with the pMCI and sMCI groups. As anticipated, 
significant differences existed in cognitive performance, with 
both the pMCI and sMCI groups demonstrating significantly 
lower EM and EF scores than the HC group (Bonferroni 
corrected, p < 0.05).

Degree centrality analysis

ANOVA showed significant alterations in DC among the 
groups, including the left inferior temporal gyrus (ITG), left 
cerebellum posterior lobe (CPL), right cerebellum anterior lobe 
(CAL), and left medial frontal gyrus (MFG). When compared 
with the HC group, the pMCI group showed increased DC in the 
left inferior frontal gyrus (IFG), left CPL, and right CAL and 
decreased DC in the MFG. Meanwhile, sMCI exhibited increased 
DC in the left ITG, left CPL, and right CPL and decreased DC in 
the MFG (TFCE-FWE corrected, cluster size of >20, p < 0.05). 
These results were obtained while accounting for age, sex, years 
of education, and gray matter volume (Table  2 and  
Figures 1, 2).

Effective connectivity analysis

Furthermore, ANOVA revealed significant alterations in EC 
from the right CAL among the groups, encompassing the left 
bilateral CPL, bilateral superior temporal gyrus (STG), and 

TABLE 1 Demographics and clinical measures of three groups, including pMCI, sMCI, and HC.

HC (82) pMCI (31) sMCI (41) F values (χ2) p- values

Age (years) 72.68 (6.02) 72.99 (7.06) 71.46 (7.68) 0.593 0.554

Gender (F/M) 46/36 15/16 20/21 0.863 0.650

Years of education 17.01 15.61* 15.71* 5.594 0.005ab

MMSE 29.06 (1.39) 26.93 (1.78)***/* 27.90 (1.53)*** 23.874 <0.001abc

MoCA 26.24 (2.71) 21.50 (3.79)***/* 23.76 (3.30)*** 27.347 <0.001abc

RAVLT-immediate 47.64 (10.53) 29.83 (7.62)***/* 35.90 (8.73)*** 44.709 <0.001abc

RAVLT-learning 5.95 (2.69) 3.34 (2.18)***/* 4.90 (2.68) 11.044 <0.001ac

RAVLT-forgetting 3.00 (2.72) 5.55 (2.31)*** 4.79 (1.92)*** 14.550 <0.001ab

ADAS11 8.20 (3.32) 13.06 (4.95)*** 8.71 (4.03)*** 17.740 <0.001ac

ADAS13 11.83 (5.31) 20.42 (7.20)*** 13.84 (6.26)*** 22.552 <0.001ac

ADASQ4 2.70 (2.15) 6.23 (2.50)***/** 4.51 (2.40)*** 28.048 <0.001abc

LDELTOTAL 14.02 (3.87) 4.57 (3.37)***/** 7.55 (2.81)*** 92.899 <0.001abc

TRABSCOR 69.83 (35.72) 142.41 (77.92)***/*** 92.05 (36.49) 25.352 <0.001ac

FAQ 0.30 (1.76) 7.07 (4.71)***/*** 1.87 (2.74) 61.161 <0.001ac

EM 1.07 −0.11***/*** 0.43*** 54.720 <0.001abc

EF 1.16 −0.08***/** 0.57** 27.259 <0.001abc

Numbers are given as means (standard deviation, SD) unless stated otherwise. MMSE, Mini-mental State Examination; MoCA, Montreal Cognitive Assessment; RAVLT, Rey Auditory Verbal 
Learning Test; ADAS, Alzheimer’s Disease Assessment Scale-Cognitive subscale; LDELTOTAL, Logical Memory Test Delayed Recall; TRABSCOR, Trail Making Test B; FAQ, Functional 
Activeities Questionnaire; EM, episodic memory; EF, executive function; apost-hoc analyses showed a significantly group difference between pMCI and HC; bpost-hoc analyses showed a 
significantly group difference between sMCI and HC; cpost-hoc analyses showed a significantly group difference between pMCI and sMCI; *p < 0.05; **p < 0.01; ***p < 0.001; pMCI, 
progressive mild cognitive impairment; sMCI, stable mild cognitive impairment; HC, healthy control.
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bilateral caudate. Specifically, when compared with the HC group, 
sMCI demonstrated decreased EC from the right CAL to the 
bilateral CPL, bilateral caudate, and left STG. Additionally, when 
compared with sMCI, pMCI displayed increased EC from the right 
CAL to the left ITG (TFCE-FWE corrected, cluster size of >20, 
p < 0.05). These findings were consistent after controlling for age, 
sex, years of education, and gray matter volumes (Table  3 and 
Figure 3).

Correlation analysis

The EC originating from the right CAL and extending to the 
left ITG was negatively associated with EM (r = −0.371, p = 0.002) 
and EF (r = −0.284, p = 0.018; Bonferroni corrected, p < 0.05; 
Figure 3).

ROC analysis

Most notably, EC from the right CAL to right ITG exhibited the 
ability to effectively distinguish sMCI from pMCI, with sensitivity, 
specificity, and accuracy of 0.5806, 0.9512, and 0.828, respectively 
(Figure 4).

Discussion

To the best of our knowledge, the present study is the first to 
explore intrinsic brain functional hubs and causal connectivity in 
individuals with sMCI and pMCI, employing a combination of the DC 
and GCA methodologies. Using the DC analysis, we  identified 
elevated DC in the left CPL, right CAL, and left ITG, along with 
reduced DC in the left MFG, in both sMCI and pMCI compared with 

TABLE 2 The difference of degree centrality across three groups.

Region (aal)
Peak MNI coordinate

F/t
Cluster 
numberx y z

ANOVA

L inferior temporal gyrus/cerebellum posterior lobe −45 −18 −21 18.2292 628

R cerebellum anterior lobe 42 −36 −30 17.4254 109

L medial frontal gyrus 0 33 42 11.5542 115

pMCI vs. HC

L inferior temporal gyrus/cerebellum posterior lobe −21 −54 −60 5.1245 472

R cerebellum anterior lobe 42 −36 −30 4.8888 85

L medial frontal gyrus 0 54 30 −4.0665 70

sMCI vs. HC

L cerebellum posterior lobe −39 −54 −57 4.9316 82

L inferior temporal gyrus −60 −42 −27 5.6828 398

R cerebellum anterior lobe 45 −33 −30 4.3503 78

L medial frontal gyrus −3 48 30 −4.6899 113

The x, y, z coordinates is the primary peak locations in the MNI space. Cluster size > 100 voxels in ANOVA analysis, TFCE-FWE corrected, p < 0.05; Cluster size > 20 voxels in post-hoc test, 
TFCE-FWE corrected, p < 0.05; sMCI, stable mild cognitive impairment; pMCI progressive mild cognitive impairment; HC, healthy control; L, left; R, right.

FIGURE 1

Brain regions exhibiting significant differences in degree centrality within cerebrum. (A) Brain regions within brain hemispheres across three groups, 
including sMCI, pMCI, and HC (TFCE-FWE corrected, cluster size >100, p  <  0.05). (B,C) Results of post-hoc analysis in voxel-wise analysis (TFCE-FWE 
corrected, cluster size >20, p  <  0.05). sMCI, stable mild cognitive impairment; pMCI, progressive mild cognitive impairment; HC, healthy control;  
ITG. L, left inferior temporal gyrus; MFG. L, left medial frontal gyrus.
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TABLE 3 The difference of effective connectivity from right CAL to brain regions across three groups.

Region (aal) Peak MNI coordinate F/t Cluster number

x y z

ANOVA

L cerebellum posterior lobe −27 −54 −39 9.3355 506

L superior temporal gyrus/B Caudate 6 18 −3 9.0143 717

R cerebellum posterior lobe 27 −63 −27 9.4202 298

L inferior temporal gyrus −39 −45 −27 8.6488 132

pMCI vs. sMCI

L inferior temporal gyrus −48 −27 −24 4.5613 27

sMCI vs. HC

L cerebellum posterior lobe −27 −54 −39 −4.3741 423

R cerebellum posterior lobe 27 −63 −27 −3.9863 86

L superior temporal gyrus −45 9 −21 −3.5551 30

B Caudate −6 12 3 −3.9396 41

The x, y, z coordinates is the primary peak locations in the MNI space. Cluster size > 100 voxels in ANOVA analysis, p < 0.05; Cluster size > 20 voxels in post-hoc test, TFCE-FWE corrected, 
p < 0.05; sMCI, stable mild cognitive impairment; pMCI progressive mild cognitive impairment; HC, healthy control; L, left; R, right; B, bilateral.

HCs. Subsequently, the GCA was conducted, leveraging the altered 
DC values in an ANOVA setup to investigate their causal effect across 
the whole brain. Specifically, compared with HC participants, pMCI 

exhibited increased EC originating from the right CAL and extending 
to the left ITG, a connectivity pattern with a significantly negative 
association with impairments in EM and EF. Of particular significance, 

FIGURE 2

Brain regions exhibiting significant differences in degree centrality within cerebellum. (A) Brain regions within cerebellum across three groups, 
including sMCI, pMCI, and HC (TFCE-FWE corrected, cluster size >100, p  <  0.05). (B,C) Results of post-hoc analysis in voxel-wise analysis (TFCE-FWE 
corrected, cluster size >20, p  <  0.05). sMCI, stable mild cognitive impairment; pMCI, progressive mild cognitive impairment; HC, healthy control;  
CPL. L, left cerebellum posterior lobule; CAL. R, right cerebellum anterior lobule.
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the EC extending from the right CAL to the right ITG demonstrated 
excellent discriminatory ability between sMCI and pMCI, together 
with high specificity and accuracy. This study delves into a more 
profound understanding of the underlying pathological mechanisms 
characterizing sMCI and pMCI.

The present study showed similar changes in DC values for 
sMCI and pMCI, shedding light on shared neuroimaging 
mechanisms between these two conditions. Both groups exhibited 
increased DC in the left ITG, left CPL, and right CAL, coupled with 
decreased DC in the left MFG. The coexistence of increased and 
diminished DC underlines a compensatory mechanism operating in 
the context of cognitive decline, a phenomenon previously 
substantiated by existing research (Xue C. et al., 2019; Xue et al., 
2021). The left ITG plays a pivotal role in higher-order cognitive 
functions encompassing visual recognition, language 
comprehension, decision-making, and emotion regulation (Jackson 
et al., 2018). Notably, prior research identified the ITG as a hub for 
intense local β-amyloid/tau interactions, fostering a connectivity 
profile conducive to accelerated tau propagation (Lee et al., 2022). 
Moreover, diminished ReHo values in the left ITG in the MCI group 
were found to be correlated negatively with disease duration (Wu 
et  al., 2022). These findings parallel those of Wang et  al., who 
demonstrated significant alterations in nodal properties (degree and 
betweenness centrality) within the ITG in AD and MCI, thereby 

FIGURE 3

The EC of the right CAL. The red line represents the increased EC from right CAL to the other brain regions; the blue line represents decreased EC from 
right CAL to the other brain regions. (A) Brain region across three groups, including sMCI, pMCI, and HC (cluster size >100, p  <  0.05). (B,C) Results of 
post-hoc analysis in voxel-wise analysis (TFCE-FWE corrected, cluster size >20, p  <  0.05). (D,E) Significant associations between altered EC from right 
CAL to left ITG and cognitive function. sMCI, stable mild cognitive impairment; pMCI, progressive mild cognitive impairment; HC, healthy control; EC, 
effective connectivity; CAL, cerebellum anterior lobule; ITG, inferior temporal gyrus; EM, episodic memory; EF, executive function.

FIGURE 4

Combination of ROC analysis and EC from right CAL to left ITG 
differentiated pMCI from sMCI. sMCI, stable mild cognitive 
impairment; pMCI, progressive mild cognitive impairment; EC, 
effective connectivity; CAL, cerebellum anterior lobule; ITG, inferior 
temporal gyrus.
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contributing to global topological alterations, consistent with our 
current study (Wang et al., 2018).

The human cerebellar cortex represents a complex structure 
characterized by intricate folding, surpassing even the cerebral cortex in 
this regard (Sereno et al., 2020). Its extensive neural fiber connections 
with the brain’s cognitive network underscore its pivotal role in shaping 
behavior and cognition evolution (Sereno et  al., 2020). While the 
cerebellum primarily governs sensorimotor and vestibular functions, it 
additionally exerts influence over cognitive, emotional, and autonomic 
domains (Cutando et al., 2022). Notably, age-related declines in cerebellar 
lobular volumes and cortico-cerebellar FC have been linked to cognitive 
regression in healthy elderly individuals (Uwisengeyimana et al., 2020; 
Gellersen et al., 2021). Tang et al. proposed that cortico-cerebellar FC 
disruptions, particularly within the DMN and fronto-parietal networks, 
could serve as a novel avenue for early diagnosis and potential early 
interventions in MCI and AD (Tang et  al., 2021). Furthermore, 
augmented cerebellar activity has been positively correlated with 
memory enhancement, potentially operating as a compensatory 
mechanism (McLaren et al., 2012). Hence, heightened connectivity in 
this context may potentially underpin cerebellar compensatory processes.

The MFG encompasses both caudal and rostral areas, with the 
latter encompassing portions of the dorsal lateral prefrontal cortex 
responsible for executive cognitive functions, thinking and 
perception, memory retrieval, problem-solving, and emotional 
regulation (Friedman and Robbins, 2022). A meta-analysis confirmed 
a significant association between reduced gray matter density, cerebral 
blood flow, hypometabolism in the MFG and increased anosognosia 
scores in patients with AD (Hallam et  al., 2020). Caffarra et  al. 
identified the left anterior cingulate and MFG as mediators of delayed 
free recall (Caffarra et al., 2016). Furthermore, diminished eigenvector 
centrality in the MFG was identified in MCI by Lou et al., aligning 
with the present study’s findings of reduced FC in this region (Lou 
et al., 2016). Importantly, it becomes evident that the alterations are 
primarily localized to the DMN, a network pivotal for self-referential 
psychological processes and social functions (Menon, 2023). It is the 
most studied network and is thought to be the first network with the 
risk of damage during AD because it is more susceptible to β-amyloid 
and tau deposition and glucose hypometabolism, which positions it 
as an early target in AD pathogenesis (Chiesa et al., 2019; Ingala et al., 
2021). Our study corroborates the DMN’s vulnerability as a leading 
disrupted network in MCI.

Intriguingly, significant differences in DC were not discernible 
between sMCI and pMCI. However, pronounced distinctions emerged 
in EC, indicating that EC might offer nuanced neuroimaging insights. 
Compared with HCs, sMCI displayed a marked EC reduction extending 
from the right CAL to the bilateral CPL, left STG, and bilateral caudate. 
The caudate nucleus plays a key role in various higher neural functions, 
instrumental in executive functions, learning, memory, motivation, and 
emotion, and it assumes a multifaceted role in higher-order neural 
functions (Grahn et al., 2008; Yang et al., 2022). The cortical-caudate 
FC was less distinct in older adults versus younger counterparts, with 
age-related differences in caudate function associated with memory 
decline in the context of normal aging (Rieckmann et al., 2018). Task-
based fMRI data unveiled notable caudate activity in older adults 
during virtual navigation tasks, in contrast to hippocampal engagement 
observed in younger adults, implying an age-related shift in functional 
demands from the hippocampus to the caudate nucleus during 
navigation (Konishi et al., 2013). The caudate volume was lower in 

patients with MCI than in HC participants (Madsen et al., 2010). Gao 
et al. reported reduced regional homogeneity in the right caudate of 
patients with MCI relative to HC participants, suggesting that right 
caudate ReHo can be used as a neuroimaging biomarker of MCI, which 
can provide objective guidance for the diagnosis and management of 
MCI in the future (Gao et al., 2022).

Interestingly, no significant difference in EC existed between 
pMCI and HC, indicating that altered EC could potentially 
characterize sMCI. Zhou et al. found that sMCI cortical thickness 
decreased (e.g., ITG and anterior cingulated regions) and node and 
network efficiency increased, revealing the coexistence of injury and 
compensation (Zhou and Lui, 2013). The decrease in EC from the 
right CAL to other regions in sMCI may be a specific network change 
in sMCI. Notably, pMCI showcased elevated EC extending from the 
CAL to ITG compared with sMCI. Previous studies underscored 
compromised FC between the cerebellum and the cerebral cortex 
(Olivito et  al., 2020; Zhou Z. et  al., 2021). The results further 
corroborate the notion that AD/MCI entails disrupted mechanisms 
influencing synaptic plasticity in long-range interconnections across 
brain regions (Lou et al., 2016; Sha et al., 2018). Correlation analysis 
showed that there was a negative correlation between EC from CAL 
to ITG and EM scores, wherein EC from CAL to ITG increased with 
the decline of EM, reinforcing the compensatory hypothesis (Gaubert 
et al., 2019; Bhembre et al., 2023). This phenomenon likely reflects 
the brain’s endeavor to counteract cognitive decline by augmenting 
neural activity or connectivity. Of paramount importance, the EC 
extending from CAL to ITG can effectively discriminate sMCI from 
pMCI with high specificity and accuracy. Collectively, increased EC 
originating in the cerebellum and extending to the temporal lobe 
serves as a promising biomarker for the differentiation and diagnosis 
of sMCI and pMCI, offering a new perspective for therapeutic 
target selection.

Limitations

There were three limitations to our study. First, there was a 
significant difference in years of education across the three groups, which 
could have potentially confounding our results. However, to mitigate 
these confounding effects, all statistical analyses were conducted with 
age, years of education, and gender as covariates. As such, we maintain 
the credibility of our findings. Secondly, the small sample size of our 
study may affect the robustness and repeatability of the study. We used 
strict multiple comparisons to ensure reliability. We will further validate 
the results when the sample size is expanded in the future. Thirdly, 
important biomarkers such as APOE-e4 carrier status, Aβ deposition, 
and tau tangles deposition were not statistically analyzed, which were 
crucial in the research of the pathological mechanism of MCI. In the 
following studies, we will explore the value of imaging indicators in 
predicting MCI disease transformation and pathological features.

Conclusion

In summary, this study uncovers shared and distinctive alterations 
in DC and EC between sMCI and pMCI, with implications for 
cognitive function. Importantly, the unidirectional EC disruptions 
stemming from the cerebellum and extending to the temporal lobe 
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hold considerable potential for effectively distinguishing sMCI from 
pMCI while also offering novel insights into the neural circuit 
mechanisms linking the temporal lobe and cerebellum in MCI.
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