
Frontiers in Aging Neuroscience 01 frontiersin.org

Longitudinal accelerated brain 
age in mild cognitive impairment 
and Alzheimer’s disease
Maria Ly 1†, Gary Yu 1†, Sang Joon Son 2, Tharick Pascoal 3,4, 
Helmet T. Karim 3,5* and the Alzheimer’s disease Neuroimaging 
Initiative
1 Department of Internal Medicine, Allegheny General Hospital, Pittsburgh, PA, United States, 
2 Department of Psychiatry, Ajou University School of Medicine, Suwon, Republic of Korea, 
3 Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States, 4 Department of 
Neurology, University of Pittsburgh, Pittsburgh, PA, United States, 5 Department of Bioengineering, 
University of Pittsburgh, Pittsburgh, PA, United States

Introduction: Brain age is a machine learning-derived estimate that captures 
lower brain volume. Previous studies have found that brain age is significantly 
higher in mild cognitive impairment and Alzheimer’s disease (AD) compared 
to healthy controls. Few studies have investigated changes in brain age 
longitudinally in MCI and AD. We hypothesized that individuals with MCI and AD 
would show heightened brain age over time and across the lifespan. We also 
hypothesized that both MCI and AD would show faster rates of brain aging 
(higher slopes) over time compared to healthy controls.

Methods: We utilized data from an archival dataset, mainly Alzheimer’s disease 
Neuroimaging Initiative (ADNI) 1 with 3Tesla (3  T) data which totaled 677 scans 
from 183 participants. This constitutes a secondary data analysis on existing 
data. We included control participants (healthy controls or HC), individuals with 
MCI, and individuals with AD. We predicted brain age using a pre-trained model 
and tested for accuracy. We  investigated cross-sectional differences in brain 
age by group [healthy controls or HC, mild cognitive impairment (MCI), and AD]. 
We conducted longitudinal modeling of age and brain age by group using time 
from baseline in one model and chronological age in another model.

Results: We predicted brain age with a mean absolute error (MAE)  <  5  years. 
Brain age was associated with age across the study and individuals with MCI 
and AD had greater brain age on average. We found that the MCI group had 
significantly higher rates of change in brain age over time compared to the HC 
group regardless of individual chronologic age, while the AD group did not differ 
in rate of brain age change.

Discussion: We replicated past studies that showed that MCI and AD had greater 
brain age than HC. We  additionally found that this was true over time, both 
groups showed higher brain age longitudinally. Contrary to our hypothesis, 
we  found that the MCI, but not the AD group, showed faster rates of brain 
aging. We essentially found that while the MCI group was actively experiencing 
faster rates of brain aging, the AD group may have already experienced this 
acceleration (as they show higher brain age). Individuals with MCI may 
experience higher rates of brain aging than AD and controls. AD may represent 
a homeostatic endpoint after significant neurodegeneration. Future work may 
focus on individuals with MCI as one potential therapeutic option is to alter rates 
of brain aging, which ultimately may slow cognitive decline in the long-term.
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1 Introduction

Identifying individuals at risk for developing Alzheimer’s disease 
(AD) may improve therapeutic interventions and prevention efforts 
before irreversible neurodegenerative changes occur. Prior clinical 
trials have partially failed as they attempted to intervene too late 
(Sperling et al., 2011). Early identification of AD can be complicated 
by the wide variability in the normal aging process (Arenaza-
Urquijo and Vemuri, 2018). Several factors contribute to this 
variability including early genetic and environmental exposures, 
cellular and tissue dysfunction, reactive oxide species, and 
modifiable risk factors (e.g., insulin resistance, cardiometabolic risk, 
inflammation, obesity). These can ultimately alter an individual’s 
brain structural reserve (Stern et al., 2019), putting them at higher 
risk for AD. Recently, studies have shown that brain age—a measure 
of the age of an individual’s brain using machine learning—is 
correlated with cognitive impairment, AD, traumatic brain injury, 
and mortality amongst many other disorders (Ly et al., 2020; Cole 
and Franke, 2017; Cole et  al., 2015; Cole et  al., 2018; Liem 
et al., 2017).

We previously developed a machine learning algorithm to 
estimate brain age based on gray matter volume in healthy individuals 
without significant brain amyloid (Ly et al., 2020). This algorithm 
predicts an individual’s age from their gray matter volume—if an 
individual has a predicted age greater than their chronologic age, this 
implies that they may have some differences compared healthy adults 
their chronological age. Our model showed higher accuracy compared 
to other amyloid-insensitive models in predicting age (Ly et al., 2020). 
Unlike models that were not trained on amyloid-negative individuals, 
our model was able to differentiate between AD diagnostic groups 
(amyloid-negative cognitively normal, amyloid-positive cognitively 
normal, early mild cognitive impairment, late mild cognitive 
impairment, and AD) in a cross-sectional cohort (Ly et al., 2020). 
We recently replicated our results in a separate South Korean cohort 
(n = 650), and we further demonstrated that baseline brain age was 
predictive of future cognitive decline (Karim et al., 2022). These results 
show that brain age is not only a useful correlate of gray matter volume 
but may also help identify those at high risk of atrophy and cognitive 
decline over time.

One major limitation of the current literature is the scarcity of 
longitudinal studies. Most past research has concentrated on cross-
sectional comparisons finding that brain age is greater in MCI and 
AD compared to cognitively healthy individuals (Ly et al., 2020; 
Liem et al., 2017; Karim et al., 2022; Beheshti et al., 2018; Gaser 
et al., 2013). However, there are relatively few studies investigating 
how brain age changes over time in these groups. One study found 
that participants who converted to AD within 3 years had greater 
brain age by 3 years on follow-up compared to baseline (Franke and 
Gaser, 2012). Another study showed that participants who 
progressed to AD from MCI had a faster brain aging trajectory 
compared to cognitively normal individuals or individuals with 
stable MCI (Taylor et al., 2022). In one study, participants with AD 
had accelerated neurodegeneration in the hippocampus, amygdala, 
middle temporal gyrus, entorhinal cortex, and several other regions 

beginning as early as the 4th decade of life (Planche et al., 2022). In 
this analysis, we evaluated longitudinal trajectories of brain age in 
ADNI 1 using our amyloid-sensitive model.

In this study, we have applied our previously validated brain 
age prediction model (Ly et  al., 2020; Karim et  al., 2022). 
We hypothesized that the MCI and AD groups would show higher 
brain age compared to HC. We also hypothesized that the MCI and 
AD groups would have faster rates of brain age over time. We fit 
longitudinal mixed effect models with brain age as the outcome 
and age, sex, education, race, and clinical group as independent 
predictors or covariates. We conducted analyses with age as a time-
dependent effect as well as time from baseline scan separately. 
These analyses address: (Sperling et al., 2011) do the groups differ 
in rates of brain age change across older adults (model 2) and 
(Arenaza-Urquijo and Vemuri, 2018) do the groups differ in rates 
of brain age relative to their first MR scan regardless of individual 
chronologic age (model 3), respectively. The major difference is 
that model 3 attempts to investigate whether there is accelerated 
aging regardless of their baseline age at study entry while model 2 
attempts to investigate if there is accelerated aging across different 
ages (e.g., at 65 vs. at 80, etc.). The current analysis replicates the 
results of Franke and Gaser (2012) in model 3, but extends the 
work by looking at chronological age trajectories in model 2.

2 Methods

2.1 Participants

This study included a total of 183 participants with 3.0 T MRI 
scans from the Alzheimer’s disease Neuroimaging Initiative-1 
(ADNI-1).1 As such, the investigators within the ADNI contributed 
to the design and implementation of ADNI and/or provided data 
but did not participate in analysis or writing of this report. A 
complete listing of ADNI investigators can be found on the ADNI 
website. All participants gave written informed consent prior to 
participation and these studies were approved by the appropriate 
institutional review boards (IRB) at multiple institutions. 
We  utilized this publicly available data as part of our analysis. 
We included only 3 T scans as this can affect estimation of brain 
age algorithms as Franke et al. has reported (Franke and Gaser, 
2012). In total, this analysis included 677 scans with participants 
contributing a median of 4 scans.

2.2 MRI acquisition

Data from ADNI has been previously described (Jack et al., 
2008), but we also describe the data briefly. In general, participants 
received an MR scan lasting anywhere from 30 min to 1 h. Various 

1 https://adni.loni.usc.edu/
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sites had different coils and MR sequence parameters, but most 
collected an MPRAGE with repetition time (TR) = 2,300 ms to 
3,000 ms, flip angle (FA) = 8 to 9 deg., inversion time 
(TI) = 853–900 ms, and 160–170 slices with a roughly 1.2 mm 
isotropic voxel on a 3 T scanner.

2.3 Image preprocessing and brain age 
prediction model

The following has been detailed in prior work (Ly et al., 2020; 
Karim et al., 2022). Overall, we first segmented every image, generated 
a study-specific template, coregistered all images to that study-specific 
template, and computed the gray matter volume image for each 
participant. This volume image was input into the pre-trained machine 
learning model. This uses data from three studies to predict the age 
associated with each scan after conducting standard intensity scaling 
and computing a similarity kernel. This is described in greater 
detail below.

Statistical Parametric Mapping (SPM12) software was used to 
segment structural images into six tissue classes: gray, white, CSF, 
skull, soft tissue, and air (Ashburner and Friston, 2005). We then 
utilized the non-linear fast diffeomorphic registration DARTEL 
algorithm to generate a study-specific template (Ashburner, 2007). 
This process coregistered images to an average template and 
generated consecutively smoother templates that they were 
iteratively coregistered to. This average template was generated 
with the current dataset, which is what we have done previously. 
For this process, we used the baseline scan of all participants to 
first generate a study specific template using DARTEL. We visually 
inspected this template to ensure no issues with template 
generation. We then explored whether this template differed from 
the template that was used in the training data. To do so, 
we computed the correlation between voxels in the study template 
for these participants (n = 183) and the one used in the training 
sample (n = 757). We  found that they were correlated with the 
template in the training set (Pearson r = 0.89, correlation between 
voxels in study specific template and the template of the training 
sample). Each image for each scan was then normalized to this 
generated template space and transformed into a gray matter image 
that preserved the total amount of gray matter by multiplying by 
the determinant of the Jacobian of the transformations. Images 
were normalized to MNI (Montreal Neurological Institute) space 
at 1 mm (Stern et al., 2019) isotropic resolution and then smoothed 
with a full-width at half-maximum of 4 mm. These images were 
input into our brain age algorithm.

These smoothed gray matter volume images were then input 
into a pre-trained machine learning algorithm (Ly et al., 2020). 
We have previously validated a machine learning algorithm (Ly 
et al., 2020; Karim et al., 2022) that predicts chronological age with 
gray matter volume images using the Pattern Recognition for 
Neuroimaging Toolbox (Schrouff et al., 2013). Mean-centered gray 
matter volumes were used to calculate similarity matrix kernel 
using the dot product (LaConte et  al., 2005). The training set 
utilized in the original machine learning algorithm consisted of 757 
individuals from publicly available databases (IXI n = 264, OASIS-3 
n = 401, ADNI-3 n = 92), which did not have any overlap with the 
individuals in this present study. Description of these studies as well 

as demographic information is in the supplement and 
Supplementary Table 1. We provide a more detailed description of 
the training of this initial model in the original manuscript (Ly 
et al., 2020) as well as the Supplementary methods. Individuals had 
no psychiatric or neurologic disorders and no Alzheimer’s 
pathology as measured by positron emission tomography. The 
cohort was used as a covariate of no interest. The present data was 
not used in the training of the model, only this past pre-trained 
model was used to predict chronological age of this sample. This 
approach uses gray matter volumes and not white matter, so it could 
more accurately be described as a “gray matter” age marker. We use 
the term ‘brain age’ to refer to the measure throughout the 
manuscript. We additionally adjusted for the intercept and slope 
(i.e., subtract intercept and divide by slope) of the original brain age 
model as this has been identified as potentially resulting in bias of 
brain age estimates.

2.4 Statistical analysis

All analyses were performed in JMP Pro 16 (SAS Institute Inc., 
Cary, NC, USA). We generally conducted three models: Model 1 was 
for cross-sectional data, model 2 was for longitudinal data using age 
as a repeated measures variable, and model 3 was for longitudinal data 
using time from baseline scan as a repeated measures variable. 
We corrected the omnibus models to adjust for multiple comparisons 
using a Bonferroni correction of 0.05/3 = 0.0167.

2.4.1 Model 1
Cross-sectionally, a multiple linear regression model was run 

featuring baseline brain age (first scan chronologically) for each 
individual as the outcome, with baseline chronological age (years), sex 
(female reference), education (years), race (White reference), and 
clinical group (HC, MCI, and AD) as independent predictors. 
Interaction effects between age and clinical group were also modeled.

2.4.2 Model 2
Longitudinally, mixed effect models were run with brain age as the 

outcome and age, sex, education, race, and clinical group as 
independent predictors. To account for repeated individual scans, 
random slope and intercept effects of individual participants were 
modeled as well using age as a time-dependent variable. Multiple 
models were fit to test interactions between age and group, as well as 
quadratic effects of age. The Akaike Information Criterion was used 
to select for the best model which was ultimately reported.

2.4.3 Model 3
We then conducted a similar longitudinal model, but instead used 

time from baseline (where 0 represented the time at baseline scan) as 
the predictor and the outcome was brain age minus baseline brain age. 
We included time, time (Arenaza-Urquijo and Vemuri, 2018), sex, 
education, race, group, chronologic age, and time x group interactions 
in the model. This approach attempts to expand upon a model in past 
literature (Franke and Gaser, 2012).

Model 2 and 3 used a mixed effects model with random intercepts 
and random slopes. Note that we evaluated higher order terms as 
aging may not be  entirely linear especially in older adults 
with pathology.
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3 Results

The demographics of our participant cohort are reported in 
Table 1. Of note, there was a strong predominance of men in the MCI 
group compared to HC and AD. Individuals in the AD group, 
compared to the other two groups, also had lower education on 
average and had fewer successive scans. The MCI and AD groups also 
had greater change in brain age over change in age on average. 
We adjust for all these differences in all analyses by including them 
as covariates.

3.1 Brain age model performance

Cross-sectionally at baseline, the correlation between 
chronological age and brain age was r(181) = 0.61 and R2 = 0.38 while 
brain age and chronological age had a mean absolute error of 
3.12 years. This shows the fit of the overall brain age model. For all 
analyzed scans, the correlation between brain age and chronological 

age had a mean absolute error (MAE) of 3.15 years with r(675) = 0.574 
and R2 = 0.329, indicating our model predicted chronological age for 
this sample within expected tolerance (typically MAE of <5 years).

3.1.1 Model 1
We first modeled the data cross-sectionally with brain age as the 

outcome and age, sex, education, race, group, and group x age as 
predictors. We  found that 47.7% of the variance in brain age was 
explained by this model [F(8,174) = 19.85, p < 0.0001, R2 = 0.477]. Each 
year of age was associated with 0.506 years greater brain age 
(~6.1 months), while having clinical AD was associated with 
0.158 years (2 months) greater brain age compared to HC. MCI by age 
interaction was significant, indicating younger individuals with MCI 
had higher brain ages than HC. These results are shown in Table 2 and 
Figure 1 (middle).

3.1.2 Model 2
In this model we investigated brain age associations with age, age 

(Arenaza-Urquijo and Vemuri, 2018), sex, education, race, and group. 

TABLE 1 Demographic information for study cohort: Mean and standard deviations are reported for groups stratified by clinical groups of healthy 
control (HC), mild cognitive impairment (MCI), and Alzheimer’s disease (AD).

HC MCI AD p

N (183 total) 59 82 42

Baseline age (years) 75.7 (4.9) 74.9 (8.1) 75.0 (8.6) F(2,180) = 0.227 0.797

Sex 39.0% M 62.2% M 38.1% M χ2 = 10.17 0.006

Education (years) 16.2 (2.6) 15.7 (3.2) 14.7 (3.2) F(2,180) = 3.229 0.042

Race (AI/AN, Asian, 

Black, White)
0/1/3/55 1/1/2/78 0/0/2/40

χ2 = 3.503
0.743

Race (percentages) 0/1.7/5.1/93.2% 1.2/1.2/2.4/95.1% 0/0/4.8/95.2%

Baseline brain age 

(years)
76.9 (5.1) 78.4 (4.5) 78.9 (6.0)

F(2,180) = 2.514
0.084

Number of scans per 

individual
3.8 (1.1) 4.0 (1.4) 2.9 (1.0)

F(2,180) = 13.332
<0.0001

Δ age (years) 2.9 (0.7) 2.0 (0.8) 1.4 (0.6) F(2,168) = 16.065 <0.0001

Δ brain age/Δ age 0.9 (0.6) 1.5 (0.9) 1.6 (3.0) F(2,168) = 3.68 0.027

Variables were compared between groups using one-way ANOVAs or Chi tests when appropriate with p-values reported. Δ brain age and Δ age represent differences between the first and the 
final scans available. AI/AN, American Indian/Alaska Native. p-values indicate significance.

TABLE 2 Multiple regression model for cross sectional analysis with brain age as outcome variable for baseline (first) scans of all individuals.

Term β B (SE) Lower 95% Upper 95% t p

Intercept 37.400 (3.604) 30.287 44.513 10.38 <0.0001

Age 0.727 0.506 (0.045) 0.418 0.595 11.3 <0.0001

Sex (Female reference) 0.024 0.122 (0.304) −0.478 0.722 0.4 0.6892

Education 0.056 0.094 (0.098) −0.099 0.287 0.96 0.338

Race (White reference) −0.108 −1.211 (0.631) −2.455 0.034 −1.92 0.0566

MCI (HC reference) 0.078 0.461 (0.390) −0.310 1.230 1.18 0.2395

AD (HC reference) 0.158 1.094 (0.454) 0.198 1.990 2.41 0.017

MCI*Age −0.207 −0.174 (0.054) −0.280 −0.068 −3.24 0.0014

AD*Age −0.081 −0.084 (0.060) −0.202 0.035 −1.39 0.1661

F(8,174) = 19.85, p < 0.0001, R2 = 0.477. B indicates unstandardized coefficients with standard errors indicated. Bolded lines indicate significant effects.
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We found that the best fitting models did not have the interaction 
terms as this showed the lowest AIC (Table 3). We thus report the 
effects of that model in Table 4. The linear and quadratic effects of age 
had significant positive and negative effects on brain age, respectively. 
This means that brain age increased quadratically up to a point and 
flattened out.

The MCI and AD groups had greater brain age compared to 
the HC across all ages. Cubic splines with 4 knots (Figure 1, right) 
were fit to longitudinal trends for individuals in each clinical 
group (Figure 1, left). The interaction between age on MCI or AD 

was not significant (not reported). These results are shown in 
Table 4.

3.1.3 Model 3
In this model, we investigated brain age associations with time 

(years from baseline), sex, education, race, group, and group x time 
interactions. We found that MCI x time interaction was significant 
while the AD x time interaction was not. This showed that the MCI 
group showed a faster rate of brain aging over time compared to the 
HC while the AD group did not (Table 5 and Figure 2).

FIGURE 1

(Left) Spaghetti plot for longitudinal brain ages over age for all individuals. Trend lines for brain age against age: Linear regression lines with 95% 
confidence intervals are plotted over age for brain ages calculated from baseline scans for each individual cross sectionally (Middle). Cubic splines with 
4 knots are plotted from longitudinal brain age series for all individuals (Right).

TABLE 3 Comparison of Akaike Information Criterion (AIC) scores for mixed effect models with indicated effects.

Model effects AIC

age, age2, group 2701.4736

age, age2, group, age*group 2703.3403

age, age2, group, age2*group 2703.079

age, age2, group, age*group, age2*group 2703.5396

age, group 2710.5263

age, age2 2717.1751

All models include covariates of sex, education, and race. The main model reported in further detail is indicated with bold. Bolded lines indicate significant effects.

TABLE 4 Mixed effects model results with parameter estimates for fixed effects shown.

Term Estimate Std Error 95% Lower 95% Upper t p

Intercept −42.01382 19.634 −80.8202 −3.207434 −2.14 0.0340

Age 2.5504801 0.5115729 1.5395798 3.5613803 4.99 <0.0001

Age2 −0.012717 0.0033535 −0.019343 −0.006091 −3.79 0.0002

Sex (Female 

reference)
−0.136446 0.3324544 −0.793854 0.5209614 −0.41 0.6821

Education 0.0125676 0.1074764 −0.199978 0.2251132 0.12 0.9071

Race (White 

reference)
−1.149588 0.7013778 −2.537569 0.2383933 −1.64 0.1037

MCI (HC reference) 0.9109336 0.4378985 0.0451438 1.7767235 2.08 0.0393

AD (HC reference) 1.1618634 0.5174461 0.1389412 2.1847855 2.25 0.0263

Random slope and intercept effects of individual subjects were included with the model to account for longitudinally repeated nature of scans. Significant effects indicated in bold. Bolded lines 
indicate significant effects.
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4 Discussion

We applied our previously validated brain age model on an 
independent archival dataset evaluate changes in brain age over 
time. Our amyloid-sensitive model (Ly et  al., 2020) predicted 
brain age within an acceptable margin of error. As hypothesized, 
we replicated past cross-sectional studies showing that AD had 
greater brain age than MCI which had greater brain age than HC 
(model 1). In our longitudinal analysis, as we  hypothesized, 
we showed that brain ages were highest in AD, then MCI, and 
then HC (model 2). Contrary to our hypothesis, we found that the 
rate of brain age change was fastest for the MCI group compared 
to HC, but not for the AD group compared to HC (model 3). This 
is counter to our hypothesis that AD would have the greatest rate, 
which may indicate that brain age has a ceiling similar to 
atrophy—where AD represents a new setpoint with high levels of 
atrophy (though this remains speculative). Overall, these results 

indicate that the MCI group may be  in a transitional phase 
of neurodegeneration.

Our findings partially align with those reported by Franke and 
Gaser (2012). They found that brain age was greatest in the AD 
group compared to MCI compared to HC. They also found that 
both the AD and MCI groups had accelerated brain aging over 
time. We found that the MCI group had a faster rate of brain aging 
over time compared to HC, but did not find that in the AD group. 
This suggests that MCI may represent a dynamic phase of rapid 
neurodegeneration. In hypothetical models of neurodegeneration, 
HC and AD groups might be  seen as two stable homeostatic 
endpoints, with MCI representing the transitory phase between 
them. This is in line with the AD hypothetical biomarker curves 
(Jack et al., 2010). However, this discrepancy between our findings 
and that of Franke and Gaser (2012) needs further evaluation.

We found that using age as a time-dependent variable showed 
that the AD and MCI groups had higher brain age than HC, but 

TABLE 5 Mixed effects model results with parameter estimates for fixed effects shown.

Term Estimate Std Error t p

Intercept 0.5438858 0.5762681 0.94 0.3465

time 1.0224886 0.1265497 8.08 <0.0001*

time^2 −0.073252 0.0461556 −1.59 0.1132

sex 0.0204168 0.0526544 0.39 0.6987

education −0.010467 0.0169805 −0.62 0.5385

race 0.0091528 0.1149502 0.08 0.9366

MCI −0.022003 0.0691175 −0.32 0.7506

AD −0.056387 0.0857215 −0.66 0.5113

age −0.003963 0.0070717 −0.56 0.5759

time*MCI 0.3157218 0.0829302 3.81 0.0002*

time*AD −0.037376 0.1131029 −0.33 0.7414

Random slope and intercept effects of individual subjects were included with the model to account for longitudinally repeated nature of scans. Significant effects indicated in bold. This model 
used time from baseline as a time-dependent predictor and brain age minus baseline brain age as the outcome. Bolded lines indicate significant effects.

FIGURE 2

(Left) Spaghetti plot for longitudinal brain ages over time for all individuals. Cubic splines with 4 knots are plotted from longitudinal brain age series for 
all individuals (Right). This plot instead shows change in brain age over time in each group.

https://doi.org/10.3389/fnagi.2024.1433426
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Ly et al. 10.3389/fnagi.2024.1433426

Frontiers in Aging Neuroscience 07 frontiersin.org

did not show more rapid brain aging (i.e., model 2). However, 
when we examined individual brain age trajectories (i.e., model 
3), the MCI group showed faster rates of brain aging compared to 
both HC and AD groups. Past studies that investigated patients 
who converted from cognitively normal to MCI or MCI to AD 
have identified accelerated trajectories of neurodegeneration 
(Franke and Gaser, 2012; Taylor et al., 2022). One study (Taylor 
et  al., 2022) found that individuals with progressive MCI 
experienced faster rates of brain aging compared to stable 
MCI. Our results further emphasize the clinical significance of the 
MCI phase in the overall pathophysiology of AD.

Leung et al. (2013) found that rates of hippocampal brain atrophy was 
primarily driven by individuals with progressive MCI. They did not 
observe greater rates of hippocampal atrophy in the Alzheimer’s disease 
(AD) group compared to controls. These results support our model that 
AD may represent a homeostatic endpoint while MCI represents a phase 
of rapid neurodegeneration. The authors suggested that this lack of 
difference may also be  due to low statistical power and greater 
heterogeneity in the AD group where some show atrophy while 
others do not.

There are several limitations in this study. We only used 3 T 
data as this can affect brain age estimations, which partially 
limited which participants were included in our analysis. 
Participant groups did differ by sex and education, which may 
have partially affected the results as these have been shown to 
be associated with brain age. For example, education has been 
associated with cognitive reserve, or the ability to cope with 
damage or pathology that may explain differences in disease 
progression (Wilson et al., 2019). In addition, education has been 
previously associated with brain age (Steffener et  al., 2016). 
We have adjusted for sex and education across all analyses and 
found that including these variables did not alter statistical results. 
These results may not generalize to more racially diverse samples 
because the current dataset was primarily White. We primarily 
focused on analyses of individuals who at baseline were recruited 
into one of the three groups. Additionally, this study needs to 
be further validated using more data especially findings regarding 
AD samples. This is especially important given that the AD 
sample had the lowest mean follow-up, which is a major limitation 
in estimating individual trajectories of brain age. While we found 
that brain age seems to have some cap, this may actually reflect 
the limited number of individuals at very high ages with very high 
levels of atrophy. Additionally, participants had varying numbers 
of follow-up visits potentially making models with higher order 
terms for age and time (e.g., age cubed or time cubed) worse fits. 
Thus, more data longitudinally within participants would greatly 
improve our understanding of the longitudinal changes in AD 
and MCI.

We found that brain age was higher in participants with MCI and AD 
compared to HC. We found that individuals with MCI experienced more 
rapid changes in brain age over time compared to HC while the AD group 
did not. This study builds on our previous findings suggesting that MCI 
individuals have more rapid rates of brain aging over time. Overall, while 
our results do re-affirm previous paradigms of AD and brain age 
modeling, they also indicate a potential need to expand our focus into 
mid-life as a period where the pathological processes of AD are not yet 
fully established. This earlier stage may present a critical opportunity for 
interventions targeting modifiable risk factors associated with AD.
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