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Introduction: Freezing of gait (FOG) is a paroxysmal motor phenomenon that

increases in prevalence as Parkinson’s disease (PD) progresses. It is associated

with a reduced quality of life and an increased risk of falls in this population.

Precision-based detection and classification of freezers are critical to developing

tailored treatments rooted in kinematic assessments.

Methods: This study analyzed instrumented stand-and-walk (SAW) trials from

advanced PD patients with STN-DBS. Each patient performed two SAW trials in

their OFF Medication—OFF DBS state. For each trial, gait summary statistics from

wearable sensors were analyzed by machine learning classification algorithms.

These algorithms include k-nearest neighbors, logistic regression, naïve Bayes,

random forest, and support vector machines (SVM). Each of these models were

selected for their high interpretability. Each algorithm was tasked with classifying

patients whose SAW trials MDS-UPDRS FOG subscore was non-zero as assessed

by a trained movement disorder specialist. These algorithms’ performance was

evaluated using stratified five-fold cross-validation.

Results: A total of 21 PD subjects were evaluated (average age 64.24 years,

16 males, mean disease duration of 14 years). Fourteen subjects had freezing

of gait in the OFF MED/OFF DBS. All machine learning models achieved

statistically similar predictive performance (p < 0.05) with high accuracy. Analysis

of random forests’ feature estimation revealed the top-ten spatiotemporal

predictive features utilized in the model: foot strike angle, coronal range of

motion [trunk and lumbar], stride length, gait speed, lateral step variability, and

toe-off angle.

Conclusion: These results indicate that machine learning effectively classifies

advanced PD patients as freezers or nonfreezers based on SAW trials in

their non-medicated/non-stimulated condition. The machine learning models,

specifically random forests, not only rely on but utilize salient spatial and

temporal gait features for FOG classification.
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Introduction

Gait impairment is seen early in Parkinson’s disease (PD), with
studies showing evidence of subtle changes in the prodromal stages
(Mirelman et al., 2011; McDade et al., 2013). Measurement of
gait can be grouped into the following strata: (1) spatiotemporal
characteristics such as stride length, stance time, swing time,
single limb support, and stride time that are expressed as
means from multiple continuous steps; (2) dynamic features of
spatiotemporal characteristics (gait variability or stride-to-stride
variation) reflected as standard deviations or coefficient of variation
derived from the same with-in subject steps; (Lord et al., 2013)
and (3) joint kinematics. Characteristic PD gait changes include
reduced stride lengths (Morris et al., 1996, 1998), decreased
velocity, lack of arm swing, and multistep turns (Hausdorff, 2009;
Galna et al., 2015). It also consists of freezing of gait (FOG), which
manifests in three ways: inability to start walking or an arrest of
forward progression; trembling of the legs in place; and moving
forward with very small steps (Nutt et al., 2011). These episodes
can be triggered by activities such as approaching a chair, passing
through narrow passages, or during turns (Nutt et al., 2011). The
prevalence of FOG ranges from 7.1% (Giladi et al., 2001) in early
disease to 92% at more advanced stages (Virmani et al., 2015).

Paroxysmal FOG significantly increases fall risk and
dramatically reduces quality of life. This phenomenon is often
determined retrospectively through questionnaires on non-
motor symptoms and gross motor disturbances, which have
been predictive of the conversion of non-freezers to freezers
(Banks et al., 2019; D’Cruz et al., 2020). Current clinimetric-based
phenotypes of this heterogeneous condition are not prognosticative
and provide limited insight into treatment response. The majority
of freezing of gait studies utilize machine learning to detect and
predict FOG episodes using wearable sensors [refer to review
(Pardoel et al., 2019)] rather than classifying freezers from non-
freezers (Mancini et al., 2023; Virmani et al., 2023). The latter
provides the potential to stratify and even phenotype patients with
considerable motoric heterogeneity. Along these lines, classifying
patients with FOG who have chronic deep brain stimulation of the
subthalamic nucleus (STN-DBS) offers an opportunity to probe
FOG kinematic features in a dual-treated (medication/stimulation)
cohort. Therefore, this study evaluated various machine learning
(ML) modeling approaches to classify freezers from non-freezers
following stimulation and medication washout of an advanced PD
cohort with chronic STN-DBS.

Materials and methods

Patient cohort and gait assessment

The study procedures have been previously reported
(Ramdhani et al., 2023). Twenty-one subjects met the inclusion
criteria of having idiopathic PD with bilateral STN-DBS (greater
than three months) and an underlying gait disorder defined as a
score of 2 or 3 on the gait sub-score of the Movement Disorders
Society (MDS)-Unified Parkinson’s Rating Scale Part III (UPDRS).
Each patient performed two stand-and-walk (SAW) trials in their
OFF Medication—OFF DBS state. The OFF medication state

was achieved following an overnight (12 h) withdrawal of PD
medications prior to the assessment, while the OFF DBS state
consisted of a 50-min stimulation washout in the laboratory. Each
SAW consisted of a 30-s standing period, followed by a 7 m walk,
a 180-degree turn, and a return walk. For each trial, gait summary
statistics from full-body (wrists, feet, sternum, and lumbar spine)
Opal wearable sensors (Mobility Lab, APDM, Portland, OR, USA)
were analyzed by ML classification algorithms. The measurements
of interest assessed during the SAW included spatiotemporal
features of gait and circumduction along with lumbar and trunk
dynamics (Ramdhani et al., 2023). Walking aides were permitted
for the study, and their influence was reduced in the models by
excluding upper limb and postural sway parameters from the
analysis. The Institutional Review Boards of Northwell Health and
the University of Tennessee (UTK-IRB-19-05559-XP) approved all
data collection and analysis.

Machine learning

The algorithms evaluated in this study include k-nearest
neighbors (KNN), logistic regression, naïve Bayes, random forest,
and support vector machines (SVM). These models were selected
due to their interpretability, robustness with input features, and
success in binary classification tasks within the healthcare domain
(Cortes and Vapnik, 1995; Breiman, 2001; Hand and Keming,
2007; Agresti, 2012; Tayeb et al., 2017). Each algorithm was tasked
with identifying freezers, defined as patients whose SAW trials
MDS-UPDRS FOG score was non-zero as assessed by a trained
movement disorder specialist. Each algorithm’s performance was
evaluated using stratified five-fold cross-validation, wherein the
total cohort is separated into five portions such that iterative one
portion is utilized as the testing set and the remaining four portions
are used for training. Additionally, within each portion, samples are
stratified such that the target variable is proportionally consistent
with the population - thereby improving the generalizability of the
models’ performance. Hyperparameter tuning was performed for
each algorithm. Finally, feature ranking was conducted using the
Gini index of node impurities to identify gait features prioritized
by the random forest model (Tan et al., 2016). Each algorithm was
implemented in Python using the Sklearn machine learning library
(Pedregosa et al., 2011).

Predictive metrics, accuracy, sensitivity, specificity, positive
predictive values (PPV), negative predictive values (NPV), F1 score,
and the area under the receiver operating characteristic curve
(ROC AUC) summarizing each ML algorithm’s performance were
calculated following the analysis. Each algorithm’s performance
metrics summarize the ratio of true positives (TP), true negatives
(TF), false positives (FP), and false negatives (FN) as follows,

Accuracy =
TP + TN

TP + TN + FP + FN

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

PPV =
TP

TP + FP
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NPV =
TN

TN + FN

F1 =
2TP

2TP + FP + FN

Additionally, each metric’s 95% confidence interval was
determined to provide bounds to the predictive metrics.

Results

The study cohort consisted of twenty-one chronic STN-DBS
patients (16 males/5 females, with a mean disease duration of
14 [range 3–40 years], with an average age of 64 [range 39–
80 years]). Mean gait subscore of the MDS-UPDRS subscale III
was 2.4 (SD 0.9). Fourteen subjects were classified as freezers
based on a score > 1 on the freezing of gait subscore in the OFF
MED/OFF DBS state.

The ML classification models’ performance metrics (mean and
95% confidence interval) are presented over stratified five-fold
cross-validation in Table 1. Overall, the models perform statistically
similarly as assessed via t-test (p < 0.05) across all metrics and
models. These results suggest that each model is equally capable of
discriminating between freezers and non-freezers.

Similar to the other algorithms assessed, random forest
is capable of feature estimation, but accounts for nonlinear
interactions between features. We therefore evaluated the specific
weights or coefficients corresponding to the relative importance of
each feature (gait summary statistic) to its classification prediction.
Figure 1 presents the relative feature importance of the top-ten
predictive features utilized in the random forest model. These
features include both spatial (foot strike angle, coronal range
of motion [trunk and lumbar], stride length, toe-off angle) and
temporal (gait speed and lateral step variability) gait features.

Discussion

This study shows the performance of ML algorithms in
classifying freezers from non-freezers in an advanced PD cohort
following a washout of medication and stimulation. The five
evaluated ML models—logistic regression, KNN, naïve Bayes,
random forest, and SVM—performed statistically similarly.

FOG detection algorithms have been explored to accurately
detect freezing episodes based on data streams from inertial

sensors; the classifiers shown to be most robust in FOG detection
are convolutional neural networks, support vector machines, and
decision trees (Pardoel et al., 2019; Borzi et al., 2021). Among
several of the PD freezer/non-freezer classification studies (Park
et al., 2021; Virmani et al., 2023), logistic regression and random
forests classifiers were utilized and demonstrated good accuracy.
Our study adds to the growing compendium of ML based
freezing of gait classification studies in PD using gait kinematics.
Each classification algorithm performed statistically similar in this
study– highlighting each model’s ability to effectively use inertial
sensor data and clinimetrics to differentiate freezers from non-
freezers. Compared to the others, random forest is an ensemble
method that accounts for interactions between features and can aid
in determining which ones are most pertinent for prediction.

The random forest algorithm from this study highlighted key
gait predictive features: foot strike angle, trunk and lumbar range
of motion, stride length, gait speed, step variability, and toe-
off angle. Further examination of these extracted gait features
show they were salient to the phenotypic nuances that have been
reported in those with freezing of gait. In a recent longitudinal
study (Glover et al., 2020), investigators assessed spatiotemporal
gait parameters of 26 freezers and 31 non-freezers over 12-months
in the medicated state. They showed that freezers had a faster
decline in mean stride length, stride velocity, swing (%), single
support (%), and variability of single support compared to non-
freezers. Plotnik et al. (2005) reported that foot swing time was
more asymmetric and uncoordinated among freezers, while poor
control of rhythmicity (measured by an increase in stride-to-stride
variability) in the interictal period with stride length and foot strike
(Hausdorff et al., 2003; Pillai et al., 2022) serve as a marker in those
who experience freezing of gait as well as those with a history of
falling (Schaafsma et al., 2003). Park et al. (2021) utilized a stepwise
regression analysis based on 360-degree turning characteristics
to determine six features to classify freezers from non-freezers:
outer step length, hip ROM, ankle ROM, total distance of center
of mass (COM), maximum anti-phase, and outer contralateral
temporal coordination. In their analysis, random forest yielded the
greatest accuracy of classifying those with FOG. With respect to
PD subjects treated with DBS, O’Day et al. (2020) used a novel
gait paradigm to demonstrate that freezers’ non-freezing gait is
more arrhythmic than controls and correlates with the percent
time of freezing. Additional work is needed to identify whether the
random forest’s features reported in this study are also relevant in
specific or underrepresented populations (i.e., gender, race, disease
severity, etc.).

TABLE 1 ML algorithms’ performance metrics.

K-nearest
neighbors

Logistic
regression

Naïve Bayes Random forest SVM

Accuracy 0.60± 0.35 0.69± 0.26 0.75± 0.24 0.76± 0.24 0.73± 0.24

Sensitivity 0.67± 0.35 0.63± 0.38 0.71± 0.24 0.79± 0.27 0.71± 0.24

Specificity 0.60± 0.52 0.85± 0.28 0.85± 0.28 0.70± 0.34 0.80± 0.56

PPV 0.72± 0.33 0.87± 0.23 0.85± 0.28 0.80± 0.27 0.90± 0.28

NPV 0.43± 0.40 0.62± 0.31 0.65± 0.26 0.73± 0.31 0.53± 0.45

F1 Score 0.66± 0.34 0.69± 0.31 0.77± 0.24 0.79± 0.24 0.77± 0.18

ROC AUC 0.64± 0.34 0.74± 0.21 0.78± 0.24 0.75± 0.23 0.76± 0.27
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FIGURE 1

Gait feature importance derived from random forest.

Biomechanical features of PD gait also differ based on the
presence or absence of freezing. Non-freezers have reduced range of
motion (ROM) of the knee joint (Albani et al., 2014) while reduced
acceleration of the pelvis in the vertical and anteroposterior planes
were displayed among freezers and those individuals who fall (Latt
et al., 2009). Our model’s prioritization of lumbar and trunk ROM
aligns with reports that pelvic rotation is necessary to modulate
stride length, and as the disease advances, the rise in truncal
rigidity leads to the inability of the pelvis to move out of phase
with thoracic rotation to increase stride length and stride velocity
(Albani et al., 2014). This ultimately causes a compensatory shift
to the lower limb joints whereby ROM at the hips, knees, and
ankles adjust to limited rotations of the spine (Huang et al.,
2010).

As evidenced by our findings, the gait feature set demonstrates
salient spatiotemporal elements that have previously been
associated with freezers—reinforcing the robustness of these
ML approaches regardless of the underlying PD treatments
applied to the cohort. This has potential clinical bearing on
preoperative DBS assessments that rely on the Core Assessment
Program for Surgical Intervention Therapies (CAPSIT) testing.
During those assessments, FOG may not be observed despite
the patient’s historical accounts. Identifying a gait feature

set associated with patients who have freezing episodes in
the unmedicated state leverages ML and inertial sensors as
viable compliments to characterizing gait severity for those
individuals under consideration for an advanced therapy. As
highlighted in this study, stimulation and medication washout
are necessary to investigate the underlying gait disorder based
on the greater prevalence of freezing in the unmedicated state.
However, conducting this kind of clinical evaluation in the
office environment can be time-consuming and arduous, thus
underscoring the efficiency of gait kinematics plus ML to decipher
and stratify complex motor symptoms into clinically meaningful
disease-related characteristics.

Conclusion

In summary, these results reveal statistically similar
performances of machine learning algorithms in classifying
advanced PD patients as freezers or non-freezers based on
SAW trials in their medication and stimulation naïve state.
Additional analysis on the random forest algorithm demonstrates
its capability to extract salient spatial and temporal gait features in
this classification.
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