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Background: Women carrying the APOE4 allele are at greater risk of developing 
Alzheimer’s disease (AD) from ages 65–75  years compared to men. To better 
understand the elevated risk conferred by APOE4 carrier status among midlife 
women, we investigated the separate and interactive associations of endogenous 
estrogens, plasma AD biomarkers, and APOE4 carrier status on regional brain 
volumes in a sample of late midlife postmenopausal women.

Methods: Participants were enrolled in MsBrain, a cohort study of postmenopausal 
women (n  =  171, mean age  =  59.4  years, mean MoCA score  =  26.9; race  =  83.2% 
white, APOE4 carriers  =  40). Serum estrone (E1) and estradiol (E2) levels were 
assessed using liquid chromatography–tandem mass spectrometry. APOE 
genotype was determined using TaqMan SNP genotyping assays. Plasma AD 
biomarkers were measured using single molecule array technology. Cortical 
volume was measured and segmented by FreeSurfer software using individual 
T1w MPRAGE images. Multiple linear regression models were conducted to 
determine whether separate and interactive associations between endogenous 
estrogen levels, plasma AD biomarkers (Aβ42/Aβ40, Aβ42/p-tau181), and APOE4 
carrier status predict regional brain volume (21 regions per hemisphere, selected 
a priori); and, whether significant interactive associations between estrogens 
and AD biomarkers on brain volume differed by APOE4 carrier status.

Results: There was no main effect of APOE4 carrier status on regional brain 
volumes, endogenous estrogen levels, or plasma AD biomarkers. Estrogens did 
not associate with regional brain volumes, except for positive associations with 
left caudal middle frontal gyrus and fusiform volumes. The interactive association 
of estrogens and APOE4 carrier status on brain volume was not significant for 
any region. The interactive association of estrogens and plasma AD biomarkers 
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predicted brain volume of several regions. Higher E1 and E2 were more strongly 
associated with greater regional brain volumes among women with a poorer 
AD biomarker profile (lower Aβ42/40, lower Aβ42/p-tau181 ratios). In APOE4-
stratified analyses, these interactions were driven by non-APOE4 carriers.

Conclusion: We demonstrate that the brain volumes of postmenopausal women 
with poorer AD biomarker profiles benefit most from higher endogenous 
estrogen levels. These findings are driven by non-APOE4 carriers, suggesting 
that APOE4 carriers may be insensitive to the favorable effects of estrogens on 
brain volume in the postmenopause.
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1 Introduction

Women comprise two-thirds of individuals living with Alzheimer’s 
disease (AD) in America (Alzheimer’s Association, 2023). In women, 
APOE4 genotype is a stronger risk factor for developing AD from ages 
65 to 75 years compared to men and confers disproportionate adverse 
effects on AD biomarkers at each disease stage (Neu et  al., 2017; 
Sundermann et al., 2018). In studies of adults aged 70 years or older, 
APOE4-related adverse effects on default mode network connectivity, 
total tau levels, brain metabolism, and cortical volume were more 
pronounced in women than men (Damoiseaux et al., 2012; Sampedro 
et al., 2015). Women carrying the APOE4 allele also had greater spread 
of neurofibrillary tangles and higher amyloid deposition at ages 60–75 
compared to men, as identified postmortem (Corder et al., 2004). In 
contrast, some findings among older APOE4 carriers demonstrate 
worse brain outcomes for men (Sundermann et al., 2018). Less well-
known are the factors impacting brain health for APOE4+ women at 
midlife, when preventative efforts are most effective.

The greater vulnerability to APOE4 effects in women has been 
attributed in part to the direct and interactive effects of estrogens on the 
brain (Valencia-Olvera et al., 2023). In animal models, estradiol (E2) 
influences the severity of AD biomarkers by preventing amyloid 
accumulation (Xu et al., 1998; Nilsen et al., 2006; Amtul et al., 2010; Kim 
et al., 2022) and tau hyperphosphorylation (Alvarez-De-La-Rosa et al., 
2005). Furthermore, the effects of E2 on amyloid and tau have been 
shown to vary with APOE4 carrier status in rodent and human studies 
(Kunzler et  al., 2014; Kantarci et  al., 2016a; Depypere et  al., 2023). 
Administration of E2 increased amyloid deposition in the hippocampus 
and cortex in APOE4 carrier mice only, indicating a vulnerability to E2 
with the APOE4 genotype (Kunzler et al., 2014). Subsequent research 
showed that APOE 3/3 and 3/4 mice had enhanced spatial memory and 
increased CA1 apical spine density after E2 administration, but these 
effects were not observed in APOE 4/4 mice indicating that APOE4 
homozygosity may impede the potential benefits of estrogens on the 
brain (Taxier et al., 2022). Human studies suggest that E2 may be either 
neutral or beneficial for APOE4+ women. In a large (n = 693) 
randomized clinical trial of menopausal hormone therapy (MHT) in 
early and late postmenopausal women, MHT had neutral effects on 
cognition regardless of APOE4 genotype (Gleason et  al., 2014). 
However, in a subset of women (n = 68) from that trial, MHT lowered 
Aβ deposition compared to placebo only in APOE4+ women (Kantarci 
et  al., 2016a). Additionally, in an observational study examining 

6-month change in plasma AD biomarkers in women before and after 
treatment with MHT (n = 193) in comparison to non-treated controls 
(n = 31), there were no overall differences in biomarkers between control 
and MHT groups, but group differences emerged when considering 
APOE4 genotype (Depypere et al., 2023). Specifically, APOE4+ women 
who did not take MHT had worse AD biomarker outcomes (i.e., greater 
reduction in Aβ-42/p-tau 231 ratio) over time than women who took 
MHT. Further, among those in the MHT group, Aβ1-42 concentrations 
were higher (better) in APOE4+ women compared to APOE4− women. 
Thus, there is some consistency from basic and clinical science studies 
that APOE ε4 genotype might modify the effect of supplemental 
exogenous E2 on AD biomarkers, with greater benefits observed among 
APOE4+ women. It is yet unknown whether the effect of endogenous 
estrogens on the brain varies with APOE genotype.

In the postmenopause, women have low levels of endogenous 
E2 and estrone (E1) due to the cessation of ovarian steroid 
production (Randolph et al., 2011; Kim et al., 2017). While E2 levels 
are low overall, there are individual differences in trajectories of 
change of endogenous E2 across the menopause transition and into 
the postmenopause (Tepper et al., 2012). Trajectories include slow 
decline, flat slope, rise/slow decline, and rise/steep decline, 
associating differentially with biological and sociodemographic 
factors such as obesity, race, and ethnicity. Furthermore, 
endogenous E2 levels in the postmenopause have been associated 
with neuroimaging measures, such as resting state functional 
connectivity, particularly parahippocampal functional connectivity 
(Testo et al., 2024).

To better understand whether APOE4+ women are differentially 
sensitive to estrogen loss in the postmenopause, we investigated the 
separate and interactive associations of estrogens, plasma AD 
biomarkers, and APOE4 carrier status on regional brain volumes in a 
sample of late midlife postmenopausal women. We were particularly 
interested in whether the interactive effects of endogenous estrogens and 
plasma AD biomarkers on brain volume vary by APOE4 carrier status.

2 Materials and methods

2.1 Participants

Participants were enrolled in MsBrain, a cohort study of 
menopause and brain aging initiated in 2017  in Pittsburgh, PA, 
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TABLE 1 Regions of interest and their corresponding estrogen signaling.

DK Atlas Region Estrogen reference

Frontal lobe

ER-alpha and ER-beta distribution in postmortem human brain (Österlund et al., 2000; Osterlund and Hurd, 2001)

Reviews of estrogen signaling during the menopause transition (Brinton et al., 2015), in cholinergic (Newhouse and Dumas, 2015), 

glutamatergic, GABAergic, dopaminergic, and serotonergic pathways (Barth et al., 2015)

Superior frontal ERs in AD patients postmortem (Kelly et al., 2008)

Rostral middle frontal gyrus

Caudal middle frontal gyrus

Pars opercularis

Pars triangularis

Pars orbitalis

Lateral orbitofrontal gyrus

Medial orbitofrontal gyrus

Precentral gyrus

Paracentral lobule

Frontal pole

Rostral anterior cingulate

Caudal anterior cingulate

Temporal lobe

ER-alpha and ER-beta distribution in postmortem human brain (Österlund et al., 2000; Osterlund and Hurd, 2001)

ER-alpha is downregulated in the hippocampus in postmortem women with AD (Hu et al., 2003; Ishunina et al., 2007), but upregulated 

across the menopause transition (Ishunina et al., 2007)

Reviews of estrogen signaling during the menopause transition (Brinton et al., 2015), in cholinergic (Newhouse and Dumas, 2015), 

glutamatergic, GABA-ergic, dopaminergic, and serotonergic pathways (Barth et al., 2015)

Entorhinal cortex Thinner in women who underwent bilateral salpingo-oophorectomy (Zeydan et al., 2019)

Parahippocampal gyrus Positive association between E2 and volume across menstrual cycle (Zsido et al., 2023)

Thinner in women who underwent bilateral salpingo-oophorectomy (Zeydan et al., 2019)

Fusiform gyrus

Superior temporal gyrus

Middle temporal gyrus

Inferior temporal gyrus

Transverse temporal gyrus

Temporal pole

TABLE 2 Participant demographics.

Full sample (N =  171) APOE4− (N =  131) APOE4+ (N =  40)

Age (yrs)1 59.4 (4.03) 59.3 (4.10) 59.7 (3.85)

Race/Ethnicity2

  White 141 (82.5%) 109 (83.2%) 32 (80.0%)

  Black 23 (13.5%) 16 (12.2%) 7 (17.5%)

  Asian/Pacific Islander 3 (1.8%) 2 (1.5%) 1 (2.5%)

  Mixed Race 4 (2.3%) 4 (3.1%) 0 (0%)

Education (yrs)1 15.8 (2.26) 15.8 (2.21) 15.6 (2.45)

MoCA score1 26.9 (2.61) 27.0 (2.62) 26.7 (2.60)

Estradiol (pg/mL)1 4.56 (4.91) 4.40 (4.33) 5.08 (6.50)

Estrone (pg/mL)1 33.6 (17.0) 33.2 (17.7) 34.9 (14.3)

Body Mass Index1 28.3 (6.06) 28.5 (6.25) 27.8 (5.45)

1Mean (SD).
2N(%).
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TABLE 3 Main effects of APOE4 carrier status, E2, E1, and their interactive effects on regional brain volumes.

Region Hemisphere
APOE4

Main effect
E2

Main effect
E2 *APOE4

E1
Main effect

E1 * APOE4

Frontal lobe

Caudal anterior cingulate Left −0.005 (0.005) 0.007 (0.007) 0.014 (0.015) −0.002 (0.011) 0.001 (0.027)

Right −0.001 (0.005) 0.008 (0.007) −0.003 (0.016) −0.003 (0.011) −0.009 (0.028)

Caudal middle frontal Left −0.007 (0.012) 0.033 (0.017)* 0.033 (0.037) 0.054 (0.026)* −0.002 (0.065)

Right −0.026(0.015) 0.025 (0.022) 0.054 (0.046) 0.031 (0.034) 0.041 (0.081)

Frontal pole Left 0.001 (0.002) −0.002 (0.002) −0.001 (0.005) 0.001 (0.004) 0.010 (0.009)

Right 0.000 (0.002) 0.004 (0.003) 0.005 (0.007) −0.001 (0.005) 0.022 (0.013)

Lateral orbitofrontal Left 0.009 (0.008) 0.013 (0.011) 0.032 (0.024) 0.017 (0.017) 0.033 (0.042)

Right 0.002 (0.008) 0.005 (0.011) 0.016 (0.024) 0.011 (0.017) 0.041 (0.042)

Medial orbitofrontal Left 0.001 (0.006) 0.007 (0.009) 0.022 (0.020) 0.010 (0.014) 0.055 (0.035)

Right 0.004 (0.007) 0.011 (0.009) 0.018 (0.020) 0.015 (0.014) 0.029 (0.035)

Paracentral Left 0.002 (0.005) 0.001 (0.007) 0.013 (0.014) −0.013 (0.010) −0.006 (0.024)

Right 0.003 (0.006) −0.004 (0.008) 0.011 (0.018) −0.010 (0.013) 0.003 (0.032)

Pars opercularis Left 0.007 (0.009) 0.002 (0.013) 0.018 (0.027) 0.020 (0.020) 0.041 (0.048)

Right −0.002 (0.007) 0.004 (0.010) 0.025 (0.021) −0.006 (0.015) 0.041 (0.037)

Pars orbitalis Left 0.004 (0.003) 0.000 (0.004) 0.006 (0.009) 0.003 (0.007) 0.012 (0.016)

Right 0.003 (0.004) 0.005 (0.006) 0.003 (0.012) 0.011 (0.009) 0.013 (0.021)

Pars triangularis Left 0.010 (0.007) 0.001 (0.010) 0.009 (0.021) −0.004 (0.015) 0.012 (0.036)

Right 0.000 (0.008) −0.004 (0.011) 0.021 (0.023) −0.011 (0.017) 0.044 (0.041)

Precentral Left 0.007 (0.017) 0.002 (0.025) 0.085 (0.052) 0.001 (0.038) 0.035 (0.092)

Right 0.001 (0.017) 0.008 (0.025) 0.023 (0.053) 0.030 (0.038) −0.006 (0.092)

Rostral anterior cingulate Left −0.005 (0.005) 0.005 (0.007) 0.005 (0.015) 0.004 (0.011) −0.005 (0.026)

Right 0.003 (0.004) 0.009 (0.006) 0.006 (0.014) 0.019 (0.010) 0.013 (0.024)

Rostral middle frontal Left −0.003 (0.020) 0.010 (0.028) 0.062 (0.062) 0.040 (0.044) 0.038 (0.107)

Right −0.012 (0.022) 0.046 (0.032) 0.027 (0.067) 0.042 (0.051) 0.115 (0.118)

Superior frontal Left 0.008 (0.027) 0.028 (0.039) 0.085 (0.083) 0.036 (0.060) 0.143 (0.146)

Right −0.027 (0.028) 0.002 (0.040) 0.131 (0.087) −0.063 (0.060) 0.023 (0.156)

Temporal lobe

Entorhinal Left −0.003 (0.004) 0.000 (0.006) −0.002 (0.012) −0.008 (0.008) 0.029 (0.021)

Right −0.005 (0.004) 0.006 (0.006) −0.003 (0.013) 0.002 (0.009) −0.001 (0.023)

Fusiform Left −0.025 (0.017) 0.009 (0.024) −0.020 (0.051) 0.072 (0.037)* 0.076 (0.088)

Right −0.012 (0.015) −0.015 (0.021) −0.031 (0.046) 0.002 (0.033) 0.054 (0.081)

Inferior temporal Left −0.006 (0.014) −0.034 (0.020) 0.000 (0.043) −0.011 (0.031) 0.006 (0.076)

Right −0.008 (0.013) −0.003 (0.018) −0.008 (0.039) −0.005 (0.028) −0.103 (0.068)

Middle temporal Left −0.010 (0.013) −0.001 (0.019) 0.066 (0.041) 0.013 (0.029) 0.062 (0.072)

Right 0.007 (0.015) 0.011 (0.021) 0.086 (0.045) 0.020 (0.033) 0.125 (0.079)

Parahippocampal Left −0.003 (0.004) 0.001 (0.006) 0.002 (0.012) −0.001 (0.009) 0.013 (0.022)

Right −0.001 (0.004) −0.004 (0.005) 0.001 (0.011) 0.003 (0.008) 0.002 (0.019)

Superior temporal Left −0.001 (0.015) 0.035 (0.021) −0.001 (0.045) 0.039 (0.033) 0.052 (0.080)

Right 0.015 (0.014) 0.028 (0.020) 0.006 (0.042) 0.027 (0.031) 0.041 (0.075)

Temporal pole Left 0.004 (0.005) 0.004 (0.007) −0.001 (0.015) 0.018 (0.011) −0.001 (0.026)

Right −0.002 (0.005) 0.003 (0.007) 0.000 (0.015) 0.005 (0.010) 0.030 (0.026)

Transverse temporal Left −0.002 (0.002) −0.001 (0.003) 0.001 (0.007) −0.005 (0.005) −0.004 (0.013)

Right 0.000 (0.002) 0.000 (0.002) 0.002 (0.005) −0.005 (0.004) −0.002 (0.009)

Regression coefficient estimate (standard error). *p < 0.05, **p < 0.01, ***p < 0.001. Bolded values indicate significant associations.

https://doi.org/10.3389/fnagi.2024.1426070
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Wugalter et al. 10.3389/fnagi.2024.1426070

Frontiers in Aging Neuroscience 05 frontiersin.org

TABLE 4 Interactive effects of estrogens and biomarkers on regional brain volumes in the full sample.

Region Hemisphere E2 * Aβ-42/40
E2 * Aβ-42/p-

tau 181
E1 * Aβ-42/40

E1 * Aβ-42/p-tau 
181

Frontal lobe

Caudal anterior cingulate Left 0.055 (0.445) −0.013 (0.017) 0.389 (0.720) −0.036 (0.027)

Right 0.157 (0.460) −0.048 (0.017)** 0.146 (0.745) −0.072 (0.027)**

Caudal middle frontal Left 0.199 (1.064) −0.086 (0.041)* −0.824 (1.715) −0.147 (0.064)*

Right −0.343 (1.450) −0.017 (0.053) −0.935 (2.364) −0.040 (0.084)

Frontal pole Left −0.268 (0.159) 0.004 (0.006) −0.340 (0.261) 0.015 (0.009)

Right −0.450 (0.223)* 0.002 (0.008) −0.886 (0.363)* 0.020 (0.013)

Lateral orbitofrontal Left −1.516 (0.738)* 0.021 (0.028) −2.619 (1.199)* 0.003 (0.044)

Right −0.465 (0.750) 0.015 (0.028) −1.278 (1.209) 0.015 (0.043)

Medial orbitofrontal Left −0.944 (0.612) −0.013 (0.023) −0.887 (1.005) 0.043 (0.036)

Right −0.575 (0.624) 0.034 (0.023) −0.972 (1.042) 0.069 (0.036)

Paracentral Left −0.151 (0.434) 0.012 (0.016) 0.774 (0.713) 0.027 (0.025)

Right 0.322 (0.538) −0.011 (0.020) 1.461 (0.860) −0.029 (0.032)

Pars opercularis Left −0.916 (0.844) −0.028 (0.031) −2.837 (1.353)* −0.039 (0.049)

Right −1.017 (0.664) 0.005 (0.025) −1.746 (1.066) −0.030 (0.039)

Pars orbitalis Left −0.687 (0.280)* 0.015 (0.010) −0.917 (0.453)* 0.015 (0.016)

Right −0.307 (0.373) −0.003 (0.013) −0.504 (0.610) −0.003 (0.021)

Pars triangularis Left −1.317 (0.642)* −0.009 (0.024) −2.633 (1.037)* −0.036 (0.038)

Right −0.696 (0.735) 0.017 (0.026) −0.651 (1.306) 0.005 (0.041)

Precentral Left −1.771 (1.632) 0.028 (0.060) −0.794 (2.666) 0.079 (0.095)

Right −2.847 (1.632) 0.056 (0.061) −4.565 (2.704) 0.035 (0.095)

Rostral anterior cingulate Left 0.427 (0.446) 0.014 (0.017) 0.393 (0.725) −0.034 (0.027)

Right 0.634 (0.398) −0.025 (0.015) 0.585 (0.640) −0.047 (0.024)*

Rostral middle frontal Left −3.932 (1.873)* −0.098 (0.070) −4.946 (3.064) −0.102 (0.111)

Right −0.001 (2.125) 0.038 (0.076) −1.112 (3.806) 0.026 (0.121)

Superior frontal Left −2.020 (2.579) −0.041 (0.096) −7.127 (4.156) −0.093 (0.150)

Right −0.527 (2.610) −0.003 (0.094) 1.283 (4.241) 0.020 (0.149)

Temporal lobe

Entorhinal Left 0.064 (0.372) 0.002 (0.014) 0.595 (0.601) 0.006 (0.022)

Right 0.040 (0.388) −0.011 (0.015) 0.063 (0.634) 0.024 (0.023)

Fusiform Left 0.163 (1.607) 0.033 (0.058) −1.447 (2.587) 0.045 (0.091)

Right −0.031 (1.428) 0.060 (0.052) 1.088 (2.333) 0.074 (0.083)

Inferior temporal Left 2.412 (1.328) −0.020 (0.049) 2.827 (2.245) 0.002 (0.078)

Right 1.617 (1.217) −0.009 (0.045) 1.504 (2.046) 0.027 (0.071)

Middle temporal Left −0.284 (1.287) −0.026 (0.047) −2.101 (2.079) 0.034 (0.074)

Right 1.330 (1.418) −0.045 (0.051) −0.614 (2.319) −0.069 (0.081)

Parahippocampal Left −0.596 (0.375) −0.004 (0.014) −0.534 (0.615) −0.002 (0.022)

Right −0.524 (0.337) 0.004 (0.013) −0.524 (0.549) 0.024 (0.020)

Superior temporal Left −1.764 (1.396) 0.031 (0.051) −3.983 (2.262) −0.003 (0.080)

Right −1.509 (1.314) 0.016 (0.047) −2.222 (2.156) −0.006 (0.076)

Temporal pole Left −0.717 (0.454) −0.004 (0.017) −0.971 (0.737) 0.021 (0.027)

Right −0.708 (0.449) 0.012 (0.016) −1.025 (0.733) 0.045 (0.026)

Transverse temporal Left −0.658 (0.226)** 0.014 (0.008) −1.277 (0.363)*** 0.002 (0.014)

Right −0.207 (0.157) 0.010 (0.006) −0.348 (0.255) 0.006 (0.009)

Regression coefficient estimate (standard error). *p < 0.05, **p < 0.01, ***p < 0.001. Bolded values indicate significant associations.
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United States (Thurston et al., 2023). The MsBrain cohort (N = 274) 
is recruited from two sources: 170 participants previously (2015–
2018) partook in MsHeart, a cross-sectional study of menopausal 
vasomotor symptoms (VMS) and cardiovascular health (Thurston 
et  al., 2016), and 104 participants were recruited from the wider 
Pittsburgh community. Exclusion criteria in MsHeart included: 
current smoking; reported history of cardiovascular disease/stroke/
cerebrovascular accident; insulin-dependent diabetes; Parkinson’s 
disease; hysterectomy and/or bilateral oophorectomy; current 
pregnancy; and use of HT (oral or transdermal estrogen and/or 
progesterone), select cardiovascular medications (beta blockers, 
calcium channel blockers, alpha-2 adrenergic agonists), selective 
estrogen receptor modulators (SERMS), aromatase inhibitors (AI), 
selective serotonin reuptake inhibitors (SSRIs) or serotonin 
norepinephrine reuptake inhibitors (SNRIs). MsBrain exclusion 
criteria additionally included: a reported history of dementia; seizure 
disorder; brain tumor; Parkinson’s disease; a history of head trauma 
with loss of consciousness; contraindications to MRI (e.g., metal in 
the body); current chemotherapy; active substance use; and 
pregnancy. In total, 238 women completed neuroimaging. Of those 
women, 21 were excluded due to incidental findings, seven learned 
English as a second language, four were missing hormone data, and 
three were perimenopausal. Given the neuroprotective effects of the 
APOE2 allele (see Li et  al., 2020), an additional 32 women who 
possessed the APOE2 allele were excluded, yielding a final sample of 
171 women.

2.2 Design

At the first visit, demographic and medical history were obtained. 
Body mass index (BMI) was calculated (kg/m2) from weight and 
height measured using a digital scale and a fixed stadiometer. 
Menopause status was determined using STRAW+10 criteria (Harlow 
et al., 2012). Three days after visit one, participants returned for a 
second visit wherein they underwent a blood draw and completed a 
one-hour cognitive test battery. During the cognitive testing, 
participants completed the Montreal Cognitive Assessment (MoCA) 
which is a brief screening instrument designed to identify mild 
cognitive impairment (Nasreddine et al., 2005). A MoCA score below 
26 of 30 possible points indicates possible mild cognitive impairment 
(Nasreddine et al., 2005). At a third visit, on average 12 days after visit 
one, participants completed a neuroimaging protocol. Study 
procedures were approved by the University of Pittsburgh Human 
Research Protection Office. All participants provided written 
informed consent.

2.2.1 Phlebotomy
Phlebotomy was performed after an eight-hour overnight fast. 

Blood was processed onsite with a Fisher Scientific Sorvall ST16R 
centrifuge and frozen in a − 80°C freezer until transportation to labs 
for assays.

2.2.1.1 Estrogen
Serum E1 and E2 were assessed via liquid chromatography–

tandem mass spectrometry at the University of Pittsburgh’s Small 
Biomarker Core, with inter- and intra-assay coefficients of variation 
of 5.0 and 8.1%, respectively. The lower limit of detection was 
1.0 pg/mL for both estrogens. This method is sensitive to endogenous 
estrogen levels in the postmenopause (Nelson et al., 2004).

2.2.1.2 APOE genotype
Genomic DNA was isolated from leukocytes using DNA 

purification kit (Qiagen, Valencia, CA). Genotypes for two APOE 
single-nucleotide polymorphisms (SNPs), rs429358 (E4) and 
rs7412 (E2), were determined by TaqMan SNP genotyping assays 
on ABI Prism 7900HT Sequence Detection System (Life 
Technologies, Grand Island, NY) as described elsewhere (Fan 
et al., 2022). Ten percent of samples were randomly selected and 
included as duplicates in genotyping run to estimate the assay 
error rate. The genotype outputs were converted to the six APOE 
genotypes: 2/2, 2/3, 2/4, 3/3, 3/4, and 4/4. After excluding E2 
carriers, APOE status was categorized into APOE4+ (3/4 and 4/4) 
or APOE4− (3/3).

2.2.1.3 Blood-based AD biomarkers
Plasma biomarker concentrations of Aβ42, Aβ40, and p-tau 181 

were measured using Single molecule array (SIMOA) technology on 
an HD-X instrument (Quanterix). Frozen samples underwent a single 
thawing cycle. Plasma Aβ42 and Aβ40 were measured using the 
Neurology 4-Plex E (#103670) and p-tau181 was measured with the 
p-tau181 V2 Advantage (#103714) commercial assays from Quanterix. 
For each assay, quality control samples of different concentrations 
were analyzed in duplicates to estimate reproducibility. The pooled 
quality control data showed that the within- and between-run 

FIGURE 1

Regions of interest identified in estradiol and AD biomarker analyses. 
Figure created using the ggseg package (Mowinckel and Vidal-
Pineiro, 2019) in R Statistical Software (R Core Team, 2023).
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variations were approximately 10% for most assays. The present study 
examined Aβ42/40 and Aβ42/p-tau181 ratios due to their associations 
with brain Aβ and tau pathology (Pérez-Grijalba et al., 2019; Karikari 
et al., 2020) and to compare findings with previous work (Depypere 
et al., 2023). Lower ratios of these biomarkers of interest are considered 
more severe, as they indicate greater risk of future AD brain pathology 
(i.e., amyloid plaques and neurofibrillary tangles; Pérez-Grijalba et al., 
2019; Karikari et al., 2020).

2.2.2 Neuroimaging
All participants underwent neuroimaging at the MR Research 

Center of the University of Pittsburgh on a 3 T Siemens Tim Trio MR 
scanner, with a Siemens 64-channel head coil. Brain imaging assessments 
were performed MR pulse sequences were optimized for the multi-
channel coil and follow the Human Connectome Project protocol. 
Structural data was acquired using a T1-weighted 3D Magnetization-
prepared rapid gradient echo (MPRAGE: TR/TI/FA = 2300/900/9°, voxel 
size = 1 mm × 1 mm × 1 mm, Grappa 2). Regional brain volumes were 
divided by estimated total intracranial volume.

2.3 Analyses

2.3.1 A priori regional brain volumes
There are 68 individual regions of interest (ROIs) included in the 

DK atlas. We refined the atlas to focus on 21 ROIs in regions with a 
high density of estrogen receptors and/or estrogen signaling, as 
determined by previous literature (see Table 1). We selected 13 frontal 
ROIs and 8 temporal ROIs in each hemisphere for a total of 42 ROIs.

2.3.2 Data analysis plan
Independent-samples t-tests and chi-square analyses were conducted 

to examine demographic differences between APOE4 carriers and 
non-carriers. After preliminary data visualization, E2, E1, and p-tau 181 
were log-transformed prior to analyses. Multiple linear regressions were 
used to examine the separate and interactive effects of estrogens (i.e., E2 
and E1), AD biomarkers (i.e., Aβ42/40 and Aβ42/p-tau 181), and APOE4 
carrier status on regional brain volumes controlling for age, years of 
education, race, and BMI. All statistical analyses were conducted using 
R Statistical Software (Version 4.3.1; R Core Team, 2023).

FIGURE 2

Interactive effects of estradiol and AD biomarker ratios on regional brain volumes. AD biomarker ratios are divided into quintiles. B, regression 
coefficient estimate for the interaction term; p, p value for the interaction term.
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2.3.2.1 Full sample analyses
We first conducted multiple linear regressions to evaluate the 

independent associations of E1, E2, and APOE4 with ROIs. We next 
conducted multiple linear regressions to evaluate the interactions 
between: estrogens and APOE4 status; estrogens and Aβ-42/40 ratio; 
and estrogens and Aβ-42/p-tau 181 ratio. We controlled for age, years 
of education, race, and BMI in all analyses.

2.3.2.2 APOE4 stratified analyses
To determine whether any significant interactive associations of 

estrogens and AD biomarkers with brain volumes varied by APOE4 
carrier status, we conducted follow-up linear regressions stratifying by 
APOE4 carrier status. Specifically, for each ROI volume that was 
predicted by the interaction of estrogens and AD biomarkers in the 
full sample, we conducted the same linear regressions as delineated 
above in the APOE4+ and APOE4− groups separately again 
controlling for age, years of education, race, and BMI.

3 Results

3.1 Participants

Table  2 shows the demographic, clinical, and cognitive 
characteristics of the 171 participants. The sample included late midlife 
women (mean age = 59.4 years, age range 45–67 years, mean 
MoCA = 26.9; race = 83.2% white), all of whom all were postmenopausal 

(mean self-reported time since final menstrual period = 9.24 years, 
SD = 4.99). Welsch’s t-tests revealed that age (t(68.3) = −0.567, p = 0.57), 
years of education (t(59.6) = 0.537, p = 0.59), MoCA score 
(t(62.9) = 0.498, p = 0.62), E2 (t(62.6) = −0.476, p = 0.63), E1 
(t(75.5) = −1.15, p = 0.25), and BMI (t(73.1) = 0.692, p = 0.49) did not 
significantly differ by  APOE4 carrier status. A chi-squared analysis 
showed that racial/ethnic representation did not significantly differ by 
APOE4 carrier status, Χ2(3) = 2.06, p = 0.56.

3.2 Regional brain volumes

3.2.1 Full sample
The regression analyses revealed no main effect of APOE4 carrier 

status on regional brain volumes (Table  3), E2 levels (β = 0.042, 
SE = 0.054, p = 0.44), E1 levels (β = 0.046, SE = 0.035, p = 0.19), 
Aβ-42/40 ratio (β = −0.004, SE = 0.003, p = 0.13), or Aβ-42/p-tau 181 
ratio (β = −0.046, SE = 0.069, p = 0.51). E2 levels were associated with 
greater left caudal middle frontal volume (p < 0.05), but were not 
associated with volumes of any other ROIs (Table 3). E1 was also 
positively associated with the left caudal middle frontal gyrus volume 
(p = 0.04) and left fusiform volume (p < 0.05) only (Table 3). There was 
no significant interactive association of APOE4 carrier status and 
estrogens (E1 or E2) with regional brain volumes (Table 3).

Multiple linear regressions investigating the interaction of E2 and 
Aβ-42/40 on regional brain volumes revealed that the association 
between E2 and the volumes of the right frontal pole (p = 0.04), left 
lateral orbitofrontal gyrus (p = 0.04), left pars orbitalis (p = 0.01), left 
pars triangularis (p = 0.04), left rostral middle frontal gyrus (p = 0.04), 
and left transverse temporal gyrus (p < 0.01) depend on the Aβ-42/40 
ratio (Table 4; Figure 1). In addition, regression analyses showed an 
interactive association of E2 and Aβ-42/p-tau 181 ratio with volumes 
of the right caudal anterior cingulate gyrus (p = <0.01) and the left 
caudal middle frontal gyrus (p = 0.04; Table 4; Figure 1). The pattern 
of results was similar in all regions, such that the association between 
E2 levels and brain volume was stronger and more positive for women 
with lower Aβ42/40 or Aβ42/p-tau 181 ratios, compared to women 
with higher AD biomarker ratios (Figure 2).

The interaction of E1 and Aβ-42/40 was associated with volumes of 
the right frontal pole (p = 0.01), left lateral orbitofrontal gyrus (p = 0.03), 
left pars orbitalis (p = 0.04), left pars triangularis (p = 0.01), left pars 
opercularis (p = 0.04), and left transverse temporal gyrus (p < 0.001; 
Table 4; Figure 3). Similarly, there was an interaction of E1 and Aβ-42/
p-tau 181 ratio on the volumes of the right caudal anterior cingulate 
gyrus (p < 0.01), right rostral anterior cingulate gyrus (p = 0.046), and 
left caudal middle frontal gyrus (p = 0.02; Table 4; Figure 3). The pattern 
of results is similar among all brain regions, with greater brain volumes 
as E1 increases and AD biomarker ratios decrease (Figure 4).

3.2.2 APOE4 stratified
For each ROI where an interaction of E2 and AD biomarkers was 

observed, we conducted the same regression analyses stratified by 
APOE4 and non-APOE4 carriers. There was an interactive association 
of E2 and Aβ-42/40 ratio on the volumes of the right frontal pole 
(p = 0.04), left lateral orbitofrontal gyrus (p = 0.03), left pars orbitalis 
(p < 0.01), and left transverse temporal gyrus (p < 0.001) among the 
non-APOE4 carrier group only (Table 5). Additionally, there was an 
interaction of E2 and Aβ-42/p-tau 181 ratio on volumes of the right 

FIGURE 3

Regions of interest identified in estrone and AD biomarker analyses. 
Figure created using the ggseg package (Mowinckel and Vidal-
Pineiro, 2019) in R Statistical Software (R Core Team, 2023).
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caudal anterior cingulate gyrus (p < 0.001) and left caudal middle 
frontal gyrus (p = 0.02), among the non-APOE4 carrier group only 
(Table 5). When comparing women with lower (more severe) AD 
biomarker ratios, APOE4− women showed a stronger positive 
relationship between E2 and brain volumes in all ROIs compared to 
APOE4+ women (Figures 5, 6). Among women with higher (normal) 
AD biomarker ratios, non-APOE4 carriers show a weak negative 
relationship between E2 and brain volumes in all significant ROIs. In 
APOE4 carriers, the pattern of results differs by brain region, yet 
there were no interactions of E2 and AD biomarkers on brain volume 
and thus the biomarker slopes are not significantly different from 
each other (Figures 5, 6).

Among the ROIs associated with the interaction of E1 and AD 
biomarkers above, we  conducted the same regression analyses 
stratified by APOE4 carrier status. Of those ROIs, there was an 
interaction of E1 and Aβ-42/40 ratio on the volumes of the left lateral 
orbitofrontal gyrus (p = 0.04), left pars orbitalis (p = 0.04), and left 
transverse temporal gyrus (p < 0.001) among non-APOE4 carriers only 
(Table 5). There was also an interaction of E1 and Aβ-42/p-tau 181 

ratio on volumes of the right caudal anterior cingulate gyrus (p < 0.01) 
and left caudal middle frontal gyrus (p = 0.03) among non-APOE4 
carriers only (Table 5). When comparing women with lower (more 
severe) AD biomarker ratios by APOE4 groups, APOE4− women have 
a stronger positive relationship between E1 and brain volumes 
compared to APOE4+ women (Figures 7, 8). Among women with 
higher (normal) AD biomarker ratios, APOE− women showed a weak 
negative relationship between E1 and brain volumes in all ROIs. There 
were no significant interactions of E1 and either AD biomarker on 
brain volume among APOE4 carriers (Figures 7, 8).

4 Discussion

In a sample of late midlife, postmenopausal women, 
we investigated the interactive associations of endogenous estrogens 
and plasma AD biomarkers with volumes in brain areas rich in 
estrogen receptors. We  had a particular interest in whether these 
associations differed by APOE4 carrier status. Independently, 

FIGURE 4

Interactive effects of estrone and AD biomarker ratios on regional brain volumes. AD biomarker ratios are divided into quintiles. B, regression 
coefficient estimate for the interaction term; p, p value for the interaction term.
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endogenous estrogens and APOE4 carrier status were not significantly 
associated with brain volumes, nor were there interactions between 
estrogen levels and APOE4 carrier status in relation to regional brain 
volumes. However, there were interactions between estrogens and 
plasma AD biomarkers on volume of several brain regions; both E1 
and E2 had a stronger positive association with regional brain volumes 
among women with worse AD biomarkers as measured by lower 
Aβ42/40 or Aβ42/p-tau 181 ratios. Furthermore, APOE4-stratified 
analyses revealed that these interactions were primarily driven by 
non-APOE4 carriers. Among APOE4 carriers, endogenous estrogens 
do not associate with the volume of these brain regions regardless of 
the severity of AD biomarkers. Overall, these findings suggest that 
both endogenous E1 and E2 may positively influence brain volume in 
late reproductive women with higher risk of AD as evidenced by AD 
biomarkers but not as evidenced by APOE4 carrier status.

In analyses focusing on estrogens and APOE4 carrier status, 
we found no evidence that the effect of endogenous estrogens on brain 
volume varied with APOE4 status. The effects of estrogens on women’s 
brain structure in the postmenopause have primarily been evaluated 
in randomized controlled trials of MHT, which produces higher levels 
of estrogen (Resnick et al., 2009; Kantarci et al., 2016b, 2018). The 
findings across those studies are inconsistent. The Women’s Health 

Initiative Memory Study (WHIMS) found that women randomized to 
receive conjugated equine estrogens (CEE) had smaller frontal lobe 
volumes and slightly lower hippocampal volumes compared to women 
on placebo (Resnick et  al., 2009). In the Kronos Early Estrogen 
Prevention Study (KEEPS), a randomized trial of MHT in early 
postmenopausal women, there was no effect of MHT on whole brain 
volumes after two years of use of transdermal E2 or CEE, but women 
on CEE had higher rates of ventricular expansion compared to 
placebo (Kantarci et al., 2016b). After three years of MHT use in the 
KEEPS, women randomized to receive transdermal E2 showed lower 
longitudinal decreases in dorsolateral prefrontal cortex (dlPFC) 
volume compared to placebo (Kantarci et al., 2018). E2 treatment also 
increased dlPFC volume in non-human primates (Hao et al., 2006) 
and enhanced functional connectivity between the dlPFC and 
hippocampus in postmenopausal women (Ottowitz et al., 2008). In 
the observational study of women in the European Prevention of 
Alzheimer’s Disease (EPAD) cohort, MHT was associated with larger 
entorhinal and amygdala volume in APOE4 carriers (Saleh et  al., 
2023). APOE4 carriers in EPAD also had larger hippocampal volumes 
with earlier age at MHT initiation (Saleh et al., 2023). This is consistent 
with findings from a large sample of MHT users (n = 5,164) from the 
UK Biobank that earlier MHT initiation is associated with less evident 
brain aging (calculated with measures of cortical thickness, cortical 
and subcortical volumes) among APOE4+ women only (de Lange 
et  al., 2020). Furthermore, in a small sample (n = 25) of APOE4+ 
postmenopausal women in Beijing, China, women taking MHT for at 
least four years (n = 14) had greater hippocampal volumes than 
women who had never used MHT (n = 11; Yue et al., 2007). Here, 
we found that higher levels of endogenous E2 and E1 were associated 
with greater volume of the left caudal middle frontal gyrus, an area 
within the dlPFC. However, our findings generally indicate that 
endogenous estrogens in the postmenopause do not have a strong 
direct effect on regional brain volumes. Rather, our results suggest that 
the effect of endogenous estrogens on brain structure may depend on 
AD biomarker level and APOE4 carrier status, with higher endogenous 
estrogen levels being most advantageous for non-APOE4 carriers with 
lower levels of AD biomarkers. While the low levels of AD biomarkers 
captured in our sample do not meet the cut-offs to predict cognitive 
decline or dementia (Blennow et al., 2019; Brum et al., 2022), our 
findings indicate that biomarker levels within this range may affect 
brain structure when considering additional contributing factors such 
as estrogens and APOE genotype.

In our full sample analyses, we identified ten regions wherein the 
relationship between estrogens and volume depended on blood-
based AD biomarkers. The regions and patterns of associations were 
similar for E1 and E2 which suggests that the effects are not specific 
to a particular estrogen type. The ten regions with an interaction of 
estrogens and AD biomarkers were primarily located in the frontal 
lobe, several of which were within the ventral and dorsolateral PFC 
(e.g., pars orbitalis, pars triangularis, pars opercularis, caudal middle 
frontal gyrus). The PFC is a key region for executive function, 
working memory and attentional control (Fuster, 2001), and 
connectivity between the PFC and the hippocampus is crucial for 
episodic memory performance (Nyberg, 2016; Eichenbaum, 2017). 
Cognitive abilities mediated by the PFC, including working memory, 
encoding-related strategic processing, and executive functions, are 
maintained by estradiol, as evidenced by studies of oophorectomy 

TABLE 5 Interactive effects of estrogens and biomarkers on regional 
brain volumes, stratified by APOE4 genotype.

Region APOE4− APOE4+

E2 * Aβ-42/40

Right frontal pole −0.493 (0.234)* −0.094 (0.763)

Left lateral orbitofrontal −1.787 (0.823)* 0.386 (1.977)

Left pars orbitalis −0.801 (0.309)** 0.655 (0.772)

Left pars triangularis −1.022 (0.695) −1.750 (2.018)

Left rostral middle frontal −3.556 (2.023) −6.109 (6.241)

Left transverse temporal −0.729 (0.220)*** −0.481 (0.825)

E2 * Aβ-42/pTau-181

Right caudal anterior 

cingulate −0.071 (0.020)*** 0.006 (0.029)

Left caudal middle frontal −0.122 (0.052)* −0.017 (0.057)

E1 * Aβ-42/40

Right frontal pole −0.725 (0.377) −0.852 (1.235)

Left lateral orbitofrontal −2.756 (1.331)* −0.502 (3.417)

Left pars opercularis −1.720 (1.415) −7.367 (4.554)

Left pars orbitalis −1.016 (0.502)* 0.371 (1.254)

Left pars triangularis −1.941 (1.120) −5.270 (3.312)

Left transverse temporal −1.360 (0.351)*** −0.942 (1.364)

E1 * Aβ-42/pTau-181

Right caudal anterior 

cingulate −0.092 (0.031)** −0.016 (0.057)

Right rostral anterior 

cingulate −0.055 (0.028) −0.050 (0.041)

Left caudal middle frontal −0.168 (0.077)* −0.050 (0.116)

Regression coefficient estimate (standard error). *p < 0.05, **p < 0.01, ***p < 0.001. Bolded 
values indicate significant associations.
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among women (Phillips and Sherwin, 1992), pharmacological 
suppression of ovarian hormones via gonadotropin releasing 
hormone agonists (Craig et al., 2008), and estrogen supplementation 
in non-human primates (Rapp et al., 2003). Thus, the findings here 

may have implications for women’s performance in these 
cognitive domains.

Although to our knowledge this is the first study to examine 
interactive associations of endogenous estrogens and amyloid with 

FIGURE 5

Interactive effects of estradiol and Aβ42/40 on regional brain volumes, stratified by APOE4 carrier status. Aβ42/40 is divided into quintiles. B, regression 
coefficient estimate for the interaction term; p, p value for the interaction term.
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brain volume, other work examined interactions between biological 
sex and amyloid on brain volume and cognitive functions. For 
example, there is evidence of a sex difference in the association of 
Aβ-42 with cognitive function and brain volume, with females showing 
stronger associations of Aβ-42 with left hippocampal atrophy and with 
declining memory and executive function performance (Koran et al., 
2017). Similar sex differences are observed in a triple transgenic animal 
model of AD, where females show higher Aβ accumulation in the 
frontal cortex and more severe cognitive deficits compared to males, 
an effect driven by prenatal exposure to estrogen in the females 
(Carroll et al., 2010). Circulating estrogens also appear to contribute 
to the sex difference in that transgenic mouse model, as depletion of 
sex steroid hormones via oophorectomy increased Aβ accumulation 
and decreased memory performance while administration of estradiol, 
but not progesterone, prevented these effects (Carroll et al., 2007). 
Together, these studies raise the possibility that endogenous estrogen 
may drive some of the sex differences in brain health.

Our findings demonstrate that postmenopausal women with the 
most severe AD biomarkers (i.e., low ratios of Aβ42/40 or 

Aβ42/p-tau 181) benefit more from higher levels of endogenous 
estrogens, compared to women with less severe AD biomarker 
ratios. That association, however, varied by APOE4 carrier status 
with benefit among non-APOE4 carriers but not among APOE4 
carriers. These results were not driven by different levels of AD 
biomarkers between the two groups, as AD biomarkers did not differ 
by APOE4 carrier status in this group of postmenopausal women. 
Overall, these data suggest that regardless of AD biomarker levels, 
late midlife women who carry the APOE4 allele may be insensitive 
to the effects of high-normal levels of endogenous estrogen on 
cortical regions that support memory performance. Given prior 
work (Kantarci et al., 2016a; Saleh et al., 2023), it may be that higher 
levels of estrogen, such as those found in MHT, are needed to confer 
benefits in APOE4 carriers.

The study has notable strengths and limitations. This is the first 
study in late midlife women to examine whether the effects of 
estrogens and AD biomarkers on brain volumes differ by APOE4 
carrier status. The study looked not only at E2 but also E1, the 
predominant estrogen in postmenopausal women. We  had a 

FIGURE 6

Interactive effects of estradiol and Aβ42/p-tau 181 on regional brain volumes, stratified by APOE4 carrier status. Aβ42/p-tau 181 is divided into quintiles. 
B, regression coefficient estimate for the interaction term; p, p value for the interaction term.
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well-characterized sample of midlife women and used highly sensitive 
estrogen assays. Even with a sample size of 171, we had limited power 
to test three-way interactive associations (i.e., estrogens by AD 
biomarkers by APOE4 carrier status). Our statistical approach 
therefore examined interactive associations of estrogens and AD 
biomarkers by APOE4 carrier status. We did not control for multiple 
comparisons but a priori limited our analyses to 21 ROIs in the 
temporal and prefrontal cortex, regions with higher densities of 
estrogen receptors. Some of the findings may be chance findings, and 
therefore future work is needed to determine if our findings replicate 
in other samples.

5 Conclusion

In conclusion, we demonstrate that late midlife postmenopausal 
women with the most severe AD biomarkers benefit most from 
greater endogenous estrogen levels. This finding is driven by APOE4 
non-carriers, indicating that the direct and interactive effects of 
estrogens may not be beneficial for brain structure in APOE ε4 carriers 
regardless of AD biomarkers severity. These findings suggest that 
compared to non-carriers, APOE ε4+ women may be at increased risk 
of AD due to the relative insensitivity to potential benefits of 
endogenous estrogens on brain volumes in the postmenopause.

FIGURE 7

Interactive effects of estrone and Aβ42/40 on regional brain volumes, stratified by APOE4 carrier status. Aβ42/40 is divided into quintiles. B, regression 
coefficient estimate for the interaction term; p, p value for the interaction term.
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