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Purpose: Susceptibility map weighted imaging (SMWI), based on quantitative 
susceptibility mapping (QSM), allows accurate nigrosome-1 (N1) evaluation 
and has been used to develop Parkinson’s disease (PD) deep learning (DL) 
classification algorithms. Neuromelanin-sensitive (NMS) MRI could improve 
automated quantitative N1 analysis by revealing neuromelanin content. This 
study aimed to compare classification performance of four approaches to PD 
diagnosis: (1) N1 quantitative “QSM-NMS” composite marker, (2) DL model for 
N1 morphological abnormality using SMWI (“Heuron IPD”), (3) DL model for N1 
volume using SMWI (“Heuron NI”), and (4) N1 SMWI neuroradiological evaluation.

Method: PD patients (n =  82; aged 65  ±  9  years; 68% male) and healthy-controls 
(n  =  107; 66  ±  7  years; 48% male) underwent 3  T midbrain MRI with T2*-SWI 
multi-echo-GRE (for QSM and SMWI), and NMS-MRI. AUC was used to compare 
diagnostic performance. We  tested for correlation of each imaging measure 
with clinical parameters (severity, duration and levodopa dosing) by Spearman-
Rho or Kendall-Tao-Beta correlation.

Results: Classification performance was excellent for the QSM-NMS composite 
marker (AUC  =  0.94), N1 SMWI abnormality (AUC  =  0.92), N1 SMWI volume 
(AUC  =  0.90), and neuroradiologist (AUC  =  0.98). Reasons for misclassification 
were right–left asymmetry, through-plane re-slicing, pulsation artefacts, and 
thin N1. In the two DL models, all 18/189 (9.5%) cases misclassified by Heuron 
IPD were controls with normal N1 volumes. We  found significant correlation 
of the SN QSM-NMS composite measure with levodopa dosing (rho  =  −0.303, 
p =  0.006).

Conclusion: Our data demonstrate excellent performance of a quantitative 
QSM-NMS marker and automated DL PD classification algorithms based on 
midbrain MRI, while suggesting potential further improvements. Clinical utility is 
supported but requires validation in earlier stage PD cohorts.
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1 Introduction

Parkinson’s disease (PD) diagnosis is a major clinical challenge 
owing to its wide clinical and aetiological heterogeneity, its overlap 
with other entities, and the lack of reliable in-vivo biomarkers. The 
primary neuropathological hallmark of PD is the progressive loss of 
dopaminergic (DA) neurons in the iron-rich substantia nigra pars 
compacta (SNpc) (Dickson, 2012). Nigrosomes 1–5 are located within 
the SNpc, of which N1 is the largest, and the site of the most sensitive 
marker of PD pathology histologically (Dickson, 2012). When N1 
degeneration occurs, neuromelanin is released and iron is deposited 
into the extra-cellular space.

Differences in iron within the SNpc can be detected on iron-
sensitive MR sequences. On T2*-weighted or susceptibility weighted 
MRI (SWI), the normal SNpc appears hypointense and the normal N1 
appears hyperintense, resulting in the “swallow-tail” sign (Schwarz 
et al., 2014), which has excellent classification performance for PD 
patients versus healthy controls (HC; sensitivity = 94.6%, 
specificity = 94.4%) (Mahlknecht et  al., 2017). Neuromelanin 
differences can be detected on specialized neuromelanin-sensitive 
(NMS) fast spin-echo sequences (Blazejewska et al., 2013). However, 
both approaches require expert visual radiological assessment, and 
carry the risk of observer-dependent rater bias.

Susceptibility map weighted imaging (SMWI) avoids artifacts 
induced by phase, and has increased susceptibility contrast and SNR 
(Gho et  al., 2014), allowing a more accurate N1 assessment. 
Radiological PD classification using SMWI has excellent performance 
(accuracy = 91.8–97.7%) (Liu et al., 2020; Sung et al., 2022). Deep 
learning (DL) approaches using SMWI can also identify N1 
abnormality (Heuron IPD; Heuron Co., Ltd., Seoul, Republic of 
Korea) and diagnose PD with excellent classification performance 
(AUC = 0.95, Shin et al., 2021). However, this proprietary method has 
not been independently externally validated and the benefit of a DL 
approach that automates N1 volume quantification (Heuron NI; 
Heuron Co., Ltd., Seoul, Republic of Korea) (Jeong et al., 2022) is 
unknown. The original report on the validation of Heuron IPD was 
limited by its stringent selection of participants (e.g., according to the 
PET detection of nigrostriatal degeneration, or the appearance of the 
N1 on MRI) which, while helpful for model training, may have also 
inflated the validation AUC (Shin et al., 2021). Secondly, the control 
sample in the original report comprised individuals with drug-
induced Parkinsonism, rather than normal healthy controls (Shin 
et al., 2021).

Other DL based tools for PD diagnostic classification using MRI 
have been described in the literature. Several studies have utilised 
conventional MRI of the cerebrum (e.g., T1-weighted, T2-weighted 
and FLAIR) to classify PD based on morphological differences, and 
have achieved accuracies of approximately 90–96% (Basnin et al., 
2021; Dhinagar et al., 2021; Camacho et al., 2023, 2024; Mallik et al., 
2023). However, atrophy of the cerebrum typically becomes prominent 
only in the later stages of disease progression, while earlier-stage 
neuropathology is located in the midbrain (Filippi et  al., 2020; 
Pieperhoff et al., 2022). Fewer studies have investigated the used of 
midbrain neuropathology from MRI as input to DL algorithms 
(Huseyn, 2020). Secondly, since morphological changes are 
nonspecific, studies have utilised advanced MRI techniques such as 
QSM and NMS MRI of midbrain nuclei in DL tools for PD diagnosis, 
which are better able to detect PD-specific neuropathological 

processes such as iron and neuromelanin content (Shinde et al., 2019; 
Gaurav et al., 2022a; Wang et al., 2023; Chen et al., 2024).

In this study we evaluated the Heuron IPD and Heuron NI DL 
models on our database of PD patients with midbrain 
SMWI. We compared the N1 DL models against an iron-neuromelanin 
composite model to determine the value-add of NMS in PD diagnosis. 
We  hypothesised that additional NMS provides integral data that 
would improve the classification performance compared to either N1 
DL model alone. We  hypothesised that the DL models would 
demonstrate classification performance of AUC > 0.9, comparable to 
an experienced neuroradiologist, and comparable to that previously 
reported by the model developers (Shin et al., 2021).

2 Methods

2.1 Patient population

We used MRI and clinical data from PD patients (OFF-medication 
state) and age-matched HC, who were recruited from clinics at our 
tertiary referral centre between 2019 and 2021. PD patients were 
diagnosed by four neurologists specializing in movement disorders 
(mean 17.8 years of experience) using the Movement Disorder Society 
Clinical Diagnostic Criteria for Parkinson’s disease (Postuma et al., 
2015). Age-matched HC were recruited from the spouses of patients 
in hospital clinics, health screening and the community, and were 
absent of neurological conditions. We excluded subjects with MRI 
contraindications, claustrophobia, known neurological/psychiatric 
diagnosis other than PD, chronic debilitating medical conditions, or 
poor cognitive function that would hinder patients’ understanding of 
the study. This study was approved by the local ethics board and 
written informed consent was obtained from all participants.

2.2 MRI protocols

All MRI data were acquired on the same 3 T MRI system (Siemens 
Skyra, Erlangen, Germany). We acquired a 3D T2* SWI multi-echo 
gradient echo sequence with the following parameters: TR 48 ms, TE 
13.77/26.39/39 ms, FA 20°, voxel size 0.5 × 0.5 × 1 mm3, 32 slices, 
duration: 4.15 min. An echo train length of 3 was determined to be an 
acceptable trade-off between SNR and clinically-feasible 
acquisition time.

We also acquired an NMS T1-weighted turbo spin echo sequence 
with the following parameters: TR 938 ms, TE 15 ms, voxel size 
0.5 × 0.5 × 3 mm3, 13 slices, duration: 10.42 min. Both sequences were 
acquired in an oblique-coronal scan plane positioned perpendicular 
to the midbrain, to improve the N1 in-plane visualization.

2.3 QSM post-processing

Quantitative susceptibility in parts per billion (ppb) was computed 
from QSM using the STI Suite (Li et al., 2014). Brain extraction based 
on the magnitude images was performed using the FSL Brain 
Extraction Tool (BET2). Phase unwrapping and background field 
phase removal were performed using the HARPERELLA technique. 
Regularized k-space inverse filtering was performed on the processed 
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phase images to generate the initial QSM images. An iterative k-space 
algorithm was used on the initial QSM images to yield the final mean 
susceptibility (iron deposition) map (Haacke et al., 2010; Barbosa 
et al., 2015).

2.4 SMWI post-processing

The SMWI images were reconstructed using the SMWI software 
(Seoul National University, Seoul, Republic of Korea) (Nam et al., 
2017) from the multi-echo GRE images as follows: (1) the channel-
combined magnitude images were created using the root sum of 
squares of the multi-channel magnitude images, (2) the channel-
combined phase images were created as the mean after correcting for 
phase offsets of individual channels, (3) the magnitude images from 
each echo were combined by root sum of squares, (4) the phase images 
from each echo were unwrapped by Laplacian unwrapping and a 
frequency calculated per voxel, (5) the background field was removed 
from the frequency images, (6) the QSM images were reconstructed 
using the sparse linear equation and least-squares method, (7) a QSM 
mask was created based on a paramagnetic threshold value, (8) the 
SMWI was generated as the product of the combined magnitude 
image and the QSM mask.

2.5 Clinical severity measurements

All participants underwent a clinical motor assessment using the 
Movement Disorders Society Unified Parkinson’s Disease Rating Scale 
motor part (MDS-UPDRS-III) (Goetz et al., 2008), and the Hoehn 
and Yahr stage (H&Y) (Hoehn and Yahr, 1967). We also recorded the 
levodopa equivalent daily dose (LEDD) and disease duration (age at 
MRI minus age at diagnosis) for the PD group.

2.6 QSM-NMS composite heuristic 
measure

We formed a heuristic measure for PD classification by combining 
information from QSM and NMS scans with the following steps. (1) 
Blinded manual segmentation of the whole SN region using 
MRIcroGL (University of South Carolina, Columbia, SC) on QSM and 
NMS separately, on three consecutive slices by a neuroradiologist. The 
slices were selected by inspecting the images in cranio-caudal 
direction and identifying the first slice whereby the red nuclei were 
barely or no-longer visible, and the two inferior consecutive slices. (2) 
Thresholding of these SN volumes on QSM and NMS images 
separately, for low susceptibility and high neuromelanin content as 
previously described (Schwarz et al., 2011; Kim et al., 2018; Hartono 
et al., 2023). The threshold selected was that which maximized the 
difference between PD and control groups. (3) In the NMS images, 
calculation of the ratio of the 90th to the 10th percentile of the NMS 
signal within the SN mask defined the “NMS contrast range.” (4) The 
“QSM-NMS composite” score was defined as the product of the QSM 
and NMS-based volumes, and the NMS contrast range. We determined 
this formula based on the preliminary observations that PD patients 
had smaller SN volumes in QSM and NMS images, and more narrow 
ranges of contrast in NMS images. Thus, lower values indicated a 

higher likelihood of PD and vice-versa. We  formed an aggregate 
measure by averaging the left and right-sided values, to increase the 
SNR and to reduce the multiple testing burden among the set of 
primary tests.

2.7 Deep learning models

Two proprietary commercial DL models were provided to us 
(Figure 1; Heuron Co., Ltd., Seoul, Republic of Korea). In “Heuron 
IPD,” five slices were first automatically identified on the SMWI 
containing the N1 before detection of any abnormality (Shin et al., 
2021). Abnormalities were detected using a convolutional deep neural 
network (CNN), YOLOv3 (Redmon and Farhadi, 2018), to detect 
morphological abnormality of the N1 region from the SMWI images. 
Heuron IPD returned a binary classification of “Normal” or 
“Abnormal” (Shin et al., 2021). “Heuron NI” automatically detected 
and segmented hyperintensities in the same N1-containing cuts on 
SMWI (Jeong et al., 2022), and returned the volume of the N1 in mm3. 
Heuron NI utilizes SparseInst for segmentation of the SN region 
(Cheng et al., 2022), and is based on a fully-convolutional encoder-
decoder architecture, which includes backbone, context-encoder, and 
decoders to create instance activation maps. The model was trained 
using ResNet as the backbone, AdamW as the optimizer (with 
learning rate 5e-5) and a batch size of 16. The training of the model 
involved focal, dice, and binary cross entropy loss functions. Data 
augmentation was used to re-scale, and adjust brightness of the input 
data. Both programs provided left and right hemispheric results, 
which we analysed separately. For Heuron IPD, we also aggregated the 
left and right sided data by classifying subjects only as “Normal” if 
both the left and right N1 were “Normal,” and otherwise as 
“Abnormal.” For Heuron NI, we aggregated the left and right sided 
data by averaging the left and right volumes.

2.8 Neuroradiologist assessment

An experienced neuroradiologist (25 years) performed the 
assessment of SMWI while blinded to the subject status. Each side was 
rated as normal (clear visualization of N1), or abnormal (complete or 
suspected N1 loss). A subject was classified as normal when both sides 
were rated normal (Sung et  al., 2022). Real time SMWI image 
reformatting was performed as needed (e.g., symmetry alignment, 
axial bicommisural planal or its orthogonal review) to improve the 
clarity for assessment as per routine clinical workflow.

2.9 Statistical analysis

Statistical analysis was performed using SPSS version 26 (IBM 
SPSS Statistics, IBM Corp, Armonk, NY). Continuous imaging 
measures were right-skewed in both groups and so we report the 
median and inter-quartile range statistics and used non-parametric 
tests. The clinical and demographic measures were approximately 
normally distributed so we  report the mean and SD, and apply 
parametric tests. We performed ROC curve analysis to calculate the 
AUC. For the models with continuous outcomes (Heuron NI volume, 
QSM-NMS composite, QSM- and NMS-based volumes, NMS contrast 
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range), we binarized the data using the Youden Index. We compared 
the AUCs of Heuron IPD, Heuron NI, neuroradiologist, and the 
QSM-NMS composite. Correlation of the continuous imaging 
measures in (1) each hemisphere separately and (2) averaged between 
hemispheres, with clinical parameters in both groups combined, and 
in the PD group only was performed using the Spearman rank 
correlation and Kendall Tao Beta. Multiple comparisons were 
controlled using the Bonferroni method (α = 0.05/40 = 0.00125).

3 Results

3.1 Sample characteristics

Our final sample comprised data from 189 participants including 
82 PD (aged 65 ± 9 years; 68% male) and 107 HC (aged 66 ± 7 years; 
48% male; Table 1). Patients had mild disease (MDS-UPDRS-III = 31 
(20–38); H&Y stage = 2 (1–3); LEDD = 375 mg (250–564), disease 
duration = 4.8 (1.44–8.70) years). The PD and HC groups differed 
significantly on all quantitative imaging measures, both as whole 
groups (Table 1; p < 0.001) and when split by hemisphere (Table 2; 
p < 0.001). Heuron NI was unable to process one PD case due to a 
severe pulsation artifact, thus the sample size for Heuron NI is 188 
(Supplementary Figures S1, S2, showing MRI images of the pulsation 
artefact and a flowchart of subject inclusion).

3.2 Classification performance

The full classification performance results are summarized in 
Table  3. The QSM-NMS iron-neuromelanin composite measure 
showed an excellent classification performance (AUC = 0.94, 
accuracy = 89%, sensitivity = 94%, specificity = 86%; Figure  2), 

comparable to an experienced neuroradiologist (AUC = 0.98). The 
false positives (15/189; 7.9%) had smaller NMS- (p  < 0.001) and 
QSM-based volumes (p = 0.018) than other HCs (Mann Whitney U 
tests). Accordingly, the false negatives (5/189; 2.6%) had larger Heuron 
NI (p = 0.021), NMS- (p = 0.008) and QSM-based volumes (p < 0.001), 
and iron-neuromelanin composite scores (p < 0.001; Mann–Whitney 
U tests).

Heuron IPD could also classify PD patients with excellent 
performance (AUC = 0.92, accuracy = 90% sensitivity = 100%, 
specificity = 83%). The 18/189 (9.5%) cases that were incorrectly 
classified (all false positives) had smaller left Heuron NI volumes 
(p = 0.010) and lower iron-neuromelanin composite scores (p = 0.039; 
Mann–Whitney U tests) than correctly-classified HCs.

Heuron NI (N1 volume) classified PD patients with moderate 
performance (AUC = 0.90, accuracy = 85%, sensitivity = 84%, 
specificity = 85%). There were both false positive (16/188; 8.5%) and 
false negative (13/188; 7.0%) classifications which, together, did not 
differ from the correctly classified cases in any demographic, clinical 
or imaging measure (Mann–Whitney U test; all p > 0.05). The false 
positives alone had smaller QSM-based volumes (p < 0.001) and lower 
iron-neuromelanin composite scores (p < 0.001) than the correctly-
classified HCs (Mann–Whitney U tests). Conversely, the false 
negatives had larger QSM- (p  < 0.001), and NMS-based volumes 
(p  = 0.008), and iron-neuromelanin composite scores (p  < 0.001) 
compared to the correctly classified PD patients (Mann–Whitney U 
tests). Thus, the falsely-classified subjects were outliers with regard to 
volume in their respective groups but could not be distinguished on 
demographic or clinical measures.

As a benchmark, our experienced neuroradiologist performed a 
classification using the SMWI alone with excellent performance 
(AUC = 0.98, accuracy = 97%, sensitivity = 99%, specificity = 96%), with 
the most notable difference from the DL and quantitative approaches 
being the high specificity. A neuroradiologist visual post-hoc 

FIGURE 1

Summary of analysis pipelines of the two deep learning algorithms used in this study, and their differences. First, susceptibility-weighted images are 
used to create susceptibility-map-weighted images (SMWI), upon which the two models are run. For detection of nigrosome 1 morphological 
abnormalities, the first Heuron IPD model positions a bounding box to encompass the hypointense substantia nigra on each side. Then, using the slice 
containing the inferior-most pole of the red nucleus as reference and five consecutive slices inferior it, a classification is determined for either “normal” 
(N1 present) or “abnormal” (N1 lost) for each side. For the segmentation and volume quantification of nigrosome 1, Heuron NI first creates a mask of 
the whole SN within the bounding box in Heuron IPD. Within this, it applies a threshold to estimate the volume of nigrosome 1. (Note: neural network 
sub-parts are proprietary).
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investigation of subjects misclassified by DL models identified (1) 
motion, cardiac pulsation (Supplementary Figure S1, showing 
pulsation artefact) and streaking artefacts, (2) bilaterally thin N1, (3) 
through-plane re-slicing which reduces signal and compounds 
aforesaid factors, (4) right–left alignment asymmetry from head tilt, 
(5) inappropriate slice selection for N1 segmentation, and (6) frequent 
overestimation of the N1 mask, as likely factors contributing to the 
false classifications of the DL models (Figure 3).

3.3 Hemispheric differences

The left hemisphere had consistently better performance than the 
right across all models except for Heuron IPD. The left–right 
discrepancy in AUCs for Heuron NI volume, NMS contrast range, 
NMS-based volume, QSM-based volume, iron-neuromelanin 
composite and neuroradiologist was 0.059, 0.005, 0.026, 0.052, 0.030 
and 0.002, respectively. Our PD cohort was 100% right-handed, so 

TABLE 1 Demographic and clinical information, and quantitative substantia nigra measurements for Parkinson’s disease and control groups, compared 
between groups.

Parkinson’s disease, n =  82 Healthy controls, n =  107 Group difference, p-value

Age, years a 65.00 (9.29) 65.51 (6.57) 0.656

Gender b Male = 56 (68%)

Female = 26 (32%)

Male = 51 (48%)

Female = 56 (52%)

0.005 **

MDS-UPDRS-III c 31 (20–38) 2 (0–6) <0.001 **

H&Y stage b 0 = 0 (0%)

1 = 5 (6%)

2 = 68 (83%)

3 = 9 (11%)

0 = 107 (100%)

1 = 0 (0%)

2 = 0 (0%)

3 = 0 (0%)

<0.001 **

LEDD, mg c 375 (250–564) – –

Disease duration, years 

between diagnosis and MRI c

4.83 (1.44–8.70) – –

Heuron NI volume, mm3 c 3.00 (1.35–5.44) 14.00 (8.94–20.00) <0.001 **

QSM-based volume, mm3 c 27.50 (15.50–45.00) 98.00 (56.00–142.00) <0.001 **

NMS-based volume, mm3 c 16.00 (6.00–27.00) 51.00 (25.00–108.00) <0.001 **

NMS contrast range c 1.139 (1.126–1.156) 1.173 (1.163–1.188) <0.001 **

MDS-UPDRS-III, Movement Disorders Society Unified Parkinson Disease Rating Scale Part III; H&Y, Hoehn & Yahr; LEDD, levodopa equivalent daily dose; QSM, quantitative susceptibility 
mapping; NMS, neuromelanin-sensitive.
**p < 0.01.
aMean (standard deviation); groups compared by independent samples t-test.
bFrequency (percent); groups compared by Chi-square test.
cMedian (inter-quartile range); groups compared by Mann–Whitney U test.

TABLE 2 Descriptive statistics for quantitative substantia nigra MRI measurements, split by hemisphere and compared between Parkinson’s disease and 
healthy control groups.

Parkinson’s disease, n =  82 Healthy controls, n =  107 Group difference, p-value

Heuron NI volume, mm3 a

  Left 2.75 (1.25–4.87) 14.62 (9.12–20.38) <0.001 **

  Right 2.38 (0.88–6.19) 11.88 (7.50–19.50) <0.001 **

QSM-based volume, mm3 a

  Left 25.00 (12.00–47.00) 95.00 (58.00–114.00) <0.001 **

  Right 27.50 (14.75–47.00) 93.00 (52.00–139.00) <0.001 **

NMS-based volume, mm3 a

  Left 23.00 (7.50–47.75) 106.00 (54.00–168.00) <0.001 **

  Right 16.50 (5.75–29.25) 51.00 (25.00–108.00) <0.001 **

NMS contrast range a

  Left 1.140 (1.126–1.156) 1.174 (1.163–1.192) <0.001 **

  Right 1.158 (1.136–1.172) 1.193 (1.175–1.211) <0.001 **

QSM, quantitative susceptibility mapping; NMS, neuromelanin-sensitive.
**p < 0.01.
aMedian (inter-quartile range); groups compared by Mann–Whitney U test.
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TABLE 3 Results of the binary Parkinson’s disease versus healthy control classification by each model based on bilateral and single hemispheric 
findings.

Model AUC Accuracy (%) Sensitivity (%) Specificity (%) Youden 
Index

Optimal 
cutoff

Heuron IPD 0.916 90.48 100.00 83.18 – –

  Left 0.912 90.48 97.56 85.05 – –

  Right 0.930 92.06 100.00 85.98 – –

Heuron NI volume 0.898 84.57 83.95 85.05 0.69 6.88

  Left 0.905 84.57 83.95 85.05 0.69 7.19

  Right 0.846 78.72 81.48 76.64 0.58 7.19

QSM-NMS Composite 0.943 89.42 93.90 85.98 0.80 2178.62

  Left 0.898 84.66 85.37 84.11 0.69 3297.83

  Right 0.868 79.89 89.02 72.90 0.61 2110.04

NMS contrast range 0.862 80.95 84.15 78.50 0.63 1.1590

  Left 0.837 80.42 79.27 81.31 0.60 1.1570

  Right 0.832 78.31 76.83 79.44 0.55 1.1723

NMS-based volume 0.815 76.72 71.95 80.37 0.51 23.50

  Left 0.832 78.31 79.27 77.57 0.56 53.50

  Right 0.806 74.60 67.07 80.37 0.46 23.50

QSM-based volume 0.849 78.84 81.71 76.64 0.59 52.75

  Left 0.856 80.42 76.83 83.18 0.60 49.00

  Right 0.804 77.25 80.49 74.77 0.56 57.50

Neuroradiologist 0.975 97.35 98.78 96.26 – –

  Left 0.960 96.30 95.12 97.20 – –

  Right 0.958 96.30 93.90 98.13 – –

AUC, area under the receiver operating characteristic curve; NMS, neuromelanin-sensitive; QSM, quantitative-susceptibility mapping.

FIGURE 2

Comparison of model performances for Parkinson’s disease diagnostic classification using high resolution midbrain MRI. Coloured bars are based on 
original analysis performed in this study, while white bars represent classification performed by Shin et al. (2021), which reported the first validation 
study by the developers of their proprietary Heuron IPD deep learning model. Blue: fully-automatic deep learning models. Red: continuous imaging 
measures from manually-segmented substantia nigra. Green: visual radiological assessment of the nigrosome-1 sign using susceptibility map weighted 
imaging. ROC, receiver-operating characteristic.
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FIGURE 3

Examples of misclassification by DL model(s) in three healthy controls (false positives), (A–C) visually assessed as normal by neuroradiologist. Top two rows: ten consecutive 0.5  mm re-sliced caudo-cranial 
susceptibility map weighted (SMWI) output images from Heuron IPD, orientated perpendicular to the midbrain, showing the hyperintense nigrosome-1, N1 (yellow arrows) within the hypointense substantia nigra on 
cuts inferior to the red nucleus (marked “RN” on the left). Bottom two rows: magnified Heuron NI output images demonstrating hyperintensities outlined in red within the hypointense substantia nigra (blue) on four 
consecutive caudo-cranial cuts inferior to that containing the left red nucleus (RN) indicated by a double arrow. Bold inset image: intact N1 (“swallow-tail” sign) visualized as a dorsolateral hyperintensity in all three 
healthy controls on axial images reformatted parallel to the bi-commissural plane, providing a confirmatory alternative imaging perspective. (A) Pulsation artefacts from in-plane ambient cisternal arterial loops in this 
47-year-old healthy male and slight right–left alignment asymmetry (tilted head - unequal red nuclei) could contribute to the “Abnormal” label of the right N1 on Heuron IPD. However, volume outputs on Heuron NI 
were normal. (B) 67-year-old healthy male with dark V-shaped (blue arrows) artefacts superimposed across the substantia nigra could impair N1 detection, and result in bilaterally “Abnormal” labels on Heuron IPD. 
Again, bilateral volume outputs on Heuron NI were normal. (C) Bilaterally skinny but distinct N1 in this 58-year-old female healthy control were labeled “Abnormal” by Heuron IPD. Volume outputs on Heuron NI were 
abnormally low; ideally, segmentation could have been automated on more inferior cuts after clearing both red nuclei.
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we could not further evaluate the impact of handedness. The side of 
initial symptom onset for PD patients was left for n = 21, right for 
n  = 49, symmetrical for n  = 7 and unknown for n  = 5. However, 
comparison of the left- and right-onset patients on the continuous 
imaging measures showed no significant effects (Mann–Whitney 
U test).

3.4 Correlation of imaging measures with 
clinical severity

Correlation of clinical motor symptom severity (MDS-UPDRS-III, 
H&Y stage) with the continuous imaging measures when both the PD 
and HC groups were included showed more severe disease correlating 
with smaller Heuron NI-, QSM- and NMS-based volumes and lower 
NMS contrast (Spearman ρ < −0.476, p < 6.75e−12).

Based on the hemispheric differences we  observed, 
we explored post-hoc correlations using individual hemispheric 
imaging measures in the PD group only, correcting for multiple 
comparisons using the Bonferroni method (α = 0.05/40 = 0.00125). 
Since we included the PD group only, we also tested for correlation 
with dosing (LEDD) and disease duration. This confirmed the 
predominant usefulness of left-sided imaging measures, with 
mostly left-sided results having p  < 0.05 (Table  4; Figure  4). 
Correlation of the continuous imaging measures with severity 
(MDS-UPDRS-III, H&Y stage) and disease duration was weaker 
than that with levodopa dosing (LEDD), and was stronger for 
NMS-based than QSM-based measures. Correlation of the iron-
neuromelanin composite and LEDD in the left hemisphere 
remained significant after multiple comparison correction 
(Spearman ρ = −0.303, p = 0.006).

Supplementary Table S1 shows the results of the correlation 
analyses between the left and right averaged continuous imaging 
measures and clinical severity for the PD group, which concur with 
the single-hemisphere results.

4 Discussion

The use of automated tools to supplement PD diagnosis is an 
ongoing important area of research. Recent progress has focused on 
classification by characterizing N1 using MRI contrasts sensitive to 
magnetic susceptibility (iron) and neuromelanin (Shin et al., 2021; 
Sung et  al., 2021; Jokar et  al., 2023). We  compared classification 
performance of an iron-neuromelanin composite measure, Heuron 
IPD and Heuron NI (DL models based on SMWI) against that of an 
experienced neuroradiologist, to determine the potential value-add of 
NMS MRI and the independent external validity of the DL models. 
We  demonstrated good value of a combined iron-neuromelanin 
(QSM-NMS) marker. We  found excellent performance for each 
model, which was comparable to the radiologist. These results mark 
the first independent external validation of a method for automatic 
PD classification based on SMWI, supporting its efficacy, while 
suggesting further improvements that could be made.

An iron-neuromelanin marker had excellent classification 
performance (AUC = 0.94) exceeding that of either DL model alone, 
and similar to a recent study using an automated SN template 
approach (AUC = 0.95) (Jokar et al., 2023). Our method had better 
performance than other approaches to SN NMS classification; for 
example, automated NMS quantification (AUC = 0.83) (Gaurav et al., 
2022b), and was similar to others using manual segmentation on QSM 
(AUC = 0.96) (Cheng et  al., 2019). NMS-based MRI measures, 

TABLE 4 Correlation (correlation coefficient, p-value) of clinical severity, levodopa dosing and disease duration with quantitative substantia nigra 
measurements separately in each hemisphere in the Parkinson’s disease group only.

MDS-UPDRS-IIIa H&Y stageb LEDDa Disease durationa

Heuron NI volume

  Left −0.117, 0.308 0.001, 0.995 −0.040, 0.722 0.005, 0.961

  Right −0.037, 0.745 0.126, 0.166 −0.016, 0.887 0.028, 0.803

QSM-based volume

  Left −0.089, 0.437 −0.076, 0.397 −0.208, 0.062 −0.127, 0.260

  Right 0.026, 0.819 0.141, 0.119 0.018, 0.874 0.106, 0.346

NMS-based volume

  Left −0.149, 0.189 0.015, 0.868 −0.333, 0.002 * −0.207, 0.064

  Right −0.061, 0.595 −0.035, 0.703 −0.202, 0.071 −0.020, 0.856

NMS contrast range

  Left −0.243, 0.031 * −0.027, 0.764 −0.268, 0.015 * −0.215, 0.054

  Right −0.171, 0.133 −0.051, 0.572 −0.229, 0.040 * −0.085, 0.449

Iron-neuromelanin composite

  Left −0.230, 0.041 * −0.030, 0.740 −0.387, 0.0004 ** −0.211, 0.059

  Right −0.134, 0.240 0.043, 0.632 −0.231, 0.038 * −0.005, 0.964

MDS-UPDRS-III, Movement Disorders Society Unified Parkinson Disease Rating Scale Part III; H&Y, Hoehn & Yahr; LEDD, levodopa equivalent daily dose; QSM, quantitative-susceptibility 
mapping; NMS, neuromelanin-sensitive. **significant after multiple comparison correction, α < 0.00125.
*p < 0.05.
aSpearman correlation, reported as ρ.
bKendall Tao Beta correlation, reported as τb.

https://doi.org/10.3389/fnagi.2024.1425095
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Welton et al. 10.3389/fnagi.2024.1425095

Frontiers in Aging Neuroscience 09 frontiersin.org

including the iron-neuromelanin marker, had the strongest 
correlations with clinical severity and dosing than other quantitative 
imaging measures. Our marker was based on manual SN segmentation 
but, nonetheless, suggests a benefit to combining QSM and NMS in 
future DL approaches for PD diagnosis.

Heuron IPD also achieved excellent classification 
performance, confirming our hypothesis and supporting its 
external validity. The AUC of Heuron IPD was 0.92, while its 
counterparts in similar studies reported AUC = 0.95 (Shin et al., 
2021; Jokar et  al., 2023). These models were first published in 
2021 (Shin et al., 2021) and were trained on a Korean cohort of 
PD patients and HCs but had not been independently externally 
validated. Our cohort is also East-Asian and both have similar 
disease severity (H&Y stage = 2). However, the classification 
performance could have been limited by our cohort’s younger age 
(65 versus 71 years). The training cohort was selected based on 
dopamine transporter DAT scan status and MRI-appearance of 
the N1 whereas ours was not, so our analysis may represent a 
more ecologically-valid scenario since DAT scan is not always 
available. A further important test will be to apply these methods 
to undiagnosed suspected PD and samples which have not been 
filtered based on neurodegeneration, N1 structure, or presence of 

other neurological or psychiatric conditions. Finally, while each 
model had comparable AUC to the neuroradiologist, the number 
of false positives was notably greater. This was common across 
models but, in general, classification should ideally err on the side 
of false positives rather than false negatives.

We found that the performance of Heuron NI (AUC = 0.90) was 
less than that of Heuron IPD. Misclassified cases generally showed 
motion or pulsation artefacts, intact but thin N1, right–left alignment 
asymmetry, or reduced signal secondary to re-slicing of the data 
through-plane, which could confound automated N1 detection. 
Additional steps to address these could improve classification. The left 
hemisphere was better for classification than the right hemisphere, 
and was the only hemisphere to have any significant correlation (after 
multiple comparison) with levodopa dosing. This may be explained 
by the tendency for symptoms to first occur on the dominant side 
(most often right), and thus predominance of left-sided SN 
neuropathology due to the decussation of cortico-pontine fibres. 
Concordance of expected side of disease pathology and imaging 
abnormality serves to validate the imaging approaches. The significant 
correlation with dosing, but not with severity, suggests structural brain 
alterations with medication use. Other studies identified relationships 
between some sub-scores of the MDS-UPDRS-III and 

FIGURE 4

Significant left-sided correlations in the PD group between nigrosome-1 (N1) imaging measures and clinical parameters. LEDD, levodopa equivalent 
daily dose; NMS, neuromelanin-sensitive.
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manually-segmented N1/SN on T2-weighted MRI (Fu et al., 2016) but 
not the MDS-UPDRS-III as a whole.

Clinical demand in radiology for inclusion of high-resolution 
midbrain imaging in brain MRI orders for evaluation of Parkinsonism 
is on the rise with increasing availability, evidence of good diagnostic 
performance (Kuya et  al., 2016; Sung et  al., 2019), varied clinical 
presentations (Parkinson’s Disease Society of the United Kingdom, 
2019) and complex co-morbidities in an aging population (Bloem et al., 
2020). For example, an intact N1 and congruous quantitative SN 
measures in the presence of silent extra-nigral vascular pathology may 
be useful clinical decision support tools indicating that levodopa should 
be sparingly prescribed. The principal application for this technology 
in a clinical workflow is to distinguish patients who have overt N1-sign 
loss. This could facilitate filtering of cases for reporting between general 
or junior neuroradiologists and senior neuroradiologists based on case 
difficulty. Ideally, such tools should be incorporated into an automatic 
pipeline to not require additional steps, and should present the results 
directly on a clinical workstation, which requires regulatory approval 
(Choy et al., 2018). These could also be used as adjunct teaching tools 
to train radiologists unfamiliar with midbrain N1 assessment.

Future studies should apply SMWI-based DL models in earlier-
stage or prodromal PD cohorts, and attempt to classify PD from other 
Parkinsonisms such as essential tremor (Perez Akly et al., 2019) which 
may be an early stage PD misdiagnosis (Welton et  al., 2021). This 
approach should also be tested in non-East-Asian cohorts. A limitation 
is that SMWI requires a specific multi-echo acquisition (Nam et al., 
2017) not part of routine clinical neuroimaging protocols. Technologist 
training is needed for accustomisation to anatomical landmarks for 
accurate 3D slab placement, as right–left symmetry alignment of the 
sub-nuclear structures on high resolution SMWI is sensitive to head tilt.

Strengths of our study include the independent, external nature 
of our validation of DL models. This is important because the 
cohort used for validation in the original report (Shin et al., 2021) 
included PD patients based on their PET or MRI status, which 
could have increased the reported AUC. Our comparisons to 
midbrain QSM and NMS MRI are original, and this enhanced 
neuroimaging evaluation of PD by yielding significant correlations 
with disease severity measures. This is noteworthy for its potential 
to objectively monitor disease progression compared to 
QSM-only approaches.

Our data show that automated algorithms, and an iron-NMS 
marker to augment radiologists’ decision-making for PD diagnosis 
are highly accurate. The DL models can be further improved by 
incorporation of NMS MRI information, identification of 
artefacts, combination of data across models, hemispheric 
information, automatic re-slicing, and further training on other 
cohorts. There is a potential role for this approach in future 
clinical workflows, especially to support non-expert radiologists.
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