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Background: Observational studies have shown that oxidative stress (OS) is 
associated with Parkinson’s disease (PD). However, whether such observations 
reflect cause–effect remains largely unknown. To test this, we  performed a 
two-sample bidirectional Mendelian randomization (MR) analysis to investigate 
the causal-effects between OS biomarkers and PD.

Methods: We selected summary statistics data for single-nucleotide 
polymorphisms (SNPs) associated with catalase (n =  13), glutathione peroxidases 
(n  =  12), superoxide dismutase (n  =  13), vitamin A (n  =  7), vitamin C (n  =  10), 
vitamin E (n  =  12), vitamin B12 (n  =  8), folate (n  =  14), copper (n  =  6), Zinc (n  =  7), 
and iron (n  =  23) levels, and the corresponding data for PD from the International 
Parkinson Disease Genomics Consortium (IPDGC, 33,674 cases and 449,056 
controls). Inverse-variance weighted (IVW) MR analyses were conducted to 
estimate associations of OS with PD. Reverse MR analysis was further performed 
to predict the causal effects of PD on the above OS biomarkers.

Results: As for PD, the IVW method suggested that the Zinc (Zn) levels was 
significantly associated with PD (OR  =  1.107, 95% CI 1.013–1.211; p  =  0.025), 
which is consistent with results from the weighted median analyses. Moreover, 
the results remained consistent and robust in the sensitivity analysis. However, 
there were no significant associations of catalase, glutathione peroxidases, 
superoxide dismutase, vitamin A, vitamin C, vitamin E, vitamin B12, folate, 
copper, or iron with PD. As for OS, our reverse MR analysis also did not support 
a causal effect of liability to PD on OS.

Conclusion: The MR study supported the causal effect of Zn on PD. These 
findings may inform prevention strategies and interventions directed toward OS 
and PD.
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1 Introduction

Parkinson’s disease (PD), the most common neurodegenerative 
disease worldwide, is characterized by a progressive loss of substantia 
nigra (SN) dopaminergic neurons and accumulation of α-synuclein 
in the SN (Poewe et al., 2017). The main clinical manifestations of PD 
are motor symptoms (i.e., resting tremor, bradykinesia, rigidity, and 
postural instability) and nonmotor symptoms (i.e., depression, 
constipation, olfactory deficits, and cognitive impairment), which 
seriously affect the quality of life of patients and the economic burden 
of their family (Kalia and Lang, 2015). At present, the etiology and 
mechanism of PD remain elusive (Kalia and Lang, 2015). 
Consequently, the treatment for PD is primarily symptomatic, 
focusing on alleviating symptoms rather than slowing or halting 
disease progression (Bloem et al., 2021). Notably, with the discovery 
and studies of PD-related pathogenic genes (Blauwendraat et  al., 
2020), i.e., SNCA, PARKIN, PINK1, LRRK2, and DJ-1…, it has been 
revealed that oxidative stress (OS) is considered a key modulator in 
the occurrence and development of PD (Maiti et  al., 2017). 
Mechanistically, OS refers to the overproduction of reactive oxygen 
species (ROS) and insufficient endogenous antioxidants, ultimately 
leading to cell dysfunction and death (Khan and Ali, 2018).

Substantial observational and experimental studies suggest that 
altered OS homeostasis may be  involved in the etiology and 
pathogenesis of PD (Puspita et  al., 2017; Chang and Chen, 2020; 
Jimenez-Moreno and Lane, 2020). It has been established that low 
levels of antioxidants, incapable of controlling ROS production, lead 
to neurodegeneration in PD (Medeiros et al., 2016). Oxidized lipids, 
proteins, and DNA can be seen in the substantia nigra of PD patients, 
which are all evidence of OS involvement (Abdelhamid and Nagano, 
2023). LRRK2 mutant IPSC-derived DA neurons showed increased 
expression of genes involved in OS regulation and increased 
susceptibility to OS (Nguyen et al., 2011). Notably, studies have found 
that the concentration of oxidized proteins in the SN of healthy 
individuals is twice that of the caudate nucleus, putamen nucleus, and 
frontal cortex, suggesting a susceptibility of the SN to OS (Floor and 
Wetzel, 1998). These results suggest that OS plays an important 
role in PD.

Therefore, it is speculated that antioxidant treatment to regulate 
OS may be a strategy to treat PD. Although many antioxidants, 
such as vitamin E, vitamin C, and desferrioxamine, have been 
tested in clinical trials, none of them have been convincingly shown 
to improve neurodegeneration in PD patients (Fahn, 1992; Group, 
1993, 1998; Devos et  al., 2014). OS can be  measured by the 
biomarkers of OS. Natural antioxidants are a very large diversified 
family of molecules classified by activity (enzymatic or 
nonenzymatic), and chemical structure (e.g., vitamins, trace 
elements, etc.). Catalase (CAT), glutathione peroxidases (GPx), 
superoxide dismutase (SOD), vitamin A, vitamin C, vitamin E, 
vitamin B12, folate, copper (Cu), zinc (Zn), and iron (Fe) are 
important antioxidants in the body. Impairments in antioxidant 
enzymes or non-enzymatic antioxidant networks, along with 
imbalance of redox-active metals, can induce the formation of toxic 
hydroxyl radicals and increase OS, leading to protein oxidation, 
misfolding, and ultimately cell death in PD (Umeno et al., 2017; 
Ben-Shushan and Miller, 2021). Furthermore, studies have also 
proven that many of the abovementioned antioxidants are altered 
in PD patients (Pichler et al., 2013; Medeiros et al., 2016; Anandhan 

et al., 2017), but not all studies agree with this view (Vinish et al., 
2011). Moreover, it remains controversial as to whether such an OS 
injury is a cause or a downstream effect of PD. Observational 
research faces challenges in establishing causality regarding the 
causal relationship between OS and PD.

Mendelian randomization (MR) overcomes such confounders of 
observational studies by using genetic variants (SNPs) as 
instrumental variables (IVs) to infer the causal effect of an exposure 
on an outcome. MR can also reduce bias from reverse causation, 
because genetic phenotypes are postnatally unchanged through a 
lifetime. Therefore, in this study, we aimed to assess the bidirectional 
causal relationship between PD and OS. Understanding the role of 
OS in PD can lead to the development of targeted therapies aimed 
at mitigating its impact and potentially slowing down the progression 
of the disease.

2 Methods

2.1 Study design

In this study, the bidirectional causal relationship between 
OS-related biomarkers and the risk of PD was explored using a 
bidirectional MR design. In the present research, we only extracted 
summarized data from the consortia. Ethical approval was not 
required because the study was based on existing publications and 
public databases. Figure 1 presents the MR analysis flow using the 
TwoSampleMR R package. To distinguish between a true negative 
result and a lack of validity of the MR studies, multiple sensitivity 
analyses were applied to ensure that the three MR assumptions were 
satisfied: (1) Relevance: The chosen genetic variants are associated 
with the exposure of interest. (2) Independence: The genetic variants 
are independent of confounding factors that might influence the 
exposure-outcome relationship. (3) Exclusivity: The genetic variants 
affect the outcome solely through their influence on the exposure, not 
through any alternative pathways.

2.2 GWAS data sources

We retrieved the genetic data of PD and OS biomarkers from the 
online platform of the Integrative Epidemiology Unit (IEU) open 
genome-wide association study (GWAS) project (https://gwas.mrcieu.
ac.uk/, accessed on 20 March 2023). In this study, 11 biomarkers of OS 
were included, namely, CAT (Sun et al., 2018), G-Px (Sun et al., 2018), 
SOD (Sun et al., 2018), vitamin A (data were from the United Kingdom 
Biobank), vitamin C (Shin et al., 2014), vitamin E (data was from the 
United  Kingdom Biobank), vitamin B12 (data were from the 
United Kingdom Biobank), folate (data were from the United Kingdom 
Biobank), Cu (Evans et al., 2013), Zn (Evans et al., 2013), and Fe (data 
were from the United Kingdom Biobank and Benyamin et al., 2014). 
The summary data of PD were obtained from a GWAS including 
33,674 PD cases and 449,056 controls of the International Parkinson 
Disease Genomics Consortium (IPDGC) (Nalls et  al., 2019). As 
mentioned, only the European population summarized data were 
adopted to avoid population heterogeneity. All datasets are publicly 
available online upon request. Detailed information on the GWAS 
datasets is described in Table 1.

https://doi.org/10.3389/fnagi.2024.1423773
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2.3 Mendelian randomization

2.3.1 Selection of IVs
We used the default settings in the R package TwoSampleMR, and 

extracted SNPs showing a significant association with each of the OS 
biomarkers at the conventional GWAS threshold (p < 5 × 10−6) for lack 
of significant SNPs. Similarly, IVs of PD were genome-wide significant 
SNPs (p < 5 × 10−8). To ensure the independence of IVs, all SNPs were 
clumped with a 10,000-kB window to a threshold of r2 < 0.001 to 
ascertain independence between genetic variants. Then, the 
proportion of variance of the exposures explained by the SNPs (R2) 
and F-statistics were calculated to estimate the strength of IVs to 
satisfy the first MR assumption (F > 10 for MR analyses; Palmer et al., 
2011). The same approach was taken for the reverse MR; as such, 
we performed 22 bidirectional MR studies, where OS biomarkers and 
PD were regarded either as exposure or as the outcome.

2.3.2 Mendelian randomization analyses
After clumping IVs, we first performed Steiger filtering to exclude 

SNPs explaining more variance in the outcome than in the exposure. 
Next, we harmonized the exposure and outcome data to produce data 
for MR analysis. In the main analysis, the inverse-variance weighted 
(IVW) method with random–effects was applied to combine the effect 
of different IVs. The IVW method is a widely used approach in MR 
because it provides a straightforward and interpretable summary 
estimate of the causal effect while leveraging genetic information. The 
odds ratio (OR) and 95% confidence intervals (CIs) were calculated 
for each SNP using IVW to assess the risk of exposure to outcome. In 
addition, we also performed the simple median method, weighted 
median (WM) method and MR–Egger regression method. The WM 
method is a median of the weighted estimates and provides a 
consistent effect even if 50% of IVs are pleiotropic. This means that 
even if a substantial proportion (up to 50%) of the IVs used in the 

analysis are pleiotropic, the WM method can still provide consistent 
and unbiased causal effect estimates. The MR–Egger regression 
method is used to detect possible violations of instrumental variable 
assumptions due to directional pleiotropy. It does this by allowing for 
an intercept term in the regression model, which accounts for any bias 
introduced by pleiotropic effects. Additionally, the Mendelian 
Randomization Pleiotropy RESidual Sum and Outlier (MRPRESSO) 
global test is used to detect outlier SNPs that may be biasing estimates 
through horizontal pleiotropy (i.e., SNPs with p < 0.05) and adjust for 
these. For heterogeneity, we applied Cochran’s Q statistic in the inverse 
variance weighting (IVW) and MR Egger regression methods. Finally, 
a leave-one-out analysis (LOO) was performed to detect whether any 
single SNP was disproportionately responsible for the result of each 
MR study. The results of the present study are shown as ORs (95% CIs) 
per genetically predicted increase in each lifestyle factor. For result 
visualization, we constructed scatter plots, forest diagrams, and funnel 
diagrams using the TwoSampleMR package and MRPRESSO package 
in the statistical program R. A p value less than 0.05 was considered 
statistically significant evidence of a causal association.

3 Results

3.1 Instrumental variables for Mendelian 
randomization

The number of IVs and the phenotypic variances they accounted 
for by the IVs are shown in Table 2. All of the variables were associated 
with OS at genome-wide significance. The variance in the exposures 
explained by their respective set of SNPs ranged from 0.2 to 20.1% 
(Tables 2, 3). Other than vitamin C, all instruments had an F-statistics 
of >21, which is above the standard cut-of (> 10) indicating sufficient 
instrumental strength (Bowden et al., 2018; Burgess et al., 2019).

FIGURE 1

The overall flow chart of bidirectional MR study. The “ ” means that genetic variants are not associated with confounders or cannot be directly 
involved in outcome but via the exposure pathway.
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3.2 Causal effect of oxidative stress 
biomarkers on PD

We investigated the association of OS with PD. The IVW method 
provided the results about the causal relationship between PD and 11 
oxidative stress biomarkers. Figure 2 presents the forest plots of the 
associations between Zn and PD. The IVW method shows that 
genetically determined Zn was strongly associated with PD 
(OR = 1.107, 95% CI 1.013–1.211; p = 0.025), which is consistent with 
results from the WM method (OR = 1.136, 95% CI 1.003–1.286; 

p = 0.044) (Table 2; Figure 2). However, there were no significant 
associations of catalase, glutathione peroxidases, superoxide 
dismutase, vitamin A, vitamin C, vitamin E, vitamin B12, folate, 
copper, or iron with PD (Table 2).

3.3 Sensitivity analysis

No heterogeneity was detected by MR–Egger and IVW tests 
(Supplementary Table S1). Additionally, no evidence of 

TABLE 1 Detailed information regarding studies and datasets used in the present study.

Exposure or 
Outcome

Ancestry Participants Web source 
(accessed on 20 
March 2023)

PMID Journal Ref

Oxidative stress

Catalase (CAT) European 3,301 https://gwas.mrcieu.ac.

uk/datasets/prot-a-367/

29,875,488 Nature Sun et al., 2018

Glutathione 

peroxidases (G-Px)

European 3,301 https://gwas.mrcieu.ac.

uk/datasets/

prot-a-1265/

29,875,488 Nature Sun et al., 2018

Superoxide dismutase 

(SOD)

European 3,301 https://gwas.mrcieu.ac.

uk/datasets/

prot-a-2800/

29,875,488 Nature Sun et al., 2018

Vitamin A European 62,991 https://gwas.mrcieu.ac.

uk/datasets/

ukb-b-17406/

NA NA NA

Vitamin C European 2,085 https://gwas.mrcieu.

ac.uk/datasets/

met-a-348/

24,816,252 Nature genetics Shin et al., 2014

Vitamin E European 64,979 https://gwas.mrcieu.ac.

uk/datasets/

ukb-b-6888/

NA NA NA

Vitamin B12 European 64,979 https://gwas.mrcieu.ac.

uk/datasets/

ukb-b-19524/

NA NA NA

Folate European 64,979 https://gwas.mrcieu.ac.

uk/datasets/

ukb-b-11349/

NA NA NA

Copper European 2,603 https://gwas.mrcieu.ac.

uk/datasets/ieu-a-1073/

23,720,494 Human molecular 

genetics

Evans et al., 2013

Zinc European 2,603 https://gwas.mrcieu.ac.

uk/datasets/ieu-a-1079/

23,720,494 Human molecular 

genetics

Evans et al., 2013

Iron European 64,979 https://gwas.mrcieu.ac.

uk/datasets/

ukb-b-20447/

NA NA NA

Iron European 23,986 https://gwas.mrcieu.ac.

uk/datasets/ieu-a-1049/

25,352,340 Nat Commun. Benyamin et al., 

2014

Disorder

Parkinson Disease European 33,674 cases and 449,056 

controls

International Parkinson 

Disease Genomics 

Consortium (IPDGC). 

https://gwas.mrcieu.

ac.uk/datasets/ieu-b-7/

31,701,892 Lancet Neurol Nalls et al., 2019
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between-SNP directional and horizontal pleiotropy was detected 
by the MR-PRESSO global test and MR–Egger regression 
(Supplementary Table S1). We further performed a leave-one-out 
analysis to detect whether the causal estimate was driven by any 
single SNP, which revealed a consistent inverse association 
between genetically predicted Zn levels and the risk of PD 
(Figure 2C).

3.4 Causal effect of PD on oxidative stress 
biomarkers

Additionally, reverse MR analysis was conducted to investigate the 
potential causal effects of PD on 11 OS biomarkers. In these studies, 
we used 10–22 PD-associated SNPs, which explained 0.075–0.201 of 
the variances in PD risk and had an F-statistic of more than 3,650. The 
IVW test results showed no statistically significant associations of PD 
with OS. The null findings were supported by other MR methods 
(Table 3). The Egger intercept did not identify any pleiotropic SNP (p 
of Egger intercept from 0.327 to 0.930). Moreover, the MR-PRESSO 
global test did not identify outlier SNPs. Significant heterogeneity was 
apparent in our IVs for PD (only when Vitamin E and Vitamin B12 is 
the outcome) (IVW and MR Egger, Q pvalue < 0.1) 

(Supplementary Table S2). Similarly, there was no apparent sign of 
significant heterogeneity as assessed by leave-one-out analysis.

4 Discussion

This study represents the inaugural bidirectional investigation into 
the potential involvement of OS in PD. Our research delves into the 
causal connections between 11 OS biomarkers and the risk of PD, 
offering fresh perspectives on the correlation between OS status and 
PD. Notably, among the 11 OS biomarkers studied, we discovered 
genetic evidence supporting the causal link between Zn and PD. Our 
findings exhibited considerable robustness across various MR 
methods, each built upon different assumptions regarding horizontal 
pleiotropy. These findings may inform prevention strategies and 
interventions directed toward OS and PD.

Although many observational studies have highlighted the link 
between OS and PD, there have been few relevant MR studies. These 
MR studies usually focus on iron. Only one one-way MR study that 
examined causality between serum iron levels and PD suggested a 
causal relationship between elevated iron levels (instrumental 
variables, HFE rs1800562, HFE rs1799945, and TMPRSS6 rs855791) 
and a reduced risk of PD (OR 0.88, 95% CI 0.82–0.95; p = 0.001; 

TABLE 2 Results of the MR analyses between liability to oxidative stress and the PD risk.

Exposure N 
SNPs

r
2

F-
statistics

Inverse variance 
weighted

Weighted median MR Egger

OR CI pval OR CI pval OR CI pval

CAT 13 0.107 27.478 1.015 0.923–

1.116

0.765 1.031 0.909–

1.168

0.638 0.962 0.716–

1.292

0.801

G-Px 12 0.175 50.695 0.945 0.877–

1.020

0.147 0.961 0.874–

1.057

0.415 0.929 0.815–

1.060

0.230

SOD 13 0.114 27.131 0.996 0.909–

1.093

0.939 0.973 0.854–

1.108

0.675 0.905 0.731–

1.119

0.375

Vit. A 7 0.003 23.405 0.666 0.361–

1.229

0.193 0.614 0.280–

1.350

0.225 0.529 0.115–

2.434

0.451

Vit. C 10 0.014 2.793 0.837 0.653–

1.074

0.163 0.897 0.641–

1.25

0.524 0.476 0.212–

1.066

0.109

Vit. E 12 0.004 23.148 0.711 0.397–

1.274

0.252 0.570 0.299–

1.086

0.0875 0.611 0.121–

3.097

0.565

Vit. B12 8 0.002 22.539 0.627 0.347–

1.134

0.123 0.608 0.269–

1.376

0.233 0.526 0.105–

2.628

0.463

Folate 14 0.005 21.817 0.869 0.550–

1.374

0.549 0.885 0.472–

1.659

0.704 1.047 0.390–

2.808

0.929

copper 6 0.080 35.180 1.039 0.925–

1.168

0.517 1.096 0.970–

1.238

0.140 0.865 0.711–

1.052

0.219

zinc 7 0.100 33.106 1.107 1.013–

1.211

0.025 1.136 1.003–

1.286

0.044 1.064 0.753–

1.504

0.739

Iron1 10 0.038 84.099 0.993 0.857–

1.152

0.931 0.994 0.812–

1.074

0.334 0.874 0.704–

1.086

0.258

Iron2 13 0.005 22.575 0.721 0.464–

1.119

0.144 0.700 0.380–

1.290

0.252 0.402 0.122–

1.325

0.162

r2 proportion of variance in exposure variable explained by SNPs; F-statistics, “strength” of the instrumental variable. 1GWAS data sources: https://gwas.mrcieu.ac.uk/datasets/ieu-a-1049/. 
2GWAS data sources: https://gwas.mrcieu.ac.uk/datasets/ukb-b-20447/. CAT, Catalase; G-Px, Glutathione peroxidases; SOD, Superoxide dismutase; Vit. A, Vitamin A; Vit. C, Vitamin C; Vit. E, 
Vitamin E; Vit. B12, Vitamin B12.
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Pichler et al., 2013). However, in our study, we did not find a causal 
relationship between iron levels and PD.

For other trace elements, suggestive causal associations were found 
between Zn and PD risk in this work (OR = 1.107, CI = 1.013–1.211, 
p = 0.025). In our previous study, they showed that alterations in zinc 
homeostasis have long been implicated in PD. Zinc exposure has been 
identified as an environmental risk factor for PD, and PD patients were 
clearly shown to have higher zinc exposure than those without PD 
(OR = 11.6, 95% CI: 1.51–90.90) (Pals et  al., 2003). In addition, 
postmortem of idiopathic PD patients and PD mouse models showed 
Zn2+ depositions in dopaminergic neurons (Wang et al., 2023). Zn2+ 
chelation attenuated the loss of nigrostriatal dopaminergic neurons and 
the associated motor deficits induced by 6-OHDA or paraquat. The 
evidence suggests that endogenous Zn2+ plays a key role in the 
pathophysiology of PD. Zinc homeostasis (balance) is important for 
OS. On the one hand, Zn2+ can influence the activity of antioxidant 
enzymes and signaling pathways. On the other hand, overload of 
intracellular Zn2+ can lead to OS (Sikora and Ouagazzal, 2021). 
However, previous studies have found that lower serum and plasma zinc 
levels are associated with a higher risk of PD (Finkelstein et al., 2013; Du 
et al., 2017), which contradicts our findings. This discrepancy may stem 
from differences in study design and population sample sizes. Our study 
utilizes a robust genetic approach, distinct from the observational and 

experimental designs employed in other research. Genetic evidence 
offers a more direct assessment of causal relationships, thereby reducing 
potential confounding factors and biases. Additionally, variations in the 
populations studied, including differences in genetic backgrounds, 
environmental exposures, and dietary habits, might influence the 
results. Further research is needed to elucidate the specific mechanisms 
by which Zn affects PD and to identify potential therapeutic targets for 
intervention. Cu2+ is another common redox-active metal in addition 
to Zn and iron, but in this study, the causal effect of Cu2+ on PD was not 
significant. Redox-active metals are common cofactors that promote 
amyloid aggregation in neurodegenerative diseases, such as PD 
(Ben-Shushan and Miller, 2021). Overall, we speculate that redox-active 
metals do not entirely mediate the occurrence of PD through OS.

Enzymatic antioxidants, such as GPx, CAT, and SOD, are a critical 
component of the body’s defense mechanisms against OS (Emamzadeh 
and Surguchov, 2018). It could inhibit the formation of peroxide and 
remove free radicals. These enzymatic antioxidants work in concert to 
maintain the delicate balance between ROS production and 
neutralization, helping to prevent oxidative damage and maintain 
cellular health. Studies found that there were lower levels of 
antioxidant activity of SOD, CAT, and GPx in the PD group compared 
to controls (Khan and Ali, 2018; Duarte-Jurado et  al., 2021). For 
example, decreased levels of GPx in the substantia nigra pars compacta 

TABLE 3 Associations between genetically predicted PD and oxidative stress biomarkers.

Outcome N 
SNPs

r
2

F-
statistics

Inverse variance 
weighted

Weighted median MR Egger

OR CI pval OR CI pval OR CI pval

CAT 22 0.201 4475.823 0.951 0.881–

1.025

0.190 0.949 0.854–

1.054

0.331 1.017 0.848–

1.221

0.854

G-Px 22 0.201 4475.823 1.024 0.944–

1.110

0.571 1.007 0.899–

1.128

0.902 1.121 0.923–

1.361

0.264

SOD 22 0.201 4475.823 0.989 0.915–

1.068

0.773 0.966 0.862–

1.083

0.553 0.974 0.084–

1.179

0.787

Vit. A 22 0.201 4475.823 0.992 0.974–

1.010

0.405 0.987 0.962–

1.013

0.314 0.990 0.945–

1.038

0.690

Vit. C 15 0.120 3908.796 1.010 0.966–

1.055

0.675 1.010 0.951–

1.073

0.738 0.971 0.863–

1.092

0.632

Vit. E 22 0.201 4475.823 0.988 0.967–

1.009

0.264 0.995 0.968–

1.022

0.696 1.008 0.954–

1.065

0.780

Vit. B12 22 0.201 4475.823 0.998 0.977–

1.020

0.857 0.989 0.965–

1.015

0.411 0.977 0.926–

1.031

0.413

Folate 22 0.201 4475.823 0.999 0.982–

1.017

0.922 0.999 0.974–

1.025

0.950 0.980 0.937–

1.024

0.373

Copper 11 0.096 4265.144 0.908 0.799–

1.032

0.141 0.885 0.748–

1.048

0.156 0.881 0.645–

1.204

0.448

Zinc 11 0.096 4265.144 1.034 0.931–

1.170

0.600 0.988 0.832–

1.174

0.893 0.931 0.689–

1.260

0.657

Iron1 10 0.075 3650.035 1.015 0.965–

1.068

0.562 1.022 0.957–

1.092

0.610 1.079 0.903–

1.290

0.426

Iron2 22 0.201 4475.823 1.002 0.985–

1.019

0.813 1.002 0.979–

1.026

0.849 0.978 0.937–

1.021

0.321

r2 proportion of variance in exposure variable explained by SNPs; F-statistics, “strength” of the instrumental variable. 1GWAS data sources: https://gwas.mrcieu.ac.uk/datasets/ieu-a-1049/. 
2GWAS data sources: https://gwas.mrcieu.ac.uk/datasets/ukb-b-20447/. CAT, Catalase; G-Px, Glutathione peroxidases; SOD, Superoxide dismutase; Vit. A, Vitamin A; Vit. C, Vitamin C; Vit. E, 
Vitamin E; Vit. B12, Vitamin B12.
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(SNpc) are one of the earliest biochemical changes observed in PD 
(Pearce et al., 1997; Tobón-Velasco et al., 2010; Smeyne and Smeyne, 
2013). GPx is an important antioxidant enzyme that helps protect cells 
from oxidative stress by neutralizing harmful ROS and peroxides. One 
of the biochemical alterations that has been detected in the 
postmortem brains of PD patients is the selective GPx reduction in 
the SNpc. In vivo and in vitro experiments have shown that 
replenishing intracellular GPx levels can prevent oxidative damage 
and maintain mitochondrial function in dopaminergic cells (Smeyne 
and Smeyne, 2013; Duarte-Jurado et  al., 2021). However, these 
findings cannot resolve the previous debate on whether these 
enzymatic antioxidants are the cause of PD or a consequence of it. To 

date, there are no other MR studies that have assessed the causal 
association of enzymatic antioxidants and PD risk. In our MR study, 
it appeared likely that there is no causality between enzymatic 
antioxidants and PD risk.

Several studies have identified an association of nonenzymatic 
antioxidants, vitamins (vitamin A, E, C, B12, and folate) with PD 
(Hughes et al., 2016). Low plasma levels of exogenous antioxidants 
(including vitamin C) have been reported in patients with 
neurodegenerative diseases such as PD. In addition, a higher 
prevalence of PD with subclinical vitamin C deficiencies has also been 
reported (Duarte-Jurado et al., 2021). It has been found that vitamin 
E protects dopaminergic neurons against MPTP-mediated toxicity. A 

FIGURE 2

MR plots for the relationship of Zinc (N  =  2,603) with PD (N  =  482,730). (A) Forest plot of individual and combined SNP MR-estimated effect sizes. The 
effect estimates represent the odds that each S.D. increase in PD incidence increases odds of appendicular lean mass, and the error bars represent 95% 
CIs. (B) Scatter plot of SNP effects on Zinc vs. PD, with the slope of each line corresponding to the estimated MR effect per method. The x-axis 
represents the genetic association with Zinc risk; the y-axis represents the genetic association with the risk of PD. The data are expressed as raw β 
values with 95% Cis. (C) Leave one out plot, which detect outlier SNPs in Zinc and PD.
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cross-sectional study reported that vitamin E status was inversely 
associated with PD risk (Miyake et al., 2011). However, our results do 
not support the hypothesis that vitamins substantially affect the risk 
of PD, which is in line with other case–control studies (Logroscino 
et al., 1996; Scheider et al., 1997; Powers et al., 2003). Furthermore, 
when antioxidant vitamins were tested in clinical trials, their effects 
were not reproduced. A prospective cohort study found that the intake 
of antioxidant vitamins does not reduce the risk of PD (Hughes et al., 
2016). Our updated results suggest that causality causation is unlikely. 
Therefore, these results support the hypothesis that antioxidant 
supplementation is unlikely to be of clinical benefit in the prevention 
of PD. It is important to note that our null findings do not invalidate 
the role of oxidative stress in PD. Larger epidemiological studies and 
directed laboratory studies are needed to determine the biochemical 
and chemical biological bases for these associations.

The advantages of the present study include the following aspects. 
First, 11 OS biomarkers were included, which made it the most 
comprehensive MR study between PD and the OS system. Second, 
we used several essential methods to verify the accuracy of the results, 
such as calculating the F statistic and power, and conducting 
heterogeneity and pleiotropy tests. There were some limitations as well. 
First, in order to extract more SNPs showing a significant association 
with OS biomarkers to maintain the study power in MR, the threshold 
of the p value was set as p < 5 × 10−6, meaning that the proportion of 
variance explained for the associations between some IVs and OS 
biomarkers was relatively small. Additionally, this is a European based 
study, and our findings cannot be generalized to other populations.

5 Conclusion

In conclusion, this study used large exposure and outcome GWASs 
to conduct MR analysis to infer a causal relationship between OS and 
PD. We found robust genetic evidence for an association between Zn 
levels and higher PD risk, and the other antioxidants do not affect the 
risk of PD. This finding contrasts with preclinical studies, where 
antioxidants play a significant role in maintaining neuronal survival and 
activity in PD models (Duarte-Jurado et  al., 2021). However, such 
effects have not been observed in clinical trials, as antioxidants have 
failed to modify the disease in terms of clinical symptoms or the onset 
of PD (Logroscino et al., 1996). This has given rise to the hypothesis that 
circulating antioxidant levels might not be representative of antioxidant 
capacity, and that increasing the levels of antioxidant in blood (either by 
nutritional intake or supplements) does not necessarily result in 
additional antioxidative effects. Our study offers novel insights into the 
complex interplay between antioxidant status and PD.
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Glossary

CAT Catalase

CIs Confidence intervals

Cu Copper

Fe Iron

GPx Glutathione peroxidases

GWAS Genome-wide association study

IVs Instrumental variables

IVW Inverse-variance weighted

IPDGC International Parkinson Disease Genomics Consortium

MR Mendelian randomization

MR-PRESSO Mendelian Randomization Pleiotropy RESidual Sum and Outlier

OS Oxidative stress

OR Odds ratio

PD Parkinson’s disease

ROS Reactive oxygen species

SNPs Single-nucleotide polymorphisms

SN Substantia nigra

SNpc Substantia nigra pars compacta

SOD Superoxide dismutase

WM Weighted median

Zn Zinc
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