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Background: Determining brain atrophy is crucial for the diagnosis of 
neurodegenerative diseases. Despite detailed brain atrophy assessments using 
three-dimensional (3D) T1-weighted magnetic resonance imaging, their practical 
utility is limited by cost and time. This study introduces deep learning algorithms 
for quantifying brain atrophy using a more accessible two-dimensional (2D) T1, 
aiming to achieve cost-effective differentiation of dementia of the Alzheimer’s 
type (DAT) from cognitively unimpaired (CU), while maintaining or exceeding 
the performance obtained with T1-3D individuals and to accurately predict AD-
specific atrophy similarity and atrophic changes [W-scores and Brain Age Index 
(BAI)].

Methods: Involving 924 participants (478 CU and 446 DAT), our deep learning 
models were trained on cerebrospinal fluid (CSF) volumes from 2D T1 images and 
compared with 3D T1 images. The performance of the models in differentiating 
DAT from CU was assessed using receiver operating characteristic analysis. 
Pearson’s correlation analyses were used to evaluate the relations between 3D 
T1 and 2D T1 measurements of cortical thickness and CSF volumes, AD-specific 
atrophy similarity, W-scores, and BAIs.

Results: Our deep learning models demonstrated strong correlations between 
2D and 3D T1-derived CSF volumes, with correlation coefficients r ranging from 
0.805 to 0.971. The algorithms based on 2D T1 accurately distinguished DAT 
from CU with high accuracy (area under the curve values of 0.873), which were 
comparable to those of algorithms based on 3D T1. Algorithms based on 2D T1 
image-derived CSF volumes showed high correlations in AD-specific atrophy 
similarity (r  =  0.915), W-scores for brain atrophy (0.732  ≤  r  ≤  0.976), and BAIs 
(r  =  0.821) compared with those based on 3D T1 images.

Conclusion: Deep learning-based analysis of 2D T1 images is a feasible and 
accurate alternative for assessing brain atrophy, offering diagnostic precision 
comparable to that of 3D T1 imaging. This approach offers the advantage of the 
availability of T1-2D imaging, as well as reduced time and cost, while maintaining 
diagnostic precision comparable to T1-3D.
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Introduction

Neurodegenerative processes characterized by brain atrophy 
represent the final common pathway observed in most types of 
dementia, including Alzheimer’s disease (AD), frontotemporal 
dementia, and dementia with Lewy bodies (Rosen et  al., 2002; 
Whitwell et  al., 2007). Brain atrophy is a crucial biomarker that 
displays distinct patterns specific to each type of dementia (Young 
et  al., 2020). Furthermore, the extent of brain atrophy is highly 
correlated with cognitive performance and is recognized as a predictor 
of future cognitive decline (Sluimer et al., 2008; Ikram et al., 2010).

Traditionally, for assessing brain atrophy, cortical thickness 
measurement and volumetric analysis have served as research 
surrogates (Lemaitre et al., 2012; Pini et al., 2016). These surrogate 
markers can be quantified using three-dimensional (3D) T1-weighted 
images from magnetic resonance imaging (MRI), offering improved 
diagnostic performance for research purposes. Despite its high 
diagnostic performance, the practical application of 3D T1 imaging in 
clinical settings is impeded by its time-consuming and costly 
acquisition process, thus limiting its clinical readiness. By contrast, 
clinical practice predominantly utilizes two-dimensional (2D) 
T1-weighted images from MRI images. Within these settings, 
radiologists and clinicians assess brain atrophy through visual 
examination, focusing on indicators, such as enlargement of the lateral 
ventricles (LVs), sulcal widening between the gyri, and the width of 
the temporal horn adjacent to the hippocampus (Koedam et al., 2011; 
Harper et al., 2015). Cerebrospinal fluid (CSF) volume, in particular, 
has been shown to correlate with brain atrophy, providing a valuable 
biomarker for neurodegenerative diseases (De Vis et  al., 2016). 
However, these visual assessments tend to be less accurate and less 
precise than quantitative analyses, underscoring the need for 
accessible and quantitative methods based on 2D T1 images in 
clinical practice.

Recent advancements in deep learning have led to a few attempts 
to use 2D T1 images to predict brain atrophy (Marwa et al., 2023; 
Zhou et al., 2023), which is traditionally quantified via 3D T1 images. 
The Convolutional Neural Network is designed with an architecture 
that drew inspiration from the human visual cortex, mirroring the 
interconnectedness observed among neurons (Krizhevsky et  al., 
2012). Fully Convolutional Networks (Long et al., 2015) have found 
extensive application in semantic segmentation within the domain of 
computer vision. Through the application of deep learning, 2D T1 
images with better clinical readiness may be reconstructed to quantify 
brain atrophy with a level of diagnostic accuracy approaching that of 
3D T1 images.

A clinical decision support system (CDSS) enhances health-
related decisions by integrating pertinent clinical knowledge and 
patient information, thereby improving healthcare delivery (Jerry 
Osheroff et al., 2012). In particular, non-knowledge-based CDSS make 
decisions using techniques, such as artificial intelligence, machine 
learning, or deep learning, rather than directly adapting the knowledge 

of medical experts (Sutton et al., 2020). Thus, the CDSS may contribute 
to filling the gap in unmet needs in clinical practice. In memory 
clinics, clinicians often encounter complex inquiries from patients, 
such as comparisons of their brains to dementia or age-related brain 
atrophy. To answer these questions, researchers have attempted to 
develop algorithms predicting the AD brain similarity score (Lee et al., 
2018a) or brain age index (BAI) (Kang et  al., 2023) using 3D T1 
images. However, considering the practical limitations of 3D T1 
images, algorithms based on 2D T1 images should be introduced in 
clinical settings.

In this study, we developed an algorithm that quantifies brain 
atrophy by measuring CSF volumes in the regions of interest (ROIs) 
including anterior and posterior lateral ventricles (LVs), sulcal 
widenings between the gyri in the frontal, temporal, parietal and 
occipital lobes, and the width of the temporal horn adjacent to the 
hippocampus using 2D T1 images. We  also validated the clinical 
utility of this algorithm in terms of the differentiating patients with 
dementia of the Alzheimer’s type (DAT) from cognitively unimpaired 
(CU) individuals, prediction of AD-specific atrophy similarity, and 
calculation of atrophic changes (W-score) and BAI relative to age and 
sex, based on CSF measurements in the ROIs. Given that 2D T1 
images are more commonly used in clinical practice than 3D T1 
images, our practical approach may enable earlier diagnosis, timely 
treatment adjustments, and effective monitoring of disease progression.

Materials and methods

Participants

To develop our algorithm, 1,120 participants aged 55–90 years 
were recruited from the Alzheimer’s disease convergence research 
center at Samsung Medical Center (SMC) in South Korea 
(Supplementary Figure S1). All participants underwent 
neuropsychological tests, brain MRI (including 3D T1 images), and 
APOE genotyping. CU individuals had no objective cognitive 
impairment observed after a comprehensive neuropsychological test 
on any cognitive domain (above the-1.0-standard deviation [SD] of 
age-and education-matched norms in memory and below-1.5 SD in 
other cognitive domains) (Ahn et al., 2010). Participants with DAT 
met the diagnostic criteria of the 2011 National Institute on Aging and 
Alzheimer’s Association (McKhann et  al., 2011). To calculate the 
W-score using an independent cohort, we included an additional 109 
CU participants from the SMC.

We excluded participants who had any of the following conditions: 
(1) white matter hyperintensities due to radiation injury, multiple 
sclerosis, vasculitis, leukodystrophy or metabolic disorders; (2) 
traumatic brain injury; (3) territorial infarction; (4) brain tumor; and 
(5) rapidly progressive dementia.

The study protocol received approval from the Institutional 
Review Board of SMC, and all procedures were conducted in 
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accordance with the approved guidelines. Written consent was 
obtained from each participant prior to their involvement in the study.

Acquisition and preprocessing of 3D and 
2D T1 images

A 3.0 T MRI scanner (Philips 3.0 T Achieva: Philips Healthcare, 
Andover, MA, United States) was used to acquire 3D T1 turbo field-
echo MRI scans. Parameters were as follows: sagittal slice thickness, 
1.0 mm with 50% overlap; and matrix size of 240 × 240 pixels 
reconstructed to 480 × 480 over a field view of 240 mm. Three-
dimensional segmentation masks were obtained from the CIVET 
anatomical pipeline (version 2.1.0) for automated structural image 
analysis (Zijdenbos et al., 2002). The cortical thickness in the CIVET 
was computed using the Euclidean distance between the linked 
vertices of the inner and outer cortical surfaces (Kim et al., 2005, 

2021). The thickness of the cortical regions of interest (ROIs_Cth) 
were the gray matter of the frontal, temporal, parietal, and occipital 
lobes. We  also measured the extracerebral CSF (eCSF) volumes, 
focusing on the eCSF in the vicinity of the gray matter in the frontal, 
temporal, parietal, and occipital regions; the anterior and posterior LV 
volumes; and the volumes near the hippocampal regions of the LVs 
(ROIs_CSFvol).

Figure  1 illustrates the framework used in this study. For 
preprocessing (Figure 1A), 20 of the 480 axial slices were selected from 
the 3D T1 images to match the image view acquired from the 2D MRI 
scan. Specifically, we extracted axial view 2D T1 images from 3D T1 
images by selecting one image every 15 slices, as there were not many 
participants who had both 3D and 2D T1 images acquired 
simultaneously. Sampling was conducted representatively for some 
subjects, and the slice numbers that appeared similar to the 2D T1 
images view were identified. We ensured that the entire head was 
included by confirming the top and bottom slices of the head. Then, 

FIGURE 1

Framework of the study. The figure illustrates the analysis process of a system that automatically measures cortical thickness and CSF space from 2D 
MR images and predicts biomarkers related to Alzheimer’s disease. Panel (A) presents the preprocessing step, with 3D ROI annotations derived from 3D 
T1 MRI, leading to the acquisition of corresponding 2D images. Panel (B) shows the process of automatically segmenting ROIs in 2D MR images using 
deep learning techniques. Panel (C) represents the process of predicting the volume values for each ROI based on the segmented results from the 
images. Panel (D) demonstrates the use of the calculated volume values in predicting biomarkers related to Alzheimer’s disease. MRI, magnetic 
resonance imaging; ROIs, regions of interest; ROIs_Cth, ROIs of cortical thickness; ROIs_CSFvol, ROIs of cerebrospinal fluid space volume; eCSF, 
extracerebral cerebrospinal fluid space; LV, lateral ventricle; MLP, multilayer perceptron; AD, Alzheimer’s disease; DAT, dementia of Alzheimer’s type; 
CU, cognitively unimpaired; BAI, brain age index.
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Z-score normalization was applied to minimize brightness and 
contrast variations among the input 2D images. Two-dimensional 
label images in the axial view were also extracted from the CIVET 3D 
label mask images, where the label slice indices were identical to the 
selected MRI slice indices. After verifying the 2D label mask images, 
an image preprocessing technique of closing, with a kernel size of 5, 
was applied to smooth the noisy components in the masks. Data 
preprocessing steps were reviewed together with physicians, and all 
processed image files were stored and utilized in Nifti format.

Deep learning-based segmentation for the 
2D T1 images

Convolutional Neural Network-based deep learning models were 
developed to segment the ROIs (Figure 1B). For the image deep-
learning semantic segmentation task of 2D T1 images, 980 cases with 
dimensions of 360, 480, and 480, corresponding to the x, y, and z axes, 
were selected from the 3D image format. Ultimately, a size of 480 by 
360 for axial 2D images was used for the developed model. Image 
augmentation was applied for deep learning performance: axial MR 
images were randomly flipped in the horizontal direction, and 
brightness was adjusted in the range of-50 to 50. The physicians agreed 
to apply these preprocessing steps and use those as training data.

In the segmentation model, Inception-v3 based convolutional 
layers were employed for feature extraction (Szegedy et al., 2016), 
followed by the addition of deconvolutional layers. Skip connections 
were also implemented, linking each convolutional layer with its 
corresponding three deconvolutional layer to enhance detailed capture 
(Park et al., 2021). During training, 5-fold cross-validation was applied 
and the model was optimized using the Adam optimizer. The loss 
function employed was sparse softmax cross-entropy, and ReLU was 
utilized as the activation function. Additionally, L2 regularization was 
applied to prevent overfitting. The development of deep-learning 
network models was carried out using a Python 3.8 environment 
(Python Software Foundation), and the TensorFlow library was 
utilized for training the models.

The segmentation performance was evaluated by measuring the 
Dice Similarity Coefficient (DSC) between the ground truth and the 
prediction areas (model-based, automatically determined region). The 
DSC can be expressed in terms of True Positives (TP), False Positives 
(FP), and False Negatives (FN) as follows: DSC = 2 × TP / 
(2 × TP + FP + FN). The model was trained using a graphics processing 
unit (NVIDIA RTX A6000). The parameters were determined via grid 
search with a batch size of 2 and 4, dropout rates of 0.4, 0.5, and 0.6, 
learning rates of 1e-3, 1e-4, and 1e-5, and weight decays of 1e-4 and 
1e-3. Batch normalization (Ioffe and Szegedy, 2015) and mean 
subtraction were used to prevent internal covariate shifts.

Quantification of cortical thickness and 
CSF volume from 2D T1 images

The sum of the annotated areas from CIVET was used as a feature 
for deep learning models to train the relation between the annotated 
areas and the corresponding cortical thickness or volume of CSF 
spaces (Figure 1C). The total number of segmented pixels for each 
ROI was summed from a stack of segmentation results for each 

participant. Independent regression models were trained for each ROI 
using each participant’s features, including the ROI summation result, 
age, and sex information. The model was based on a Multi-Layer 
Perceptron (MLP) algorithm, where the ground truth for the model 
was the cortical thickness (Cth_3D) or CSF volume (CSFvol_3D) of 
the ROIs acquired from the 3D T1 images using the CIVET pipeline.

For the development of MLP models, experiments were conducted 
to determine optimal hyperparameters using a grid search with batch 
sizes of 16, 48, 64, 68, and 96; dropout rates of 0.3, 0.4, and 0.5; 
learning rates of 3e-4 and 3e-3; weight decays of 1e-4 and 1e-3; first 
hidden layers of 16, 32, 64, and 128; and second hidden layers of 4, 8, 
16, 32, and 64. The models were developed using the PyTorch 
framework (Paszke et al., 2019). Ten times repeated 10-fold cross-
validation was performed with the development dataset (n = 924). The 
best model, selected based on the minimum root mean square error 
within the optimal hyperparameter sets, was then evaluated on the test 
dataset (n = 196). We applied the best model for each ROI to predict 
the cortical thickness or CSF volume from the deep-learning-based 
segmentation results.

Classifiers distinguishing DAT from CU and 
prediction of AD-specific atrophy similarity

Figure 1D provides a schematic overview of the development of 
the AD biomarker prediction model. Each model for the AD 
biomarkers was trained using a development dataset, applying 
10-times repeated 10-fold cross-validation. After training, the best-
performing model was selected and tested using an independent test 
set (Park et al., 2022).

Initially, classification models were developed to distinguish DAT 
from CU using MLP. The hyperparameter grid search was configured 
in the same manner as in the previous regression experiments. In the 
model training session, the input features included the CSF volume of 
the ROIs as well as age and sex. The performance was measured in 
terms of the area under the receiver operating characteristic curve 
(AUC) and the area under the precision-recall curve (AUPRC).

The AD-specific atrophy similarity measure quantitatively 
indicates the degree to which the brain observed in an individual’s 
brain image resembles an AD. Methods based on machine learning 
have been proposed for calculating AD-specific atrophy similarity 
(Lee et al., 2018a). In this study, the ‘AD-specific atrophy similarity’ is 
measured using a continuous value between 0 and 1 obtained from 
the DAT classification model. During training, DAT was mapped to 1 
and CU to 0. An optimal threshold was then applied to distinguish 
between DAT and CU in the final stage. The continuous values 
generated, which approximated 1 for DAT cases, were used as 
AD-specific atrophy similarity.

Prediction of W-scores and BAI using CSF 
volumes

Using the CSF volumes in the seven ROIs relative to the healthy 
control group, W-scores were computed for each participant. This 
metric is akin to z-scores but is modified for particular covariates. A 
previous investigation employed W-scores to encapsulate 
discrepancies in pathological characteristics between patient cohorts 

https://doi.org/10.3389/fnagi.2024.1423515
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Park et al. 10.3389/fnagi.2024.1423515

Frontiers in Aging Neuroscience 05 frontiersin.org

and control groups in neuroimaging (La Joie et al., 2012). In this study, 
we used age and sex as covariates in a multiple linear regression model 
to calculate the expected volume of the CSF space in each 
ROI. We recruited an isolated cohort of 109 CU individuals from the 
SMC. The W-score is calculated as follows:

 
W score

V E A SCSF CU

CU
-

,
=

− ( )
σ

where VCSF  is the participant’s CSF space volume, E A SCU ,( )  is 
he expected CSF space volume in the CU group for the participant’s 
age (A) and sex (S), and σCU is the standard deviation of the residuals 
in the CU group. A positive W-score denotes a volumetric increase in 
the CSF in certain brain regions. In the present study, W-scores were 
computed from the CSF volumes at ROIs_ CSFvol based on the 3D T1 
(CSFvol_3D) and 2D T1 images (CSFvol_2D). The correlation 
coefficients r were calculated between the W-scores of CSFvol_3D 
and CSFvol_2D.

In addition, individual BAIs were calculated from the seven ROIs_
CSFvol. The ground truth for brain age was estimated using Statistical 
Parametric Mapping 12 software, and a regression model based on 
MLP was developed to predict BAIs. The input features for the MLP 
model were the CSFvol_3D as well as age and sex, and the 
hyperparameter grid search was set up similarly to the previous 
experiments. A 10-fold cross-validation was repeated 10 times using 
the development dataset (n = 896) and evaluated with the test datasets 
(n = 187). Correlation coefficients r were calculated between BAI 
values from CSFvol_3D and CSFvol_2D.

Statistical analyses

We used the Student’s t-test for normally distributed 
continuous variables and the Mann–Whitney U test for 
non-normally distributed variables to compare the two groups. 
The chi-square test was used to examine the associations between 
categorical variables. We  considered p < 0.05 to be  statistically 
significant. To evaluate the statistical differences between the 
AUCs in the classification task, we conducted the DeLong’s test 
(DeLong et al., 1988). We performed Pearson correlation analyses 

and Bland–Altman analyses to investigate the relations between 
3D T1 and 2D T1 measurements of cortical thickness and CSF 
volume, AD-specific atrophy similarity, W-scores, and 
BAI. Statistical analyses were performed using the scipy package of 
Python 3.8.

Results

Clinical characteristics

Table 1 presents the demographic and clinical characteristics of 
the participants. Among the 924 participants in the development 
dataset, 478 (51.7%) were diagnosed with CU, and 446 (48.3%) were 
diagnosed with DAT. The mean age was 68.3 ± 11.6 (mean ± SD) years 
for the CU group and 70.3 ± 9.8 years for the DAT group. The 
proportions of females were 59.0 and 58.7% in the CU and DAT 
groups, respectively. The proportion of APOE ε4 carriers was 25.3% 
among the CU participants and 52.9% among those with DAT. No 
statistically significant differences were observed between the model 
development and test dataset.

Performances of segmentation

The segmentation results of each ROIs_Cth measured in the 
5-fold averaged DSC were as follows: 0.816 (95% Confidence Interval 
[CI]: 0.812–0.820) for frontal Cth, 0.793 (0.790–0.797) for temporal 
Cth, 0.777 (0.773–0.783) for parietal Cth, and 0.720 (0.712–0.728) for 
occipital Cth. The average DSC values of the CSF space segmentation 
were 0.874 (0.870–0.878) for the anterior LV, 0.852 (0.847–0.857) for 
the posterior LV, and 0.637 (0.628–0.646) for the region around the 
hippocampal ventricle. The average DSC values for the frontal, 
temporal, parietal, and occipital eCSF were 0.640 (0.625–0.655), 0.524 
(0.508–0.540), 0.632 (0.618–0.646), and 0.502 (0.485–0.519), 
respectively (95% CI for all values). The optimized hyperparameters 
found through experimentation are as follows: batch size of 4, dropout 
rate of 0.5, learning rate of 1e-4, and, weight decay of 1e-5. 
Supplementary Figure S2 shows the 2D T1 images (left), corresponding 
ground-truth images (middle), and predicted images (right).

TABLE 1 Demographics of participants.

Development dataset Test dataset p-value†

Total CU DAT p-value Total CU DAT p-value

N  =  924 N  =  478 N  =  446 N  =  196 N  =  113 N  =  83

Age, years 69.2 ± 10.8 68.3 ± 11.6 70.3 ± 9.8 0.087 67.9 ± 11.3 67.9 ± 11.1 67.9 ± 11.7 0.640 0.086

Female, N (%) 542 (58.7) 282 (59.0) 262 (58.7) 1.000 115 (58.7) 71 (62.3) 44 (52.4) 0.218 1.000

Education, 

years
11.6 ± 4.7 12.0 ± 4.6 11.2 ± 4.8 0.004 12.1 ± 5.1 12.1 ± 4.9 12.2 ± 5.4 0.634 0.098

APOE ε4 

carriers, N (%)
357 (39.7) 121 (25.3) 236 (52.9) <0.001 60 (31.4) 28 (24.6) 32 (38.1) 0.014 1.000

MMSE 23.8 ± 6.1 28.1 ± 1.9 19.1 ± 5.6 <0.001 24.2 ± 5.9 28.1 ± 2.1 18.9 ± 5.3 <0.001 0.338

The values are expressed as mean ± standard deviation or number (percentage).
CU, cognitively unimpaired; DAT, dementia of Alzheimer’s type; SD, standard deviation; APOE ε4, apolipoprotein E ε4; MMSE, Mini-Mental State Exam. †Comparisons between development 
and test dataset.
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Correlations between Cth_3D and Cth_2D, 
and between CSFvol_3D and CSFvol_2D

Cth_2D was highly correlated with Cth_3D (Figure  2A) with 
correlation coefficient r of 0.802 (0.778–0.823) for frontal gray matter, 
0.810 (0.787–0.830) for temporal gray matter, 0.817 (0.795–0.837) for 
parietal gray matter, and 0.644 (0.606–0.680) for occipital gray matter. 
Moreover, CSFvol_2D was highly correlated with CSFvol_3D (Figure 2B), 
with correlation coefficients r of 0.850 (0.832–0.866) for frontal eCSF, 
0.861 (0.844–0.876) for temporal eCSF, 0.876 (0.860–0.890) for parietal 
eCSF, 0.805 (0.782–0.826) for occipital eCSF, 0.971 (0.967–0.974) for 
anterior LV, 0.970 (0.966–0.973) for posterior LV, and 0.890 (0.877–0.903) 
for the region surrounding the hippocampal ventricle. The optimized 
hyperparameters of the lateral ventricle were as follows: first hidden layer 
of 128 nodes, second hidden layer of 16 nodes, a batch size of 64, a 
dropout rate of 0.3, a learning rate of 3e-3, and a weight decay of 1e-4. 
Because the correlation coefficient r values between CSFvol_3D and 
CSFvol_2D were higher than those between Cth_3D and Cth_2D, 
subsequent analyses (including distinguishing DAT from CU, AD-specific 

atrophy similarity, W-scores, and BAI) were conducted using CSFvol_2D 
but not Cth_2D.

In order to compare the ‘true 2D T1 images’ and the ‘2D T1 
images derived from 3D T1 images,’ we obtained an independent 
dataset of 364 participants (170 CU and 194 DAT) with both true 2D 
T1 and 3D T1 images (Supplementary Table S1). The CSFvol_2D from 
the 3D T1 images was highly correlated with the true 2D T1 images 
(Supplementary Figure S3), with correlation coefficients r of 0.815 for 
frontal eCSF, 0.938 for temporal eCSF, 0.878 for parietal eCSF, 0.798 
for occipital eCSF, 0.998 for anterior LV, 0.997 for posterior LV, and 
0.988 for the region surrounding the hippocampal ventricle.

Performances of DAT classifiers and 
AD-specific atrophy similarity based on 
CSFvol_2D

The performance of the classifier based on CSFvol_3D exhibited 
an AUC of 0.905 and an AUPRC of 0.891. Similarly, the classifier’s 
performance based on CSFvol_2D demonstrated high accuracy, 

FIGURE 2

Correlation of (A) cortical thickness and (B) extracerebral cerebrospinal fluid space volume between 3D T1 and 2D T1 across regions of interest. Scatter 
plots show correlations for (A) cortical thickness (mm) in the frontal, temporal, parietal, and occipital lobes, and (B) extracerebral cerebrospinal fluid 
(eCSF) space volume (mm3) in the vicinity of the gray matter in the frontal, temporal, parietal, and occipital regions, the anterior and posterior lateral 
ventricle volumes, and volumes nearby hippocampus regions. Regression lines and 95% confidence intervals compare measurements from 3D T1 
(x-axis) to 2D T1 (y-axis). 3D, three-dimensional; 2D, two-dimensional; MR, magnetic resonance imaging; CSF, cerebrospinal fluid.
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comparable to that of the CSFvol_3D-based classifier, with the model 
inputs yielding an AUC of 0.873, an AUPRC of 0.849, a sensitivity of 
0.819, and a specificity of 0.761. The DeLong et al. (1988) test was 
performed to compare the AUCs of CSFvol_3D and CSFvol_2D. The 
obtained p-value was 0.053, indicating no significant difference in the 
analysis results between the conventional 3D T1-based analysis and 
the proposed 2D T1-based deep learning analysis. The optimal 
hyperparameters for the classifier were as follows: 128 nodes in the 
first hidden layer, 16 nodes in the second hidden layer, batch size of 
64, dropout rate of 0.5, learning rate of 3e-4, and weight decay of 1e-4.

We conducted an error analysis of the classification results, and 
the findings are as follows: For false positives, where the clinical 
diagnosis is CU but the model predicted DAT, the CSF volume values 
were generally predicted to be lower compared to the true positive 
cases due to the poor image segmentation, and the average age was 
higher (75.0 ± 5.4 vs. 64.5 ± 11.1). For false negatives, where the clinical 
diagnosis is DAT but the model predicted CU, the CSF volume values 
were generally predicted to be higher compared to the true negative 
cases, and the average age was also higher (73.7 ± 10.5 vs. 67.5 ± 11.3).

The correlation coefficient r between AD-specific atrophy 
similarity based on CSFvol_3D and that based on CSFvol_2D was 
0.915 (0.889–0.935) (Figure 3), indicating a high degree of correlation. 
The Bland–Altman plot is presented in Supplementary Figure S4A.

W-scores and BAI based on CSFvol_2D

Figure 4 shows the correlation between W-scores calculated using 
CSFvol_3D and CSFvol_2D. The correlation coefficients r for the 
W-scores in the LV were the strongest at 0.976 (0.969–0.982) for the 
anterior LV, and 0.950 (0.935–0.962) for the posterior LV. The volume 
around the hippocampal ventricle also showed a strong correlation, 
with a correlation coefficient r of 0.894 (0.862–0.919). The eCSF 

volumes in the frontal, temporal, parietal, and occipital regions also 
exhibited high correlation coefficients r of 0.837 (0.790–0.875), 0.846 
(0.801–0.882), 0.846 (0.801–0.882), and 0.732 (0.659–0.791), 
respectively.

We assessed the correlation between the BAI calculated based on 
CSFvol_3D and BAI calculated based on CSFvol_2D (Figure 5). The 
correlation coefficient r between the two BAIs was 0.821 (0.768–
0.863), and the Bland–Altman plot is presented in Supplementary  
Figure S4B. The optimal hyperparameters for the BAI model were: 128 
nodes in the first hidden layer, 64 nodes in the second, batch size of 
68, 0.5 dropout rate, learning rate of 3e-4, and weight decay of 1e-4.

Summary of 2D T1 analysis results in 
comparison with 3D T1

Segmentation results showed that larger and simpler ROI masks 
achieved higher performance, with the best results in LV regions. In 
predicting quantitative measures like cortical thickness or volume 
from segmented regions, CSF space models (LV, eCSF) outperformed 
cortical thickness models. For the model distinguishing between DAT 
and CU, the 2D-based analysis demonstrated high performance (AUC 
0.873), showing comparable accuracy to the 3D-based standard 
method (AUC 0.905) for measuring brain atrophy.

In DAT-related biomarkers such as AD-specific atrophy similarity, 
W-score, and BAI, the 2D T1 analysis results were highly correlated 
with 3D T1 results. Notably, higher eCSF volume prediction 
performance corresponded with higher W-score prediction 
performance for each ROI.

Discussion

In this study, we  developed deep learning-based models that 
utilize CSF volumes from 2D T1-weighted images. We validated the 
clinical utility of our algorithms by differentiating DAT from CU 
participants, predicting AD-specific atrophy similarities, estimating 
W-scores for brain atrophy, and calculating BAIs relative to age and 
sex. Our major findings are as follows. First, the CSF volumes based 
on 2D T1 images were highly correlated with those based on 3D T1 
images. Second, our newly developed algorithms using 2D T1 image-
derived CSF volumes showed excellent performance in differentiating 
DAT from CU and very high correlations in AD-specific atrophy 
similarity, W-scores for brain atrophy, and BAIs compared with those 
based on 3D T1 images. Taken together, our findings suggest that deep 
learning-based models based on CSF volumes from 2D T1 images 
may be a viable alternative to 3D T1 images for assessing brain atrophy 
in clinical settings. The clinical utility of our newly developed 
algorithms was validated in various settings with high accuracy, 
comparable to that achieved with 3D T1 image-based algorithms. 
Using accessible and cost-effective 2D T1 images for quantifying brain 
atrophy and AD classification enables earlier detection of 
neurodegenerative changes, leading to timely intervention and better 
management of atrophy and cognitive decline.

Our first major finding was that the CSF volumes based on 2D T1 
images (CSFvol_2D) were significantly correlated with those based on 
3D T1 images (CSFvol_3D). In clinical settings, the assessment of brain 
atrophy involves the evaluation of enlarged CSF volumes, indicative of 
the loss of adjacent gray matter and white matter. Traditionally, 

FIGURE 3

Correlation of AD-specific atrophy similarity between 3D T1 and 2D 
T1. Scatter plots compare AD-specific atrophy similarity measures 
derived from cerebrospinal fluid space volume in 3D T1 (x-axis) and 
2D T1 (y-axis) with regression lines and 95% confidence intervals.
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clinicians have relied on visual assessment scales from 2D T1 MR 
images or CT scans by utilizing the enlarged CSF regions, including the 
LVs, sulcal widening between the gyri, and the width of the temporal 
horn adjacent to the hippocampus (Koedam et al., 2011; Harper et al., 
2015). However, these visual assessment scales do not show high 
concordance rates among clinicians, and there are no quantitative 

methods for 2D T1 images. Therefore, our findings underscore the 
reliability of CSFvol_2D as an effective surrogate for complex and time-
intensive 3D T1 measurements. Furthermore, CSFvol_2D could provide 
a more accessible and economically viable alternative without 
compromising diagnostic accuracy for assessing brain atrophy.

In the present study, we applied Fully Convolutional Network-
based deep learning techniques to 2D MR for automatic brain 
segmentation, resulting in high segmentation performance 
(particularly in the anterior and posterior LV, with DSCs of 0.874 and 
0.852, respectively). Previous methods for quantifying brain atrophy 
often use 3D T1 images with CIVET or FreeSurfer software to measure 
cortical thickness. Recently, deep learning-based approaches have 
emerged (Rebsamen et al., 2020), showing a Pearson correlation of 
r = 0.740 with FreeSurfer across frontal, temporal, parietal, and 
occipital lobes using 3D T1 (Cth_3D). Our study achieved a higher 
correlation of r = 0.768 (Cth_2D averaged) with CIVET using 2D T1 
images and a deep learning model. Furthermore, our study showed 
that the correlations between results based on 2D T1 images and those 
based on 3D T1 images were higher for CSF volume than for cortical 
thickness. Our findings might be  explained by the fact that the 
differences in intensities between gray matter and CSF or between 
white matter and CSF (the main distinct features in our models of CSF 
volumes) were more pronounced than the differences in intensities 
between gray matter and white matter (the main distinct features in 
our models of cortical thickness). That is, the more distinct differences 
between features were more reflective of the results based on 3D T1 
images into the results based on 2D T1 images in CSF volumes than 
in cortical thickness, which in turn resulted in higher correlation in 
CSF volumes.

Notably, the LV exhibited the highest Pearson correlation 
coefficients among the CSF volumes (anterior LV, 0.971; posterior LV, 
0.970). The large area of the LV relative to other brain ROIs and its 

FIGURE 4

Correlation of W-scores for brain regions between 3D T1 and 2D T1 images. Scatter plots and regression lines with 95% confidence intervals illustrate 
the correlation of W-scores, indicating brain atrophy, between 3D T1 and 2D T1 images across various brain regions, including the frontal lobe, 
temporal lobe, parietal lobe, occipital lobe, anterior lateral ventricle, posterior lateral ventricle, and the region around the hippocampal ventricle. 3D, 
three-dimensional; 2D, two-dimensional.

FIGURE 5

Correlation of brain age index between 3D T1 and 2D T1 images. 
Scatter plots compare brain age index derived from cerebrospinal 
fluid space volume in 3D T1 (x-axis) and 2D T1 (y-axis) with 
regression lines and 95% confidence intervals. BAI, brain age index; 
3D, three-dimensional; 2D, two-dimensional.
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comparatively simple shape facilitate distinction from other brain 
structures. This high degree of correlation is noteworthy because 
ventricular dilatation (particularly of the frontal, occipital, and 
temporal horns of the LV) is a critical metric for assessing cerebral 
atrophy (Pasquier et al., 1996). Additionally, the volume around the 
hippocampal ventricle showed a strong correlation between 
CSFvol_2D and CSFvol_3D. The temporal horn of the LV is crucial 
for evaluating medial temporal lobe atrophy in probable AD (Scheltens 
et al., 1992; Kim et al., 2014). Sulcal widening between the gyri in each 
lobe was used as an indicator of lobar atrophy. Different types of 
dementia display unique patterns of brain atrophy. AD is typically 
characterized by temporoparietal atrophy, whereas frontotemporal 
dementia is characterized by frontotemporal atrophy. Thus, ROIs_
CSFvol, including the anterior LV, posterior LV, volume around the 
hippocampal ventricle, and eCSFs in each lobe, might be one of the 
most important features for differentiating the causes of dementia. 
Further studies are required to determine whether our newly 
developed models are effective in distinguishing between the causes 
of various types of dementia.

Our second major finding was that our MLP model demonstrated 
good performance in differentiating DAT from CU participants, 
achieving AUC values of 0.873 for classifiers based on CSFvol_2D and 
0.905 for conventional classifiers based on CSFvol_3D. Our previous 
classifiers, based on Cth_3D, showed an accuracy of 91.1% in 
differentiating DAT from CU (Lee et  al., 2018a). In addition, 
AD-specific atrophy similarity measures derived from CSFvol_2D 
highly correlated with those obtained from CSFvol_3D. Our 
AD-specific atrophy similarity measure represents the similarity of the 
cortical atrophy pattern of an individual patient to that of a 
representative patient with AD, determined using a well-defined AD 
cohort. In our previous study (Lee et  al., 2018a), the AD-specific 
atrophy similarity measure showed promising results at the individual 
level, not only facilitating the early prediction of AD but also 
distinguishing between brain and clinical trajectories in patients with 
DAT. Therefore, our findings underscore the potential of quantitative 
analyses based on CSFvol_2D, especially the LV, volumes around the 
hippocampal ventricle, and eCSF for the precise diagnosis of DAT and 
early initiation of therapeutic interventions.

Our final major finding was that the brain atrophic W-scores, 
after adjusting for age and sex, derived from CSFvol_2D were 
highly correlated with those from CSFvol_3D. As aging 
progresses, brain atrophy occurs at a mean volume reduction rate 
of 0.5% per year after the age of 40 (Fotenos et al., 2005; Lee et al., 
2018b). In addition, changes in brain atrophy have been shown 
to occur differently depending on sex (Lee et  al., 2018b; Kim 
et al., 2019; Suzuki et al., 2019). Thus, our age-and sex-adjusted 
brain atrophic W-scores may help clinicians distinguish 
pathological brain atrophy from physiological age-related brain 
atrophy. The trajectory of brain atrophy throughout aging can 
be captured and translated into an individual’s brain age using 
machine-learning algorithms. Brain age serves as an indicator of 
overall brain health as it allows for individual-level inferences 
rather than group-level assessments. Furthermore, an increased 
BAI is predictive of worse cognitive trajectories (Gaser et  al., 
2013; Wang et al., 2019). In the present study, the BAIs based on 
CSFvol_2D correlated strongly with those based on CSFvol_3D, 
suggesting that our newly developed BAI based on CSFvol_2D 
may assist clinicians in diagnosing and managing individuals 
with pathological brain atrophy.

The strength of our study lies in the innovative application of deep 
learning to the reconstruction of 2D T1 MR images for quantitative 
analysis. Several algorithms have been developed for classifying DAT, 
predicting AD-specific atrophy similarity, assessing brain atrophy 
W-scores, and estimating the BAI. However, the present study has some 
limitations. First, we  used clinical criteria for DAT rather than AD 
biomarker-guided diagnosis. Further studies incorporating AD 
biomarker-guided diagnoses are required to develop algorithms to predict 
AD biomarkers. Second, the deployment of various deep learning 
architectures, particularly the most recent image segmentation models 
(Isensee et al., 2021; Ma et al., 2024), has not yet been explored. While this 
study utilized an MLP model for predicting AD biomarkers, it is possible 
to achieve higher accuracy by applying various machine learning 
techniques such as random forest and support vector machines, or by 
creating an ensemble model. Future research should consider evaluating 
the performance through the integration of models with iterative updates. 
Third, 20 axial slices selected from 3D T1 images, so there may be any 
information loss in this process. Additionally, the slice thickness of the ‘2D 
T1 images from 3D T1 images’ used in our study may differ from the 
typically acquired slice thickness in clinical practice, leading to lower 
generalizability of our results to common clinical settings. To match the 
difference in acquisition protocol, we extracted 20 slices with a 5 mm slice 
thickness from the 3D T1 images, as the ‘true 2D T1 images’ acquired at 
our center are obtained with 5 mm slice thickness and gaps between slices, 
resulting in approximately 20 slices. However, since 2D T1 images are 
used in clinical practice, the purpose of this study was to determine 
whether brain atrophy, which can only be measured with 3D T1 images, 
can be measured with 2D T1 images. This argument might be mitigated 
by our findings that brain atrophy measured with ‘2D T1 images from 3D 
T1 images’ is comparable to brain atrophy measured with ‘true 2D T1 
images.’ Fourth, in our main analysis, we used ‘2D T1 images from 3D T1 
images’ instead of the ‘true 2D T1 images.’ However, considering the high 
correlation between the ‘true 2D T1 images’ and the ‘2D T1 images from 
3D T1 images,’ we expect the correlation for DAT/CU classification, 
AD-specific atrophy similarity, W-scores, and BAIs to be similarly high. 
Fifth, the ROIs we chose are relatively less granular than those used other 
methods, so they have not been fully validated to ensure they are 
regionally relevant to dementia. Thus, future research is needed to explore 
whether our methods are useful for distinguishing subtypes of dementia. 
Finally, the model was assessed using data from a single cohort. 
Incorporating larger datasets, potentially from multiple cohorts, is 
essential to ensure the robustness and generalizability of our findings. 
Thus, future studies should be conducted to see if the same results can 
be  achieved using 2D T1 images from different vendors at different 
centers in different patient populations. Techniques related to image 
registration and domain adaptation may need to be applied during the 
implementation process. Nevertheless, our study provides valuable 
insights, demonstrating that deep learning-based quantitative analysis 
using 2D T1 images, a modality widely adopted in clinical practice, can 
be  effective. Although there might be  several challenges, including 
securing the necessary infrastructure such as the scanner settings and 
analysis platforms, providing adequate training for radiologists, and 
incorporating the approach into existing clinical workflows, addressing 
these challenges will be beneficial for clinical settings.

In conclusion, our study revealed that deep-learning analyses 
based on 2D T1 CSF volumes were highly correlated with those based 
on 3D T1 CSF volumes. Furthermore, our study demonstrates the 
feasibility of using deep-learning-based 2D T1 CSF volumes for the 
DAT classifier, AD-specific atrophy similarity, W-scores, and BAI, 
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establishing 2D MR as a dependable, cost-effective, and accessible tool 
in clinical practice. Therefore, our findings contribute to the 
application of 2D MR quantitative analysis, especially for retrospective 
analysis of images acquired in 2D T1 and in settings with limited 
access to 3D imaging technology.
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