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Background: The gut microbiota (GM) is hypothesized to play roles in

Alzheimer’s disease (AD) pathogenesis. In recent years, many GM composition

and abundance investigations in AD patients have been conducted; however,

despite this work, some results remain controversial. Therefore, we conducted

a systematic review and meta-analysis using 16S ribosomal RNA (16S rRNA)

sequencing to explore GM alterations between patients with AD spectrum and

healthy controls (HCs).

Methods: A systematic and comprehensive literature search of PubMed,

Web of Science, Embase, the Cochrane Library, China National Knowledge

Infrastructure, China Biology Medicine disc database, WanFang database and

Social Sciences Citation Index databases was conducted from inception to

January 2023. Inclusion and exclusion criteria were strictly defined, and

two researchers independently screened and extracted information from

selected studies. Data quality were evaluated according to the “Cochrane

system evaluator manual” and pooled data were comprehensively analyzed

using Stata 14 software with standardized mean differences (SMDs) and 95%

confidence intervals (95% CIs) used to measure effect sizes. Also, geographical

heterogeneity effects (related to cohorts) on GM abundance were examined

based on subgroup meta-analyses if sufficient studies reported outcomes.

Finally, publication bias was assessed using funnel plots.

Results: Out of 1566 articles, 13 studies involving 581 patients with AD

spectrum and 445 HCs were deemed eligible and included in our analysis.

In summary, a decreased microbiota alpha diversity and a significantly

distinct pattern of clustering with regard to beta diversity were observed

in AD spectrum patients when compared with HCs. Comparative analyses

revealed a decreased Ruminococcus, Faecalibacterium, Lachnospira, Dialister,

Lachnoclostridium, and Roseburia abundance in AD spectrum patients while

Phascolarctobacterium, Lactobacillus, and Akkermansia muciniphila were

more enriched in patients when compared to HCs. Furthermore, regional

variations may have been in play for intestinal microbes such as Bacteroides,

Bifidobacterium, and Alistipes.
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Conclusion: Our meta-analysis identified alterations in GM abundance in

patients with AD spectrum, with 12 genera from four major phyla significantly

associated with AD. Moreover, we provided evidence for region-specific

alterations in Bacteroides, Bifidobacterium, and Alistipes abundance. These

findings may have profound implications for the development of innovative

GM-based strategies to prevent and treat AD.

Systematic review registration: https://doi.org/10.37766/inplasy2024.6.0067,

identifier INPLASY202460067.
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Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder
characterized by progressive cognitive and memory decline,
making it the predominant dementia type. With global aging
trends, the number of individuals affected by dementia is projected
to reach 78 million by 2030 (Gauthier et al., 2021). In recent
years, AD has emerged as a significant public health concern
impacting overall wellbeing and quality of life metrics across global
populations (Alzheimer’s, 2023). Therefore, it is crucial to diagnose,
prevent, and treat AD during its early or even preclinical stages.

AD pathophysiological mechanisms and clinical manifestations
suggest that the disease should be conceptualized as a continuum
or spectrum, encompassing three distinct phases: preclinical AD
(including subjective cognitive decline, SCD), mild cognitive
impairment (MCI), and Dementia of Alzheimer’s type, also known
as AD (Fernandes et al., 2020; Alzheimer’s, 2023). The characteristic
histopathological hallmark of AD is the extraneuronal aggregation
of amyloid-β (Aβ) peptide fragments into plaques, along with
intraneuronal abnormal tau protein accumulation, which both
serve as AD biomarkers (Long and Holtzman, 2019). Although no
cure exists for AD, recent evidence has highlighted the potential
role of the gut microbiota (GM) in disease development or
exacerbation (Bonfili et al., 2018; Kim et al., 2020). Furthermore,
several studies have reported promising results in terms of
enhancing cognition via non-pharmacological interventions such
as fecal microbial transplantation (Sun et al., 2019) and probiotics
at early disease stages (Hwang et al., 2019).

The GM is a complex and abundant microbial community in
the human gastrointestinal tract, and has important physiological
roles regulating immune function, promoting food catabolism
and metabolism, secreting metabolites, and limiting pathogen
abundance (Rolhion and Chassaing, 2016). Numerous studies
have confirmed the significant involvement of the GM in
the occurrence and development of central nervous system
diseases, such as anxiety disorders (Cox and Weiner, 2018),
autism (Finegold et al., 2010), depression (Valles-Colomer
et al., 2019), and Parkinson’s disease (PD) (Scheperjans et al.,
2015). Recently, several investigations reported a correlation
between intestinal flora and AD, suggesting altered GM
composition and abundance among AD patients. Evidence
has also indicated that neuroinflammation plays fundamental
roles in AD onset and progression, while activation of the human
innate immune system by gut microorganisms may drive brain

inflammation (Cheng et al., 2019; Kowalski and Mulak, 2019;
Sochocka et al., 2019). Gut microorganisms secrete increased
amyloid protein and lipopolysaccharide (LPS) that modulate
signaling pathways to potentially increase amyloid aggregation,
and lead to inflammation via inflammatory cytokine production
and immunogenic changes within the brain (Hill and Lukiw,
2015; Taylor and Matthews, 2015; Sochocka et al., 2019). Emerging
studies indicate that metabolites generated by GM play a role
in regulating the differentiation, maturation, and activation of
reactive astrogliosis and microgliosis, which provide support and
protection to neurons, clearing dead cells and foreign particles to
maintain homeostasis in the brain. However, intestinal dysbiosis
abnormally activates glial cells, potentially propagating Aβ toxicity,
increasing Aβ accumulation, or releasing proinflammatory
cytokines and reactive oxygen species, all of which are harmful
to neurons, facilitate tau pathology, and further exacerbate
inflammation, leading to neuronal damage and the progression of
AD pathology (Yang and David, 2018; Ashley et al., 2022).

Recently, GM exploration as a biomarker and potential target
to prevent and treat AD has gained popularity due to simple
specimen acquisition, easy detection, and targeted regulation. In
bacteria, 16S ribosomal RNA (16S rRNA) corresponds to the
DNA sequence encoding rRNA, which is universally present in
bacterial genomes (Gao et al., 2021). 16S rRNA-based sequencing
is a rapid, cost-effective, and minimal labor-intensive approach for
microbial detection; it allows for the comprehensive analysis of
whole microbial composition and significantly enhances bacterial
identification and resolution (Forde and O’Toole, 2013). Thus,
in recent years, 16S rRNA sequencing techniques have emerged
as predominant methods for investigating microbial ecosystem
composition. To date, several clinical studies (Ling et al., 2020;
Guo et al., 2021; Liu et al., 2021; Kaiyrlykyzy et al., 2022;
Ferreiro et al., 2023) have used gut flora 16S rRNA high-
throughput sequencing to analyze GM relative abundance in
patients with AD. However, due to variations in bacterial detection
techniques and inconsistent results from 16S rRNA sequencing,
accurate and specific comparisons across studies are often limited.
Several observational studies have found inconsistencies in the
composition and diversity of GM associated with AD. For instance,
Guo et al. (2021) identified genera such as Prevotella, Bacteroides,
and Lachnospira as differing between AD patients and HCs, while
Liu et al. (2021) found differences in genera including Blautia,
Bacteroides, and Ruminococcus. Meantime, Guo et al. (2021)
reported a higher relative abundance of Bacteroides in AD patients,
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whereas (Liu et al., 2019) arrived at the opposite conclusion.
Additionally, Sheng et al. (2021) observed a trend toward a gradual
decrease in GM abundance and diversity from individuals with
SCD to MCI. However, a meta-analysis including AD and MCI
patients indicated a slight increase in GM diversity and abundance
among MCI patients. In this study, we conducted a systematic
review and meta-analysis to investigate altered GM abundance in
AD spectrum patients (i.e., SCD, MCI, and AD) based on 16S rRNA
sequencing.

Materials and methods

The systematic review was performed according to the
PRISMA guidelines (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses), and the protocol was registered at
INPLASY (International Platform for Registered Protocols for
Systematic Reviews and Meta-Analyses) under registration number
INPLASY202460067.1

Search strategy

To identify information/data related to intestinal microbial
profiles associated with AD, an extensive search was conducted
across different medical databases, including PubMed, Web of
Science, Embase, the Cochrane Library, China National Knowledge
Infrastructure, China Biology Medicine disc database, WanFang
database and Social Sciences Citation Index databases from
inception to January 2023. The completed search strategy for
Embase was: (“rna, ribosomal, 16s”/exp OR “16s rrna”:ab,ti
OR “rrna 16s”:ab,ti OR “16s ribosomal rna”:ab,ti OR “rna, 16s
ribosomal”:ab,ti OR “ribosomal rna, 16s”:ab,ti OR “16s ribosome
rna”:ab,ti OR “16s rdna”:ab,ti OR “rdna 16s”:ab,ti OR “16s
ribosomal dna”:ab,ti OR “dna, 16s ribosomal”:ab,ti OR “ribosomal
dna, 16s”:ab,ti OR “16s ribosome dna”:ab,ti OR “16s rrna
gene”:ab,ti) AND (“alzheimer disease”/exp OR “dementia”/exp OR
alzheimer:ab,ti OR “alzheimers disease”:ab,ti OR dementia:ab,ti OR
cognitive:ab,ti OR cogntion:ab,ti OR amentia: ab,ti OR mci:ab,ti OR
“mild cognitive impairment”:ab,ti OR “mild cognitive defect”:ab,ti
OR scd:ab,ti OR “subjective cognitive decline”:ab,ti OR “subjective
cognitive impairment”:ab,ti). Furthermore, we also reviewed cited
references of the retrieved articles to identify additional published
and unpublished studies.

Inclusion and exclusion criteria

Inclusion criteria were as follows: (1) AD spectrum patients
diagnosed using validated criteria (Diagnostic and Statistical
Manual of Mental Disorders or National Institute on Aging and
Alzheimer’s Association guidelines) (First et al., 2002; Hyman et al.,
2012); (2) GM comparisons conducted between AD spectrum and
HCs using 16S rRNA sequencing; (3) GM samples came from
stool samples; (4) Accessible raw data were, such as relative GM
abundance at distinct levels, microbial composition, community

1 https://doi.org/10.37766/inplasy2024.6.0067

structures, and diversity indices; (5) Studies including randomized
controlled trials (RCTs), cohort studies, and case-control studies;
and (6) Studies not limited by language type (i.e., English, Chinese).

Exclusion criteria were as follows: (1) Studies without HCs;
(2) Microbial analyses using other microbial detection methods;
(3) Ambiguous literature and corresponding data and results that
could not be extracted; (4) Studies with insufficient or overlapping
data (the most recent and complete data were chosen); and
(5) Systematic reviews, animal studies, conference abstracts, case
reports, and commentaries.

Study selection and data extraction

Using our retrieval strategy, two independent investigators
extracted data and discussed any post-extraction discrepancies.
Disagreements were resolved by discussion with a third reviewer.
If necessary, the corresponding authors of selected studies
were contacted (e-mail) to request any missing data. Data
collected from selected studies included: general information
(first author and publication year, study design, and region),
participant characteristics (sample size, age, and sex ratio), adjusted
confounding factors, and information pertaining to GM alterations
(relative GM abundance by taxonomic, microbial composition,
community structure levels, and diversity index).

Risk of bias and quality assessment

Based on extracted data, the Cochrane Risk of Bias Assessment
Tool (Higgins et al., 2011) was used for RCTs which had five
domains: randomization, deviation from intervention, missing
data, outcome measurements, and selective reporting. The
Newcastle–Ottawa scale (Wells et al., 2000) was used for
observational/non-randomized studies with domain selection,
comparability, and exposure/outcomes.

Statistical analysis

This meta-analysis was conducted using Stata 14.0 software.
Standardized mean differences (SMD) and 95% confidence
intervals (CI) came from fixed effects or random effects models
for quantitative synthesis. Heterogeneity was evaluated using
the Cochran Q statistic and quantified by I2 tests, with an
I2 > 50% indicating moderate-to-high heterogeneity (Higgins
et al., 2003). Subgroup analysis was performed to investigate
sources of heterogeneity, while sensitivity analyses conducted if
necessary. Publication bias was visually assessed using funnel plots
(Sterne et al., 2011).

Results

Literature searches and study
characteristics

The initial search yielded 1,566 articles. After excluding 681
duplicates, two independent reviewers assessed titles and abstracts
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FIGURE 1

Flow chart of the evidence search and selection process.

to exclude 860 irrelevant articles. Subsequently, full-text reviews
were conducted on 25 articles, and finally 13 studies were included
in the meta-analysis (Figure 1). Studies comprised 10 case-control
(Vogt et al., 2017; Zhuang et al., 2018; Li et al., 2019; Liu et al., 2019,
2021; Ling et al., 2020; Guo et al., 2021; Sheng et al., 2021; Zhou
et al., 2021; Khedr et al., 2022) and two longitudinal studies (Haran
et al., 2019; Zhang et al., 2021), and also one RCT study (Nagpal
et al., 2019). The geographical location of studies included China
(Zhuang et al., 2018; Li et al., 2019; Liu et al., 2019, 2021; Ling et al.,
2020; Guo et al., 2021; Sheng et al., 2021; Zhang et al., 2021; Zhou
et al., 2021), USA (Vogt et al., 2017; Haran et al., 2019; Nagpal et al.,
2019), and Egypt (Khedr et al., 2022). All studies used 16SrRNA
sequencing to evaluate GM samples.

Our analysis comprised 1026 subjects (445 HCs and 581
AD spectrum patients), with a majority of female subjects
(59.9%) and a mean age > 65 years. Most studies adjusted
for important confounders, including age, sex, education, and
body mass index (BMI). The most frequently utilized estimator
for alpha diversity was the Shannon index, followed by the
Simpson index and Chao1 index, although three studies did
not provide information on which index was employed. 12

studies reported beta diversity indices mainly include the Bray-
Curtis, weighted and unweighted UniFrac. GM alterations
primarily focused on dominant phyla and also different
specific bacterial genera or subspecies, such as A. muciniphila,
Faecalibacterium, Bifidobacterium, Bacteroides, and Alistipes
(Table 1).

Microbiota diversity in patients with AD
spectrum

The richness, evenness, and alpha diversity can all be used
to express the diversity of species. Of the 13 included studies,
ten studies investigated the bacterial diversity in AD spectrum
patients versus HCs, although different indexes were utilized. At the
individual study level, results on the difference in alpha diversity
between AD spectrum patients and HCs were discrepant: the
Shannon index was observed to be significantly lower in patients
with AD spectrum compared to HCs in five studies (Vogt et al.,
2017; Liu et al., 2019; Ling et al., 2020; Sheng et al., 2021; Zhang
et al., 2021), and showed not significant difference in the remaining
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TABLE 1 Basic characteristics of the included studies.

References;
region

Study
design

Adjusted variables Comparison AD spectrum group/Control group Alpha
diversity

Beta
diversity

Differences
of gut
microbiota

Number (n) Age (years) Females (%)

Khedr et al.,
2022; Egypt

Case-control Age, sex, education, smoking,
underlying diseases
(hypertension, DM, CHD,
dyslipidemia)

AD vs. HCs 25/25 68.9 ± 7.5/66.7 ± 8.8 56.0/56.0 NA NA ①⑩⑪⑫⑮

Sheng et al.,
2021; China

Case-control Sex, education, BMI,
presence of APOEε4,
emotional state, underlying
diseases (hypertension, DM,
CHD, dyslipidemia)

SCD vs. HCs 53/38 66.6 ± 6.3/66.7 ± 5.1 81.1/60.5 Chao1, Simpson
index, Shannon
index

Bray-Curtis,
weighted and
unweighted
UniFrac

④

CI (MCI and AD) vs.
HCs

14/38 73.2 ± 7.8/66.7 ± 5.1 71.4/60.5 ④⑨

Liu et al., 2019;
China

Case-control Age, sex, BMI, underlying
diseases (hypertension, DM),
laboratory tests (hemoglobin,
folate, vitamin B12, TT4,
TT3)

AD vs. HCs 33/32 74.8 ± 11.3/76.8 ± 9.3 42.4/50.0 ACE, Chao 1,
Shannon index,
Simpson index

Bray-Curtis,
weighted and
unweighted
UniFrac

②⑭

Zhou et al.,
2021; China

Case-control Age, sex, education,
underlying diseases
(hypertension, DM, CHD),
BMI

AD vs. HCs 60/32 72.8 ± 7.2/71.1 ± 5.9 60.0/56.3 ACE,Chao 1,
Shannon index,
Simpson index,
observed species

Weighted and
unweighted
UniFrac

⑦⑪⑭

Guo et al., 2021;
China

Case-control Age, education, underlying
diseases (hypertension, DM)

MCI vs. HCs 20/18 64.5 ± 4.5/64.2 ± 4.7 80.0/77.8 Shannon index,
Evenness, Faith PD

Bray-Curtis,
weighted
UniFrac

⑤

AD vs. HCs 18/18 63.5 ± 4.7/64.2 ± 4.7 88.9/77.8 ⑤⑩⑫

Liu et al., 2021;
China

Case-control Age, sex, education, BMI,
smoking and drinking
history, underlying diseases
(hypertension, DM),
laboratory tests (hemoglobin,
folate, vitamin B12, TT4,
TT3)

MCI vs. HCs 20/22 68.8 ± 11.2/72.7 ± 8.1 40.0/59.1 ACE, Chao 1,
Shannon index,
Simpson index

NA ②⑫⑭

Zhuang et al.,
2018; China

Case-control Age, sex, education,
underlying diseases
(hypertension, DM, CHD,
dyslipidemia)

AD vs. HCs 43/43 70.1 ± 8.7/69.7 ± 9.2 46.5/46.5 NA Weighted
UniFrac

⑧⑫
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TABLE 1 (Continued)

References;
region

Study
design

Adjusted variables Comparison AD spectrum group/Control group Alpha
diversity

Beta
diversity

Differences
of gut
microbiota

Number (n) Age (years) Females (%)

Li et al., 2019;
China

Case-control Age, sex, education, BMI,
underlying disease (DM,
constipation)

MCI vs. HCs 30/30 65.4 ± 7.6/63.9 ± 5.1 60.0/56.7 Chao 1, Shannon
index, observed
species

Weighted and
unweighted
UniFrac

①⑤⑦⑩⑪

⑫⑬⑭

AD vs. HCs 30/30 66.3 ± 5.1/63.9 ± 5.1 50.0/56.7 ①⑤⑦⑩⑪

⑫⑬⑭

Ling et al., 2020;
China

Case-control Age, sex, BMI, smoking and
drinking history, underlying
diseases (hypertension, DM,
CHD, hyperlipidemia,
diarrhea, constipation)

AD vs. HCs 100/71 74.1 ± 9.2/73.1 ± 7.8 57.0/50.7 ACE, Chao 1,
observed OTUs,
Shannon index,
Simpson index

Bray-Curtis,
weighted and
unweighted
UniFrac,
Jaccard

①④⑥⑨⑪

Haran et al.,
2019; USA

Longitudinal Age, sex, underlying disease
(DM, CKD, cancer),
medication history (PPI,
statins, antipsychotics,
complex drugs), clinical
scores (malnutrition, frailty)

AD vs. HCs 21/51 84.7 ± 8.1/83 ± 10.2 83.3/84.3 NA Jaccard ⑧⑫⑬

Nagpal et al.,
2019; USA

RCT Age, sex, history of
alcoholism and head trauma,
underlying diseases (COPD,
kidney or liver disease, heart
disease and mental illness),
medication history (statins,
hypoglycemic agents)

MCI vs. HCs 11/6 64.3 ± 7.7/65.2 ± 3.7 72.7/66.7 Chao1, Shannon
index, observed
OTUs, Faith PD

Weighted
UniFrac

③⑥

Zhang et al.,
2021; China

Longitudinal age, sex, BMI, smoking and
drinking history, exercise

MCI vs. HCs 75/52 62.0 ± 4.1/62.5 ± 4.0 52.0/53.8 Shannon index,
Simpson index

Weighted
UniFrac

②④⑬

Vogt et al., 2017;
USA

Case-control Age, sex, BMI, race, and
diabetes

AD vs. HCs 25/25 71.3 ± 7.3/69.3 ± 7.5 68.0/72.0 Shannon Index,
Faith PD

Bray-Curtis,
weighted and
unweighted
UniFrac

③⑥⑪⑫⑬

⑭⑮

AD, Alzheimer’s disease; MCI, mild cognitive impairment; HCs, healthy controls; BMI, body mass index; DM, diabetes mellitus; CHD coronary heart disease; COPD chronic obstructive pulmonary disease; CKD chronic kidney disease; TT4, total thyroxine; TT3,
total triiodothyronine; PPI proton pump inhibitors; Faith PD, Faith phylogenetic distance; OTUs, operational taxonomic units; NA: not available. A. muciniphila; Ruminococcus; Phascolarctobacterium; Faecalibacterium; Lachnospira; Dialister;

Lactobacillus; Lachnoclostridium; Roseburia; Prevotella; ⑪ Bifidobacterium; ⑫ Bacteroides; ⑬ Alistipes; ⑭ Blautia; ⑮ Clostridium.
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five studies (Zhuang et al., 2018; Li et al., 2019; Nagpal et al., 2019;
Guo et al., 2021; Zhou et al., 2021). Sheng et al. (2021) found on
statistically significant reduction in alpha diversity indices for SCD
individuals compared to HCs and significantly decreased alpha
diversity among CI individuals. Li et al. (2019) found significantly
lower diversity (Shannon index) among AD group compared
to those of the controls only in blood microbiota samples, but
no significant differences among stool microbiota samples. The
Simpson index, reported in six studies, was found to be significantly
lower in AD spectrum patients compared HCs in four studies (Liu
et al., 2019; Ling et al., 2020; Sheng et al., 2021; Zhang et al., 2021)
and to be non-significantly different in two studies (Liu et al., 2021;
Zhou et al., 2021). Another seven studies used the Chao1 between
samples to assess richness and it was found to be significantly lower
in AD spectrum patients than HCs in three studies (Liu et al.,
2019; Ling et al., 2020; Sheng et al., 2021) and non-significant in
four studies (Li et al., 2019; Nagpal et al., 2019; Liu et al., 2021;
Zhou et al., 2021).

Beta diversity represents the dissimilarity between the two gut
communities. A total of 11 studies (Vogt et al., 2017; Zhuang et al.,
2018; Haran et al., 2019; Li et al., 2019; Liu et al., 2019; Nagpal
et al., 2019; Ling et al., 2020; Guo et al., 2021; Sheng et al., 2021;
Zhang et al., 2021; Zhou et al., 2021) in this review have analyzed
the beta diversity of GM, and nine of them consistently identified
that the GM of AD spectrum patients showed a remarkably distinct
clustering pattern compared with that of HCs (Vogt et al., 2017;
Zhuang et al., 2018; Haran et al., 2019; Li et al., 2019; Liu et al.,
2019; Ling et al., 2020; Guo et al., 2021; Zhang et al., 2021;
Zhou et al., 2021).

The relative abundance of bacterial
genera at different phyla levels

In terms of relative abundance, Firmicutes and Bacteroidetes
represented the dominant phyla, accounting for 90% of all the GM.
Firmicutes consists of > 200 different genera comprising Gram-
positive aerobic and anaerobic bacteria (Rinninella et al., 2019).
Among selected studies, statistical analyses were conducted on
10 distinct genera in Firmicutes. We observed that Ruminococcus,
Phascolarctobacterium, Faecalibacterium, Lachnospira, Dialister,
Lactobacillus, Lachnoclostridium and Roseburia exhibited distinct
intestinal bacterial profiles between AD spectrum patients and
HCs. Specifically in AD spectrum patients, a decrease in the
relative abundance of Ruminococcus (SMD = −0.48, 95% CI: −0.75
to −0.22; I2

for heterogeneity = 0%) (Figure 2A), Faecalibacterium
(SMD = −0.62, 95% CI: −0.82 to −0.43; I2

for heterogeneity = 21.7%)
(Figure 2B), Lachnospira (SMD = −0.42, 95% CI: −0.71 to −0.13;
I2

for heterogeneity = 25.1%) (Figure 2C), Dialister (SMD = −2.32,
95% CI: −2.66 to −1.97; I2

for heterogeneity = 35.0%) (Figure 2D),
Lachnoclostridium (SMD = −0.36, 95% CI: −0.68 to −0.04;
I2

for heterogeneity = 10.2%) (Figure 2E), and Roseburia (SMD = −0.71,
95% CI: −1.28 to −0.15; I2

for heterogeneity = 64.0%) (Figure 2F) was
observed.

Conversely, an increase in the relative abundance of
Phascolarctobacterium (SMD = 1.65, 95% CI: 1.09 to 2.22;
I2

for heterogeneity = 0%) (Figure 2G) and Lactobacillus (SMD = 0.48,
95% CI: 0.20 to 0.76; I2

for heterogeneity = 0%) (Figure 2H) was noted

in AD spectrum cases versus HCs. Furthermore, no significant
differences in Blautia (SMD = −0.21, 95% CI: −0.28 to 0.71;
I2

for heterogeneity = 81.5%) (Figure 2I) and Clostridium (SMD = 0.61,
95% CI: −1.15 to 2.38; I2

for heterogeneity = 94.3%) were found
(Figure 2J).

The relative abundance of three genera in the Bacteroidetes
phylum was assessed in eight studies. The pooled effect size for
Bacteroides did not exhibit statistical significance when comparing
AD spectrum patients and HCs (SMD = −0.17, 95% CI: −0.91 to
0.58; I2

for heterogeneity = 92.9%). However, a subgroup meta-analysis
based on geographical location revealed an increased abundance in
American and Egyptian cohorts with AD spectrum (SMD = 0.79,
95% CI: 0.29 to 1.28; I2

for heterogeneity = 58%), while no similar
trends were observed in Chinese cohorts (SMD = −0.75, 95% CI:
−1.58 to 0.07; I2

for heterogeneity = 90.4%) (Figure 3A). Notably, we
observed an increased abundance of Alistipes across US AD cohorts
(SMD = 0.49, 95% CI: 0.12 to 0.86; I2

for heterogeneity = 0%), but a
diminished presence in Chinese cohorts (SMD = −0.78, 95% CI:
−1.28 to −0.29; I2

for heterogeneity = 69.2%) (Figure 3B). Four cohorts
from three studies showed no significant differences in Prevotella
abundance between AD spectrum patients and HCs (SMD = 0.52,
95% CI: −0.76 to 1.8; I2

for heterogeneity = 94.5%) (Figure 3C).
The Actinobacteria phylum is relatively less abundant in

elderly individuals and is predominantly represented by the
Bifidobacterium genus (Vaiserman et al., 2017). However, the
pooled effect size for Bifidobacterium showed no statistical
significance in comparisons between AD spectrum patients and
HCs (SMD = 0.1, 95% CI: −042 to 0.63; I2

for heterogeneity = 86.5%).
Nevertheless, after adjusting for country, Chinese cohorts revealed
a positive correlation between AD and relative Bifidobacterium
abundance at the genus level (SMD = 0.47, 95% CI: 0.23 to 0.70;
I2

for heterogeneity = 19%) (Figure 4A).
A. muciniphila is a strictly anaerobic Gram-negative bacterium

and the sole representative of the Verrucobacterium phylum in
human fecal samples (Cani et al., 2022). Three studies across
four cohorts showed consistently significant increases in relative
A. muciniphila abundance in AD spectrum patients (SMD = 0.46,
95% CI: 0.24 to 0.68; I2

for heterogeneity = 0%) (Figure 4B).

Risk of bias assessments

The critical appraisal of selected studies revealed that for the
majority of areas, rigorous methodologies were used. However,
some case-controlled studies lacked clear control group selection
and provided insufficient detail regarding non-response rates or
loss to follow-up (Supplementary Table 1).

Funnel plots were used to evaluate publication bias across
indicators. No significant asymmetry was observed in funnel
plots, indicating no evidence of publication bias across indicators
(Figure 5).

Discussion

In recent years, both experimental and observational studies
have extensively investigated GM alterations in patients with AD,
as the identification of such microbial signatures may provide novel
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FIGURE 2

Forest plots of alterations of gut microbiota in the Firmicutes phylum compare AD spectrum patients to healthy controls (HCs): (A) Ruminococcus,
(B) Faecalibacterium, (C) Lachnospira, (D) Dialister, (E) Lachnoclostridium, (F) Roseburia, (G) Phascolarctobacterium, (H) Lactobacillus, (I) Blautia,
(J) Clostridium.

insights into AD pathogenesis and potential therapeutic strategies.
In this study, we used 16S rRNA sequencing to explore shifts
in GM composition among AD spectrum patients. We observed
significant GM composition changes at various taxonomic levels
between patients and HCs, and also investigated differential
GM abundance in relation to geographical location. Statistically

significant lower alpha diversity in AD spectrum patients versus
HCs was observed in a substantial proportion of studies, i.e., half
for the Shannon index (five out of ten studies), more than half for
the Simpson index (four out of six studies), and less than half for
Chao1 (three out of seven). Microbial dissimilarities (beta diversity)
were observed the gut communities of the two groups.
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FIGURE 3

Forest plots of alterations of gut microbiota in the Bacteroidetes phylum compare AD spectrum patients to HCs: (A) Bacteroides, (B) Alistipes,
(C) Prevotella.

FIGURE 4

(A) Forest plots of alterations of Bifidobacterium in the Actinobacteria phylum compare AD spectrum patients to HCs. (B) Forest plots of alterations
of A. muciniphila in the Verrucobacterium phylum compare AD spectrum patients to HCs.

In the qualitative synthesis, our investigation reveals a
statistically significant lower alpha diversity in AD spectrum
patients compared with HCs in a substantial proportion of
studies, and microbial dissimilarities (beta diversity) between
these two groups, were consistently observed across the majority
of the studies included, indicating distinct microbial population

abundances in the gut of AD spectrum and non-AD spectrum
individuals. A previous meta-analysis (Hung et al., 2022) that
incorporated eight studies using high-throughput technologies in
the 16S rRNA gene showed inconsistent trends in alpha diversity
(assessed by the Shannon index and Simpson index) across different
stages of AD (MCI and AD), suggesting reduced gut microbiota
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FIGURE 5

Funnel plots of included studies analyzing alterations of gut microbiota in AD vs. HCs: (A) A. muciniphila, (B) Ruminococcus, (C)
Phascolarctobacterium, (D) Faecalibacterium, (E) Lachnospira, (F) Dialister, (G) Lactobacillus, (H) Lachnoclostridium, (I) Roseburia, (J) Prevotella, (K)
Bifidobacterium, (L) Bacteroides, (M) Alistipes, (N) Blautia, (O) Clostridium.

diversity particularly in the later stages of AD. Another meta-
analysis (Jemimah et al., 2023) that re-analyzed he studies included
in the Huang Hung et al. (2022) study using QIIME (Quantitative
Insights Into Microbial Ecology) software for 16S rRNA gene
sequence data yielded results similar to our findings. Among the
nine studies included in this analysis, a slight but significant
decrease in Shannon diversity was observed, with MCI patients
showing increasing trends—although these were non-significant.
Moreover, there was stronger consensus in terms of beta diversity,
with most studies reporting significant differences among AD,
MCI, and cognitively normal cohorts.

In the present systematic review, we found evidence that the
composition of GM of AD spectrum persons differs from the
non-AD spectrum at the genus level among four phyla. In the
quantitative analysis, lower relative proportions of Ruminococcus,
Faecalibacterium, Lachnospira, Dialister, Lachnoclostridium,
and Roseburia (Firmicutes phylum) were found in the AD
spectrum group compared to HCs, whereas the genera of
Phascolarctobacterium, Lactobacillus (Firmicutes phylum), and
Akkermansia muciniphila (Verrucomicrobia phylum) were found
to be significantly higher in patients. Furthermore, regional
variations may have been in play for intestinal microbes such as
Bacteroides, Alistipes (Bacteroidetes phylum) and Bifidobacterium
(Actinobacteria phylum).

Mechanistic explanations for changes in GM composition at
various taxonomic levels between AD spectrum and non-AD
spectrum individuals may be provided by studies investigating
the host-gut microbiota relationship through correlating GM
composition with circulating metabolites (van der Hee and
Wells, 2021). For example, short-chain fatty acids (SCFAs) are

generated by gut commensal microbes during indigestible dietary
fiber fermentation, including acetate, propionate and butyrate,
which possess immunomodulatory potential (Rescigno, 2014). Our
study found that almost genera within the phylum Firmicutes,
such as Ruminococcus, Faecalibacterium, Lachnospira, Dialister,
Lachnoclostridium, and Roseburia, are positively correlated with
SCFAs (Rescigno, 2014; Sakamoto et al., 2020; Pal et al.,
2021; Cai et al., 2022; Ordoñez-Rodriguez et al., 2023), which
supports the hypothesis that AD spectrum persons have a
distinct microbial profile that is more efficient in fermenting
substrates and in producing higher fecal SCFAs concentrations
than that of cognitively normal counterparts (Seo and Holtzman,
2024). Phascolarctobacterium have been previously reported to be
negatively associated with cognitive function indicators, suggesting
that mitochondrial damage, calcium homeostasis imbalance, and
inflammation may play a role in AD (Ling et al., 2020; Diviccaro
et al., 2023; Jemimah et al., 2023). A. muciniphila is a mucin-
degrading bacterium which uses mucin as its primary energy
source; it also exacerbates inflammation by degrading protective
mucus layers and exposing immune cells to increased microbial
antigen and toxin levels (Jian et al., 2023). In line with our findings,
Ling et al. (2020) who used 16S rRNA sequencing to characterize
the GM and observed increased A. muciniphila abundance in
Chinese- and Kazakh-based AD cohorts. In addition, Li et al.
(2019) reported a negative correlation between A. muciniphila
abundance and Mini-Mental State Examination scores, suggesting
potential associations with hippocampal atrophy. Interestingly,
contrary to earlier findings, we observed a positive association
between Lactobacillus species abundance and AD risk in our
analyses. Although commonly used as probiotics with beneficial
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host health effects (Huang et al., 2022), previous studies reported
that Lactobacillus produced γ-aminobutyric acid (GABA) via
glutamate metabolism, which regulated GABA levels in the
cerebral cortex and improved cognition, mood, and behavior. In
addition, Lactobacillus reduced kynurenine concentrations and
subsequently enhanced cognitive function in depressed patients
(Rudzki et al., 2019). Significantly, a dysregulated kynurenine
pathway in the tryptophan metabolic route was proposed as a
prominent contributor to AD (Almulla et al., 2022; Liang et al.,
2022). However, not all cognitive effects due to Lactobacillus
are positive. For instance, an increased relative Lactobacillus
abundance was implicated in obesity and diabetes pathophysiology
in both mice and patients (Karlsson et al., 2013; Zeng et al.,
2013; Arora et al., 2017). These findings highlight the complexity
of GM ecosystem and suggest that a lower relative abundance
of the phylum Firmicutes and a greater relative abundance of
Verrucomicrobia in the AD do not necessarily translate into a
common pattern across all genera within these phyla, since several
genera from the same phylum may be found in higher or in lower
proportions in AD spectrum individuals.

Overall, discrepancies found for regional variations in the
abundance of Bacteroides, Alistipes and Bifidobacterium when
comparing AD spectrum with HCs may reflect differences
in dietary pattern and lifestyle. For example, Dilmore et al.
(2023) exploring dietary intervention effects on the microbiome
in adults at risk for AD showed that the low-fat American
Heart Association Diet increased GABA production in MCI
individuals by increasing GABA-producing Alistipes. This finding
contradicted previous studies reporting dysfunction of GABA
signaling aggravating AD pathology and showing lower levels of
GABA in postmortem brain tissue from AD patients (Govindpani
et al., 2017; Andersen et al., 2022). A previous meta-analysis
study has found that an overgrowth of Bacteroides in US-based
AD cohorts, while this pattern was not observed in Chinese
cohorts. The discrepancy might be due to geographical differences
in diet, patient populations and in the RNA sequencing area.
A large amount of study-specific variation in GM composition and
diversity can likely be attributed to interpersonal variability (Ursell
et al., 2012). It has been reported that if taxonomic compositions
of two individuals’ gut microbiota are quite different, they may
still exhibit similar functional activities (Seo and Holtzman, 2024).
This current recognition of “functional redundancy” underscores
the importance of studying the functional activity and the
metabolic potential of GM rather than solely relying on taxonomic
composition (Fetzer et al., 2015). Therefore, in order to strengthen
the robustness of current evidence, additional individual-level
meta-analyses are warranted to elucidate the overall composition,
diversity, and stability of the gut microbial network and understand
its functional interactions in AD. These analyses should adjust
for confounders in a comparable fashion covering critical factors
influencing the gut microbiome composition, such as sex, age, diet,
physical activity, drug interventions, RNA sequencing area, and
standardized microbiome data processing.

Our study strength lies in its comprehensive range of outcomes
and rigorous methodology. Furthermore, for better comparability,
we only included studies that analyzed the gut microbiome
composition by means of high-throughput sequencing techniques.
However, several limitations are worth mentioning. First, our study
mainly included a cross-sectional design, which only allowed for
the identification of associations rather than causal relationships

between GM and AD development. Second, despite a thorough and
systematic search across databases, selected studies predominantly
came from three countries with relatively small sample sizes; thus
caution should be exercised when generalizing our findings to
other populations. Third, due to limited available study outcomes,
we could not analyze dementia subtypes so the impact of GM
may vary among different subtypes. Fourth, while we used mature
16S rRNA sequencing in our study, combining metagenomic
sequencing with multiomics approaches could potentially provide
more comprehensive and accurate microbial information while
minimizing methodological bias. Lastly, although we adjusted
for important potential confounders, such as age, sex, BMI,
and diabetes, it is important to acknowledge that statistical
adjustments may not have completely addressed these issues.
Notably, dietary factors were shown to influence GM composition,
making it difficult to draw consistent GM profiles in AD patients
and even in HCs.

Conclusion

We systematically evaluated studies investigating altered GM
composition using 16S rRNA sequencing in AD spectrum patients
when compared to HCs. In summary, a reduced microbiota
diversity and a significantly distinct pattern of clustering with
regard to beta diversity were observed in AD spectrum patients
when compared with those in HCs. Additionally, consistent with
previous findings, patients with AD spectrum exhibited significant
intestinal flora changes. Specifically, decreased Ruminococcus,
Faecalibacterium, Lachnospira, Dialister, Lachnoclostridium,
and Roseburia abundance was recorded in patients while
Phascolarctobacterium, Lactobacillus, and A. muciniphila were
more enriched when compared to HCs. No significant differences
in the relative abundance of other microbial taxa were identified.
Furthermore, regional variations may have been in play for the
GM, such as Bacteroides, Bifidobacterium, and Alistipes. Currently,
debates are ongoing regarding GM pathogenicity and associated
metabolites; therefore, well-designed studies using innovative
approaches are required to gain a better understanding of the GM
in AD development. Such insights may pave the way for novel
GM-based strategies to prevent and treat AD.

Data availability statement

The original contributions presented in this study are included
in this article/Supplementary material, further inquiries can be
directed to the corresponding authors.

Author contributions

HL: Data curation, Formal analysis, Investigation,
Methodology, Project administration, Software, Visualization,
Writing – original draft. XC: Data curation, Software, Visualization,
Writing – original draft. YL: Methodology, Software, Supervision,
Validation, Visualization, Writing – original draft. FH: Formal
analysis, Investigation, Project administration, Visualization,
Writing – original draft. AT: Conceptualization, Supervision,

Frontiers in Aging Neuroscience 11 frontiersin.org

https://doi.org/10.3389/fnagi.2024.1422350
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-16-1422350 August 5, 2024 Time: 16:32 # 12

Li et al. 10.3389/fnagi.2024.1422350

Writing – review & editing. RZ: Conceptualization, Project
administration, Supervision, Writing – review & editing.

Funding

The authors declare that financial support was received
for the research, authorship, and/or publication of this article.
This work was supported by STI2030-Major Projects (Grant
number: 2021ZD0201802).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnagi.2024.
1422350/full#supplementary-material

References

Almulla, A., Supasitthumrong, T., Amrapala, A., Tunvirachaisakul, C., Jaleel, A.,
Oxenkrug, G., et al. (2022). The tryptophan catabolite or kynurenine pathway in
Alzheimer’s disease: A systematic review and meta-analysis. J. Alzheimers Dis. 88,
1325–1339. doi: 10.3233/jad-220295

Alzheimer’s (2023). 2023 Alzheimer’s disease facts and figures. Alzheimers Dement.
19, 1598–1695. doi: 10.1002/alz.13016

Andersen, J., Schousboe, A., and Verkhratsky, A. (2022). Astrocyte energy
and neurotransmitter metabolism in Alzheimer’s disease: Integration of the
glutamate/GABA-glutamine cycle. Prog. Neurobiol. 217:102331. doi: 10.1016/j.
pneurobio.2022.102331

Arora, T., Seyfried, F., Docherty, N., Tremaroli, V., le Roux, C., Perkins, R., et al.
(2017). Diabetes-associated microbiota in fa/fa rats is modified by Roux-en-Y gastric
bypass. ISME J. 11, 2035–2046. doi: 10.1038/ismej.2017.70

Ashley, N. B., Adrien, P., Tarik, S. O., and Nicola, J. A. (2022). Astrocyte contribution
to dysfunction, risk and progression in neurodegenerative disorders. Nat. Rev.
Neurosci. 24, 23–39. doi: 10.1038/s41583-022-00641-1

Bonfili, L., Cecarini, V., Cuccioloni, M., Angeletti, M., Berardi, S., Scarpona, S., et al.
(2018). SLAB51 probiotic formulation activates SIRT1 pathway promoting antioxidant
and neuroprotective effects in an AD mouse model. Mol. Neurobiol. 55, 7987–8000.
doi: 10.1007/s12035-018-0973-4

Cai, Y., Huang, F., Lao, X., Lu, Y., Gao, X., Alolga, R., et al. (2022).
Integrated metagenomics identifies a crucial role for trimethylamine-producing
Lachnoclostridium in promoting atherosclerosis. NPJ Biofilms Microb. 8:11. doi: 10.
1038/s41522-022-00273-4

Cani, P., Depommier, C., Derrien, M., Everard, A., and de Vos, W. (2022).
Akkermansia muciniphila: Paradigm for next-generation beneficial microorganisms.
Nat. Rev. Gastroenterol. Hepatol. 19, 625–637. doi: 10.1038/s41575-022-00631-9

Cheng, H., Ning, M., Chen, D., and Ma, W. (2019). Interactions between the gut
microbiota and the host innate immune response against pathogens. Front. Immunol.
10:607. doi: 10.3389/fimmu.2019.00607

Cox, L., and Weiner, H. (2018). Microbiota signaling pathways that influence
neurologic disease. Neurotherapeutics 15, 135–145. doi: 10.1007/s13311-017-0598-8

Dilmore, A., Martino, C., Neth, B., West, K., Zemlin, J., Rahman, G., et al. (2023).
Effects of a ketogenic and low-fat diet on the human metabolome, microbiome, and
foodome in adults at risk for Alzheimer’s disease. Alzheimers Dement. 19, 4805–4816.
doi: 10.1002/alz.13007

Diviccaro, S., Cioffi, L., Piazza, R., Caruso, D., Melcangi, R., and Giatti, S. (2023).
Neuroactive steroid-gut microbiota interaction in T2DM diabetic encephalopathy.
Biomolecules 13:1325. doi: 10.3390/biom13091325

Fernandes, A., Tábuas-Pereira, M., Duro, D., Lima, M., Gens, H., Santiago, B., et al.
(2020). C-reactive protein as a predictor of mild cognitive impairment conversion into
Alzheimer’s disease dementia. Exp. Gerontol. 138:111004. doi: 10.1016/j.exger.2020.
111004

Ferreiro, A., Choi, J., Ryou, J., Newcomer, E., Thompson, R., Bollinger, R., et al.
(2023). Gut microbiome composition may be an indicator of preclinical Alzheimer’s
disease. Sci. Transl. Med. 15:eabo2984. doi: 10.1126/scitranslmed.abo2984

Fetzer, I., Johst, K., Schäwe, R., Banitz, T., Harms, H., and Chatzinotas, A. (2015).
The extent of functional redundancy changes as species’ roles shift in different
environments. Proc. Natl. Acad. Sci. U.S.A. 112, 14888–14893. doi: 10.1073/pnas.
1505587112

Finegold, S., Dowd, S., Gontcharova, V., Liu, C., Henley, K., Wolcott, R., et al. (2010).
Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe 16,
444–453. doi: 10.1016/j.anaerobe.2010.06.008

First, M. B., Frances, A., and Pincus, H. A. (2002). DSM-IV-TR handbook of
differential diagnosis. Arlington, VA: American Psychiatric Publishing, Inc.

Forde, B., and O’Toole, P. (2013). Next-generation sequencing technologies and
their impact on microbial genomics. Briefings Funct. Genom. 12, 440–453. doi: 10.
1093/bfgp/els062

Gao, B., Chi, L., Zhu, Y., Shi, X., Tu, P., Li, B., et al. (2021). An introduction to next
generation sequencing bioinformatic analysis in gut microbiome studies. Biomolecules
11:530. doi: 10.3390/biom11040530

Gauthier, S., Rosa-Neto, P., Morais, J., and Webster, C. (2021). World Alzheimer
report 2021: Journey through the diagnosis of dementia. London: Alzheimer’s Disease
International.

Govindpani, K., Calvo-Flores Guzmán, B., Vinnakota, C., Waldvogel, H., Faull, R.,
and Kwakowsky, A. (2017). Towards a better understanding of GABAergic remodeling
in Alzheimer’s disease. Int. J. Mol. Sci. 18:1813. doi: 10.3390/ijms18081813

Guo, M., Peng, J., Huang, X., Xiao, L., Huang, F., and Zuo, Z. (2021). Gut
microbiome features of chinese patients newly diagnosed with Alzheimer’s disease or
mild cognitive impairment. J. Alzheimers Dis. 80, 299–310. doi: 10.3233/jad-201040

Haran, J., Bhattarai, S., Foley, S., Dutta, P., Ward, D., Bucci, V., et al.
(2019). Alzheimer’s disease microbiome is associated with dysregulation of the
anti-inflammatory P-glycoprotein pathway. mBio 10:e00632–19. doi: 10.1128/mBio.
00632-19

Higgins, J., Altman, D., Gøtzsche, P., Jüni, P., Moher, D., Oxman, A., et al. (2011).
The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. Br.
Med. J. 343:d5928. doi: 10.1136/bmj.d5928

Higgins, J., Thompson, S., Deeks, J., and Altman, D. (2003). Measuring
inconsistency in meta-analyses. Br. Med. J. 327, 557–560. doi: 10.1136/bmj.327.
7414.557

Hill, J., and Lukiw, W. (2015). Microbial-generated amyloids and Alzheimer’s
disease (AD). Front. Aging Neurosci. 7:9. doi: 10.3389/fnagi.2015.00009

Huang, R., Wu, F., Zhou, Q., Wei, W., Yue, J., Xiao, B., et al. (2022). Lactobacillus
and intestinal diseases: Mechanisms of action and clinical applications. Microbiol. Res.
260:127019. doi: 10.1016/j.micres.2022.127019

Hung, C., Chang, C., Huang, C., Nouchi, R., and Cheng, C. (2022). Gut microbiota
in patients with Alzheimer’s disease spectrum: A systematic review and meta-analysis.
Aging 14, 477–496. doi: 10.18632/aging.203826

Hwang, Y., Park, S., Paik, J., Chae, S., Kim, D., Jeong, D., et al. (2019). Lactobacillus
plantarum efficacy and safety of C29-fermented soybean (DW2009) in individuals
with mild cognitive impairment: A 12-week, multi-center, randomized, double-blind,
placebo-controlled clinical trial. Nutrients 11:305. doi: 10.3390/nu11020305

Frontiers in Aging Neuroscience 12 frontiersin.org

https://doi.org/10.3389/fnagi.2024.1422350
https://www.frontiersin.org/articles/10.3389/fnagi.2024.1422350/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnagi.2024.1422350/full#supplementary-material
https://doi.org/10.3233/jad-220295
https://doi.org/10.1002/alz.13016
https://doi.org/10.1016/j.pneurobio.2022.102331
https://doi.org/10.1016/j.pneurobio.2022.102331
https://doi.org/10.1038/ismej.2017.70
https://doi.org/10.1038/s41583-022-00641-1
https://doi.org/10.1007/s12035-018-0973-4
https://doi.org/10.1038/s41522-022-00273-4
https://doi.org/10.1038/s41522-022-00273-4
https://doi.org/10.1038/s41575-022-00631-9
https://doi.org/10.3389/fimmu.2019.00607
https://doi.org/10.1007/s13311-017-0598-8
https://doi.org/10.1002/alz.13007
https://doi.org/10.3390/biom13091325
https://doi.org/10.1016/j.exger.2020.111004
https://doi.org/10.1016/j.exger.2020.111004
https://doi.org/10.1126/scitranslmed.abo2984
https://doi.org/10.1073/pnas.1505587112
https://doi.org/10.1073/pnas.1505587112
https://doi.org/10.1016/j.anaerobe.2010.06.008
https://doi.org/10.1093/bfgp/els062
https://doi.org/10.1093/bfgp/els062
https://doi.org/10.3390/biom11040530
https://doi.org/10.3390/ijms18081813
https://doi.org/10.3233/jad-201040
https://doi.org/10.1128/mBio.00632-19
https://doi.org/10.1128/mBio.00632-19
https://doi.org/10.1136/bmj.d5928
https://doi.org/10.1136/bmj.327.7414.557
https://doi.org/10.1136/bmj.327.7414.557
https://doi.org/10.3389/fnagi.2015.00009
https://doi.org/10.1016/j.micres.2022.127019
https://doi.org/10.18632/aging.203826
https://doi.org/10.3390/nu11020305
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-16-1422350 August 5, 2024 Time: 16:32 # 13

Li et al. 10.3389/fnagi.2024.1422350

Hyman, B., Phelps, C., Beach, T., Bigio, E., Cairns, N., Carrillo, M., et al. (2012).
National institute on aging-Alzheimer’s association guidelines for the neuropathologic
assessment of Alzheimer’s disease. Alzheimers Dement. 8, 1–13. doi: 10.1016/j.jalz.
2011.10.007

Jemimah, S., Chabib, C., Hadjileontiadis, L., and AlShehhi, A. (2023). Gut
microbiome dysbiosis in Alzheimer’s disease and mild cognitive impairment: A
systematic review and meta-analysis. PLoS One 18:e0285346. doi: 10.1371/journal.
pone.0285346

Jian, H., Liu, Y., Wang, X., Dong, X., and Zou, X. (2023). Akkermansia muciniphila
as a next-generation probiotic in modulating human metabolic homeostasis and
disease progression: A role mediated by gut-liver-brain axes? Int. J. Mol. Sci. 24:3900.
doi: 10.3390/ijms24043900

Kaiyrlykyzy, A., Kozhakhmetov, S., Babenko, D., Zholdasbekova, G., Alzhanova, D.,
Olzhayev, F., et al. (2022). Study of gut microbiota alterations in Alzheimer’s dementia
patients from Kazakhstan. Sci. Rep. 12:15115. doi: 10.1038/s41598-022-19393-0

Karlsson, F., Tremaroli, V., Nookaew, I., Bergström, G., Behre, C., Fagerberg, B.,
et al. (2013). Gut metagenome in European women with normal, impaired and diabetic
glucose control. Nature 498, 99–103. doi: 10.1038/nature12198

Khedr, E., Omeran, N., Karam-Allah Ramadan, H., Ahmed, G., and Abdelwarith,
A. (2022). Alteration of gut microbiota in Alzheimer’s disease and their relation to the
cognitive impairment. J. Alzheimers Dis. 88, 1103–1114. doi: 10.3233/jad-220176

Kim, M., Kim, Y., Choi, H., Kim, W., Park, S., Lee, D., et al. (2020). Transfer of
a healthy microbiota reduces amyloid and tau pathology in an Alzheimer’s disease
animal model. Gut 69, 283–294. doi: 10.1136/gutjnl-2018-317431

Kowalski, K., and Mulak, A. (2019). Brain-gut-microbiota axis in Alzheimer’s
disease. J. Neurogastroenterol. Motil. 25, 48–60. doi: 10.5056/jnm18087

Li, B., He, Y., Ma, J., Huang, P., Du, J., Cao, L., et al. (2019). Mild cognitive
impairment has similar alterations as Alzheimer’s disease in gut microbiota.
Alzheimers Dement. 15, 1357–1366. doi: 10.1016/j.jalz.2019.07.002

Liang, Y., Xie, S., He, Y., Xu, M., Qiao, X., Zhu, Y., et al. (2022). Kynurenine
pathway metabolites as biomarkers in Alzheimer’s disease. Dis. Mark. 2022:9484217.
doi: 10.1155/2022/9484217

Ling, Z., Zhu, M., Yan, X., Cheng, Y., Shao, L., Liu, X., et al. (2020). Structural and
functional dysbiosis of fecal microbiota in chinese patients with Alzheimer’s disease.
Front. Cell. Dev. Biol. 8:634069. doi: 10.3389/fcell.2020.634069

Liu, P., Jia, X., Chen, Y., Yu, Y., Zhang, K., Lin, Y., et al. (2021). Gut microbiota
interacts with intrinsic brain activity of patients with amnestic mild cognitive
impairment. CNS Neurosci. Ther. 27, 163–173. doi: 10.1111/cns.13451

Liu, P., Wu, L., Peng, G., Han, Y., Tang, R., Ge, J., et al. (2019). Altered microbiomes
distinguish Alzheimer’s disease from amnestic mild cognitive impairment and health
in a Chinese cohort. Brain Behav. Immun. 80, 633–643. doi: 10.1016/j.bbi.2019.05.008

Long, J., and Holtzman, D. (2019). Alzheimer disease: An update on pathobiology
and treatment strategies. Cell 179, 312–339. doi: 10.1016/j.cell.2019.09.001

Nagpal, R., Neth, B., Wang, S., Craft, S., and Yadav, H. (2019). Modified
Mediterranean-ketogenic diet modulates gut microbiome and short-chain fatty acids
in association with Alzheimer’s disease markers in subjects with mild cognitive
impairment. EBioMedicine 47, 529–542. doi: 10.1016/j.ebiom.2019.08.032

Ordoñez-Rodriguez, A., Roman, P., Rueda-Ruzafa, L., Campos-Rios, A., and
Cardona, D. (2023). Changes in gut microbiota and multiple sclerosis: A systematic
review. Int. J. Environ. Res. Public Health 20:4624. doi: 10.3390/ijerph20054624

Pal, D., Naskar, M., Bera, A., and Mukhopadhyay, B. (2021). Chemical synthesis
of the pentasaccharide repeating unit of the O-specific polysaccharide from
Ruminococcus gnavus. Carbohydr. Res. 507:108384. doi: 10.1016/j.carres.2021.108384

Rescigno, M. (2014). Intestinal microbiota and its effects on the immune system.
Cell Microbiol. 16, 1004–1013. doi: 10.1111/cmi.12301

Rinninella, E., Raoul, P., Cintoni, M., Franceschi, F., Miggiano, G. A. D., Gasbarrini,
A., et al. (2019). What is the healthy gut microbiota composition? A changing
ecosystem across age, environment, diet, and diseases. Microorganisms 7:14. doi: 10.
3390/microorganisms7010014

Rolhion, N., and Chassaing, B. (2016). When pathogenic bacteria meet the intestinal
microbiota. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371:504. doi: 10.1098/rstb.2015.0504

Rudzki, L., Ostrowska, L., Pawlak, D., Małus, A., Pawlak, K., Waszkiewicz, N., et al.
(2019). Probiotic Lactobacillus plantarum 299v decreases kynurenine concentration

and improves cognitive functions in patients with major depression: A double-blind,
randomized, placebo controlled study. Psychoneuroendocrinology 100, 213–222. doi:
10.1016/j.psyneuen.2018.10.010

Sakamoto, M., Ikeyama, N., Toyoda, A., Murakami, T., Mori, H., Iino, T., et al.
(2020). Dialister hominis sp. nov., isolated from human faeces. Int. J. Syst. Evol.
Microbiol. 70, 589–595. doi: 10.1099/ijsem.0.003797

Scheperjans, F., Aho, V., Pereira, P., Koskinen, K., Paulin, L., Pekkonen, E., et al.
(2015). Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov.
Disord. 30, 350–358. doi: 10.1002/mds.26069

Seo, D., and Holtzman, D. (2024). Current understanding of the Alzheimer’s disease-
associated microbiome and therapeutic strategies. Exp. Mol. Med. 56, 86–94. doi:
10.1038/s12276-023-01146-2

Sheng, C., Lin, L., Lin, H., Wang, X., Han, Y., and Liu, S. (2021). Altered
gut microbiota in adults with subjective cognitive decline: The SILCODE study.
J. Alzheimers Dis. 82, 513–526. doi: 10.3233/jad-210259

Sochocka, M., Donskow-Łysoniewska, K., Diniz, B., Kurpas, D., Brzozowska, E.,
and Leszek, J. (2019). The gut microbiome alterations and inflammation-driven
pathogenesis of Alzheimer’s disease-a critical review. Mol. Neurobiol. 56, 1841–1851.
doi: 10.1007/s12035-018-1188-4

Sterne, J., Sutton, A., Ioannidis, J., Terrin, N., Jones, D., Lau, J., et al. (2011).
Recommendations for examining and interpreting funnel plot asymmetry in meta-
analyses of randomised controlled trials. Br. Med. J. 343:d4002. doi: 10.1136/bmj.
d4002

Sun, J., Xu, J., Ling, Y., Wang, F., Gong, T., Yang, C., et al. (2019).
Fecal microbiota transplantation alleviated Alzheimer’s disease-like pathogenesis in
APP/PS1 transgenic mice. Transl. Psychiatry 9:189. doi: 10.1038/s41398-019-0525-3

Taylor, J., and Matthews, S. (2015). New insight into the molecular control of
bacterial functional amyloids. Front. Cell. Infect. Microbiol. 5:33. doi: 10.3389/fcimb.
2015.00033

Ursell, L., Clemente, J., Rideout, J., Gevers, D., Caporaso, J., and Knight, R. (2012).
The interpersonal and intrapersonal diversity of human-associated microbiota in key
body sites. J. Allergy Clin. Immunol. 129, 1204–1208. doi: 10.1016/j.jaci.2012.03.010

Vaiserman, A., Koliada, A., and Marotta, F. (2017). Gut microbiota: A player in aging
and a target for anti-aging intervention. Ageing Res. Rev. 35, 36–45. doi: 10.1016/j.arr.
2017.01.001

Valles-Colomer, M., Falony, G., Darzi, Y., Tigchelaar, E., Wang, J., Tito, R., et al.
(2019). The neuroactive potential of the human gut microbiota in quality of life and
depression. Nat. Microbiol. 4, 623–632. doi: 10.1038/s41564-018-0337-x

van der Hee, B., and Wells, J. (2021). Microbial regulation of host physiology by
short-chain fatty acids. Trends Microbiol. 29, 700–712. doi: 10.1016/j.tim.2021.02.001

Vogt, N., Kerby, R., Dill-McFarland, K., Harding, S., Merluzzi, A., Johnson, S.,
et al. (2017). Gut microbiome alterations in Alzheimer’s disease. Sci. Rep. 7:13537.
doi: 10.1038/s41598-017-13601-y

Wells, G., Shea, B., O’connell, D., Peterson, J., Welch, V., Losos, M., et al.
(2000). The Newcastle-Ottawa scale (NOS) for assessing the quality of nonrandomised
studies in meta-analyses. Available online at: http://www.ohri.ca/programs/clinical_
epidemiology/oxford.asp (accessed March 11, 2024).

Yang, S., and David, M. H. (2018). Interplay between innate immunity and
Alzheimer disease: APOE and TREM2 in the spotlight. Nat. Rev. Immunol. 18,
759–772. doi: 10.1038/s41577-018-0051-1

Zeng, H., Liu, J., Jackson, M., Zhao, F., Yan, L., and Combs, G. (2013). Fatty liver
accompanies an increase in lactobacillus species in the hind gut of C57BL/6 mice fed a
high-fat diet. J. Nutr. 143, 627–631. doi: 10.3945/jn.112.172460

Zhang, X., Wang, Y., Liu, W., Wang, T., Wang, L., Hao, L., et al. (2021). Diet
quality, gut microbiota, and microRNAs associated with mild cognitive impairment
in middle-aged and elderly Chinese population. Am. J. Clin. Nutr. 114, 429–440.
doi: 10.1093/ajcn/nqab078

Zhou, Y., Wang, Y., Quan, M., Zhao, H., and Jia, J. (2021). Gut microbiota changes
and their correlation with cognitive and neuropsychiatric symptoms in Alzheimer’s
disease. J. Alzheimers Dis. 81, 583–595. doi: 10.3233/jad-201497

Zhuang, Z., Shen, L., Li, W., Fu, X., Zeng, F., Gui, L., et al. (2018). Gut microbiota
is altered in patients with Alzheimer’s disease. J. Alzheimers Dis. 63, 1337–1346. doi:
10.3233/jad-180176

Frontiers in Aging Neuroscience 13 frontiersin.org

https://doi.org/10.3389/fnagi.2024.1422350
https://doi.org/10.1016/j.jalz.2011.10.007
https://doi.org/10.1016/j.jalz.2011.10.007
https://doi.org/10.1371/journal.pone.0285346
https://doi.org/10.1371/journal.pone.0285346
https://doi.org/10.3390/ijms24043900
https://doi.org/10.1038/s41598-022-19393-0
https://doi.org/10.1038/nature12198
https://doi.org/10.3233/jad-220176
https://doi.org/10.1136/gutjnl-2018-317431
https://doi.org/10.5056/jnm18087
https://doi.org/10.1016/j.jalz.2019.07.002
https://doi.org/10.1155/2022/9484217
https://doi.org/10.3389/fcell.2020.634069
https://doi.org/10.1111/cns.13451
https://doi.org/10.1016/j.bbi.2019.05.008
https://doi.org/10.1016/j.cell.2019.09.001
https://doi.org/10.1016/j.ebiom.2019.08.032
https://doi.org/10.3390/ijerph20054624
https://doi.org/10.1016/j.carres.2021.108384
https://doi.org/10.1111/cmi.12301
https://doi.org/10.3390/microorganisms7010014
https://doi.org/10.3390/microorganisms7010014
https://doi.org/10.1098/rstb.2015.0504
https://doi.org/10.1016/j.psyneuen.2018.10.010
https://doi.org/10.1016/j.psyneuen.2018.10.010
https://doi.org/10.1099/ijsem.0.003797
https://doi.org/10.1002/mds.26069
https://doi.org/10.1038/s12276-023-01146-2
https://doi.org/10.1038/s12276-023-01146-2
https://doi.org/10.3233/jad-210259
https://doi.org/10.1007/s12035-018-1188-4
https://doi.org/10.1136/bmj.d4002
https://doi.org/10.1136/bmj.d4002
https://doi.org/10.1038/s41398-019-0525-3
https://doi.org/10.3389/fcimb.2015.00033
https://doi.org/10.3389/fcimb.2015.00033
https://doi.org/10.1016/j.jaci.2012.03.010
https://doi.org/10.1016/j.arr.2017.01.001
https://doi.org/10.1016/j.arr.2017.01.001
https://doi.org/10.1038/s41564-018-0337-x
https://doi.org/10.1016/j.tim.2021.02.001
https://doi.org/10.1038/s41598-017-13601-y
http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp
http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp
https://doi.org/10.1038/s41577-018-0051-1
https://doi.org/10.3945/jn.112.172460
https://doi.org/10.1093/ajcn/nqab078
https://doi.org/10.3233/jad-201497
https://doi.org/10.3233/jad-180176
https://doi.org/10.3233/jad-180176
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/

	Gut microbiota changes in patients with Alzheimer's disease spectrum based on 16S rRNA sequencing: a systematic review and meta-analysis
	Introduction
	Materials and methods
	Search strategy
	Inclusion and exclusion criteria
	Study selection and data extraction
	Risk of bias and quality assessment
	Statistical analysis

	Results
	Literature searches and study characteristics
	Microbiota diversity in patients with AD spectrum
	The relative abundance of bacterial genera at different phyla levels
	Risk of bias assessments

	Discussion
	Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References


