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Introduction: At least one-third of the identified risk alleles from Genome-Wide 
Association Studies (GWAS) of Alzheimer’s disease (AD) are involved in lipid 
metabolism, lipid transport, or direct lipid binding. In fact, a common genetic 
variant (ε4) in a cholesterol and phospholipid transporter, Apolipoprotein E 
(APOEε4), is the primary genetic risk factor for late-onset AD. In addition to 
genetic variants, lipidomic studies have reported severe metabolic dysregulation 
in human autopsy brain tissue, cerebrospinal fluid, blood, and multiple mouse 
models of AD.

Methods: We  aimed to identify an overarching metabolic pathway in lipid 
metabolism by integrating analyses of lipidomics and transcriptomics from 
the Religious Order Study and Rush Memory Aging Project (ROSMAP) using 
differential analysis and network correlation analysis.

Results: Coordinated differences in lipids were found to be  dysregulated in 
association with both mild cognitive impairment (MCI) and APOEε4 carriers. 
Interestingly, these correlations were weakened when adjusting for education. 
Indeed, the cognitively non-impaired APOEε4 carriers have higher education 
levels in the ROSMAP cohort, suggesting that this lipid signature may be associated 
with a resilience phenotype. Network correlation analysis identified multiple 
differential lipids within a single module that are substrates and products in 
the Lands Cycle for acyl chain remodeling. In addition, our analyses identified 
multiple genes in the Lands Cycle acyl chain remodeling pathway, which were 
associated with cognitive decline independent of amyloid-β (Aβ) load and tau 
tangle pathologies.

Discussion: Our studies highlight the critical differences in acyl chain remodeling 
in brain tissue from APOEε4 carriers and individual non-carriers with MCI. A 
coordinated lipid profile shift in dorsolateral prefrontal cortex from both APOEε4 
carriers and MCI suggests differences in lipid metabolism occur early in disease 
stage and highlights lipid homeostasis as a tractable target for early disease 
modifying intervention.
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Introduction

Dysregulation of the lipidome is strongly implicated in 
neurodegenerative diseases such as Alzheimer’s disease (AD) as well as 
during aging (Foley, 2010; Tu et al., 2017; Wong et al., 2017). In AD, lipid 
dysregulation AD is further implicated by genome-wide association 
studies (GWAS) in which one-third of risk variants are involved in lipid 
metabolism, lipid transport, or direct lipid binding (Kunkle et al., 2019). 
A cholesterol and phospholipid transporter, apolipoprotein E ε4 
(APOEε4), is the strongest genetic risk factor for late-onset AD in 
individuals of European descent. Multiple other variants involved in 
phospholipid metabolism have been identified in GWAS studies 
associated with AD risk, including cholesterol transport protein Clusterin/
ApoJ; lysophospholipid transporter ABCA7, membrane binding proteins 
TREM2 and SORL1 and a phosphoinositide phosphatase, INPP5D; 
Bridging integrator 1 (BIN1) and phosphatidylinositol binding clathrin 
assembly protein (PICALM) (Kunkle et al., 2019).

Additionally, lipidomic data confirm lipid dyshomeostasis associated 
with AD in autopsy brain (Batra et al., 2022), cerebrospinal fluid (CSF) 
(Dakterzada et al., 2023; Do et al., 2023), human plasma (Li et al., 2023), 
and animal models (Chan et al., 2012; Mcintire et al., 2012) pointing to 
the potential for specific pathway(s) in lipid metabolism to underlie 
multiple AD disease mechanisms. Specifically, the loss of polyunsaturated 
fatty acid (PUFA) includingdocosahexaenoic acid (DHA), across 
multiple lipid classes is regularly observed in these studies. In addition, 
aberrant uptake of DHA has been observed by age 30–35 in APOEε4 
carriers, who are at increased risk of developing AD (Yassine et al., 2017). 
Despite these multiple lines of evidence highlighting lipid dysregulation 
as a significant contributor to AD, a system-wide understanding able to 
synthesize these data has not yet been fully developed.

Based on the genetic and lipidomic evidence for phospholipid 
dysregulation leading to an increased risk of late-onset AD, we aimed 
to determine if transcriptomic and lipidomic analyses of the human 
brain support the hypothesis that dysregulation of phospholipid 
metabolism is associated with AD. We analyzed the existing lipidomics 
data from serum and the dorsolateral prefrontal cortex (DLPFC) 
autopsy tissue from the Religious Order Study and Rush Memory 
Aging Project (ROSMAP) cohort and identified multiple lipids that 
are dysregulated in association with Alzheimer’s disease progression. 
Our corresponding analysis of existing RNA-seq data from the 
ROSMAP and identified multiple genes in lipid metabolism associated 
with cognitive decline independently of the hallmark AD pathologies, 
amyloid-β (Aβ) load and tau tangle density.

Our analysis is the first, to our knowledge, to report coordinated 
lipid profile differences in the brain of both MCI and APOEε4 carriers 
(NCI+), indicative of lipid dyshomeostasis early in disease progression. 
The dysregulated lipids and genes suggest that acyl chain remodeling 
deficits may be  involved in the etiology and pathogenesis of 
cognitive impairment.

Materials and methods

ROSMAP cohort

The Religious Order Study (ROS) and Rush Memory and Aging 
Project (MAP) cohorts (Bennett et al., 2012a,b, 2018) are two prospective 
clinical-pathologic cohort studies of aging and dementia conducted by 
the Rush Alzheimer’s Disease Center. ROS started in 1994 with the 

recruitment of older individuals from Catholic religious communities 
across the United States. MAP started in 1997 with the recruitment of 
individuals from a wide range of backgrounds and socio-economic 
statuses from northeastern Illinois, United States. All participants are 
without known dementia at enrollment and agree to annual clinical 
evaluation and brain donation after death. Both studies were approved 
by an Institutional Review Board of Rush University Medical Center. 
Each participant signed an informed consent, Anatomic Gift Act, and 
repository consent allowing their data and biospecimens to 
be repurposed. After enrollment, participants are evaluated for cognitive 
and physical function annually, and diagnoses of dementia and it’s causes 
and MCI, and cognitive decline, as previously described (Bennett et al., 
2002, 2006a,b; Oveisgharan et al., 2023). After death, a comprehensive 
pathologic assessment is performed for AD and other neurodegenerative 
and cerebrovascular pathologies, as previously described (Boyle et al., 
2019, 2021). APOE genotype was determined as described (Yu et al., 
2017). Here, lipidomics profiling data previously generated on 99 
samples from the dorsolateral prefrontal cortex (DLPFC) brain region 
and 542 serum samples were used, with covariates including age at death 
(brain tissue), age of draw (serum), sex, post-mortem interval (brain 
tissue), apolipoprotein E ε4 (APOEε4) genotype status, education 
history, cognitive scores, clinical diagnosis at death, and Aβ (amyloid-β; 
load) and paired helical filament-tau protein (tangles) density in brain 
tissue. Demographic characteristics of the ROSMAP participants whose 
data were used in this study are included in Table 1.

Lipidomic data

For our analysis, we  used previously generated lipidomic data 
generated using the Biocrates AbsoluteIDQ p180 platform (Biocrates AG, 
Innsbruck, Austria), and made available from the AMP-AD Knowledge 
Portal on Synapse at https://www.synapse.org/#!Synapse:syn26007829. 
The p180 platform is a multiplexed targeted metabolomic assay covering 
188 metabolites in a variety of classes, including hexoses, amino acids, 
biogenic amines, acylcarnitines, glycerophospholipids, and sphingolipids 
(Arnold et al., 2020). Selective analyte detection was accomplished by use 
of a triple quadrupole tandem mass spectrometer operated in Multiple 
Reaction Monitoring (MRM) mode in which specific precursor to 
product ion transitions were measured for every analyte and stable 
isotope labeled internal standard. Data was generated by the Duke 
Metabolomics and Proteomics Shared Resource, a member of the 
Alzheimer’s Disease Metabolomics Consortium, using protocols 
published previously for blood samples. The platform has been validated 
for human plasma (Klavins et al., 2015; Trabado et al., 2017) and applied 
successfully to a variety of other matrices (St John-Williams et al., 2017; 
Varma et  al., 2018; Weng et  al., 2019). The Alzheimer’s Disease 
Metabolomics Consortium has previously published results from the 
p180 platform with the ROSMAP data (Arnold et al., 2020).

RNAseq data

We used previously generated bulk RNA-sequencing data 
available from Synapse based on methods previously described 
(Mostafavi et al., 2018) and accessible on the AD Knowledge Portal at 
https://www.synapse.org/#!Synapse:syn3388564. Demographic 
information for the subset of participants which had RNA-sequencing 
data available is shown in Table 1.
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Data preprocessing

Lipid species with a high number of missing values (>17%) were 
removed and remaining missing values were imputed as zero because 
of the sensitivity limit of detection for the lipid panel. Since the 
majority of a lipid species is detected across the samples, those values 
that are missing may be interpreted as an undetectable level of lipid 
based on the limited sensitivity of the assay, and therefore represent a 
very low or 0 value of the lipid level instead of a missing value. Data 
was normalized by taking the mole percent of lipid species (relative 
abundance) within each sample and standardizing across lipid species. 
After normalization, we controlled for batch effects as well as sex, age, 
and post-mortem interval through the lmfit function in the limma R 
package. We performed additional supplementary analyses where the 
data was corrected for years of education during pre-processing or the 
model was adjusted for education where indicated. Otherwise, the 
data and analyses were not corrected/adjusted for education. For the 
brain and serum data, age at death and age at serum draw were used, 
respectively, as the age covariate. For serum data, we used a linear 

mixed model to control for repeated samples from the same donors. 
For all analyses using mixed models, donors with records of one-time 
visits were grouped together.

Differential analysis of lipidomics

Sample label groupings: Each patient in the ROSMAP subset 
selected for analysis in this study had a clinical diagnosis falling into 
one of three categories: no cognitive impairment (NCI), mild cognitive 
impairment (MCI), or Alzheimer’s dementia (AD). In our analyses, 
these participants were further stratified into six individual groups, 
combining the subject’s clinical diagnosis and APOEε4 carrier status 
(+/−). We treat NCI APOEε4 non-carriers (NCI−) as the reference 
group throughout the analyses.

To assess lipid differences across disease progression, 
we performed t-tests of lipids species between NCI− and every other 
group to obtain a preliminary set of lipids with potential association 
with AD progression.

TABLE 1 ROSMAP cohort overview.

BRAIN NCI− NCI+ MCI− MCI+ AD− AD+ p-value

Brain tissue (N, %) 41 (41.4) 6 (6.1) 22 (22.2) 6 (6.1) 15 (15.1) 9 (9.1)

Age of death (Years, SD) 89.9 (5.7) 89.7 (6.2) 91.7 (6.3) 91.2 (5.4) 93.0 (6.4) 87.7 (5.8) 0.321

Sex, male (N, %) 13 (13.2) 3 (3.0) 7 (7.1) 0 (0) 3 (3.0) 0 (0) 0.138

Postmortem interval (hours, SD) 8.6 (9.0) 7.1 (2.0) 7.6 (2.8) 9.4 (4.1) 12.0 (8.5) 15.2 (3.0) 0.532

Years of education (mean, SD) 14.8 (3.4) 18.2 (3.8) 14.7 (2.7) 15.8 (1.6) 15.7 (2.4) 15.2 (4.7) 0.239

CGRS (mean, SD) 0.062 (0.042) 0.050 (0.032) 0.031 (0.051) 0.014 (0.061) −0.048 (0.103) −0.117 (0.100) <0.001

Plaques (mean, SD) 0.549 (0.499) 0.568 (0.420) 0.784 (0.465) 0.980 (0.429) 0.920 (0.448) 1.484 (0.268) <0.001

Tangles (mean, SD) 1.810 (0.639) 1.907 (0.791) 2.085 (1.089) 2.443 (1.626) 2.643 (1.265) 4.626 (1.277) <0.001

SERUM NCI− NCI+ MCI− MCI+ AD− AD+ p-value

Serum (N, %) 356 (65.7) 70 (12.9) 81 (14.9) 22 (4.1) 9 (1.7) 4 (0.7)

Age of draw (Years, SD) 81.3 (7.4) 80.8 (7.7) 87.2 (6.1) 85.3 (5.7) 89.5 (8.2) 78.5 (4.7) <0.001

Sex—Male (N, %) 80 (14.8) 9 (1.7) 20 (3.7) 4 (0.7) 3 (0.6) 0 (0) 0.203

Years of education (mean, SD) 15.7 (3.1) 16.0 (3.0) 15.6 (3.1) 17.0 (3.5) 15.5 (2.6) 17.5 (6.2) 0.677

CGRS (mean, SD) 0.045 (0.053) 0.028 (0.078) −0.010 (0.083) −0.027 (0.094) −0.027 (0.120) −0.141 (0.100) <0.001

Plaques (mean, SD) 0.593 (0.491) 0.666 (0.448) 0.954 (0.459) 1.375 (0.251) 0.885 (0.225) 1.758 (0.042) <0.001

Tangles (mean, SD) 1.815 (0.967) 2.909 (1.960) 2.628 (1.280) 4.071 (1.341) 3.214 (1.309) 4.068 (0.397) <0.001

RNA bulk APOEε4 non-carrier APOEε4 carrier p-value

Brain tissue (N, %) 567 (74.1) 198 (25.9)

Age of death (Years, SD) 89.4 (6.7) 88.5 (6.0) 0.004

Sex—Male (N, %) 193 (34) 71 (36) <0.001

Postmortem interval (hours, SD) 8.1 (6.4) 7.3 (4.4) 0.004

Years of education (mean, SD) 16.4 (3.5) 17.0 (3.5) 0.005

RIN (mean, SD) 6.7 (1.4) 6.6 (1.35) 0.211

CGRS (mean, SD) −0.00 (0.09) −0.05 (0.11) 0.061

Plaques (mean, SD) 0.6 (0.51) 0.98 (0.48) 0.090

Tangles (mean, SD) 1.97 (1.12) 2.7 (1.45) 0.069

NCI, no cognitive impairment; MCI, mild cognitive impairment; AD, Alzheimer’s disease-associated dementia, and APOEε4 carrier status (+/−); N, number of participants; SD, standard 
deviation; CGRS, cognitive global random slope of decline.
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Unsupervised learning

Correlation heatmaps were constructed to broadly compare the 
lipid profiles of diagnosis groups, using Spearman correlations 
between the lipid profiles of two diagnosis groups. More precisely, 
we derived the mean pairwise correlation of two groups by considering 
the average of all pairwise correlations between individual samples of 
one group with those of the latter group. We  then adapted the 
weighted gene co-expression network analysis (WGCNA) approach 
adapted for lipid species data. WGCNA performs hierarchical 
clustering on the (dis)similarity matrix derived from the data’s 
topology to produce modules (Langfelder and Horvath 2008). Here, 
we derived “eigenlipids” for each module by calculating the first PC 
using only the lipids assigned to the module of interest. For each 
module, we performed Mann–Whitney tests pairwise across all six 
diagnosis-genotype groups. We opted for this non-parametric test to 
account for outliers and skewed distributions of eigenlipids of 
lipid modules.

For the K-means clustering and module analyses, we incorporated 
lipids with at least one statistically significant (p < 0.05) difference 
between the NCI− group and any other diagnosis-carrier status group 
via t-test. In the K-means clustering analysis, we  used Euclidean 
distances for brain and serum sample data. The hyperparameter k for 
each analysis was selected after reviewing scree, elbow, and silhouette 
plots with k ranging from 2 to 10.

Supervised learning

A set of linear models was used to examine the associations 
between lipid species and the outcome variable of cognitive global 
random slope, which is the estimated person-specific rate of change 
in the global cognition variable over time (i.e., cogng_demog_slope). 
We  also analyzed the cognitive global random slope measure 
controlled for demographics and pathology (i.e., cogng_path_slope). 
Within these models, we controlled for age at death, education, post-
mortem interval, and sex. Models only include samples with complete 
data. Benjamini–Hochberg (BH) correction was used to adjust the 
p-values for multiple comparisons.

Mediation analysis of education

Mediation analysis was performed to investigate the potential 
mediating effects of education on a module produced from WGCNA 
of the brain data. The models involved an identified module from the 
brain data (independent variable), education (potential mediator), 
along with age, sex, and post-mortem interval (control variables) to 
predict between NCI−/NCI+ and NCI−/MCI− (outcomes). We used 
the R package pysch to conduct this series of mediation analyses.

Results

Summary statistics of datasets

We analyzed the lipid content of 99 post-mortem brain samples 
derived from ROSMAP participants, including 26 (26.3%) males and 
21 (21.2%) APOEε4-carriers, with a mean age at death of 90.6 (±6.0) 

years old; 24 (24.2%) were diagnosed with AD at the time of death, 28 
(28.3%) had MCI, and 47 (47.5%) had NCI (Table 1). This data is 
derived from a panel of 119 lipid species in the dorsolateral prefrontal 
cortex (DLPFC) brain region. We compared these findings to the 
analogous dataset of lipid content in serum samples from the same 
ROSMAP subjects, including 116 (21.5%) males and 96 (17.8%) 
APOEε4 carriers, with a mean age of 83.8 (±6.6) years old (Table 1). 
Out of the 542 samples from the serum data, 13 (2.4%) were linked to 
individuals with AD, 103 (19.0%) with MCI, and 426 (78.6%) with 
NCI. Serum lipidomics included 125 lipid species from five lipid 
classes: acylcarnitines (C), diacyl-phosphatidylcholines (PC.aa), acyl-
alkyl-phosphatidylcholines (PC.ae), sphingomyelins (SM), 
lysophosphatidylcholines (lysoPC) after quality control and filtering. 
Of the 111 subjects whose brain tissue was profiled using the Biocrates 
p180 platform lipid panel, we analyzed those with no other factors 
contributing to impairment, which resulted in 99 subjects (Table 1). 
Of these 99 brain tissues, 60 of them have accompanied RNA 
sequencing data. For the bulk RNA sequencing data, a total number 
of 765 brain tissue samples were analyzed, 264 (34.5%) of which were 
from males (Table 1). We compared the demographic and pathological 
data stratified by APOEε4 carrier status of the subjects with RNA 
sequencing data in Table 1.

Lipidomic differences across disease 
progression

To assess lipid differences across disease progression, we combined 
clinical diagnosis (NCI, MCI, and AD) with the APOE genotype, 
stratified by presence of the ε4 allele (+), resulting in 6 groups (NCI 
ε4+, NCI ε4−, MCI ε4+, MCI ε4−, AD ε4+, AD ε4−). From the 
normalized brain data, we performed t-tests between NCI− and every 
other group to identify candidate lipids with association with APOEε4 
carrier status and cognitive impairment. There were 67 lipid species 
with statistically significant differences (p < 0.05) between the NCI 
APOEε4 non-carriers (NCI−) and at least one other group, and 32 
lipids that were found to be significantly different in the serum data 
(Figure 1A). We observed that most of these differential lipids are 
downregulated in other groups relative to the NCI− group, suggesting 
a loss of function. Only four lipids were downregulated in both the 
brain and serum: these included C9, which was downregulated in 
brain and serum of NCI+, and serum of MCI+; PC.aa.C24.0, which 
was downregulated in brain and serum of NCI+, and brain of MCI−, 
AD− and AD+; PC.aa.C36.5, which was downregulated in brain and 
serum of MCI−, and brain of NCI+ and AD−; and PC.aa.C42.6, 
which was downregulated in serum of AD−, and brain of MCI−, 
MCI+ and NCI+ (Figure 1B). However, there was no overlap between 
brain and serum lipids upregulated relative to NCI APOEε4 
non-carriers (NCI−).

By correlating differential lipids across the six diagnosis-carrier 
status groups, we observed the strongest mean pairwise Spearman 
correlation between the NCI APOEε4 carriers (NCI+) and MCI 
APOEε4 non-carriers (MCI−) groups (rs = 0.64) in the brain, 
indicating a similar lipid profile shift between APOEε4 carriers and 
MCI non-carriers (Figure 1C). This suggests that dysregulation of 
brain lipid profiles may occur early in the disease process, proposing 
a potential role in its etiology or pathogenesis. We also observed a 
high correlation between lipid profiles from brain of AD APOEε4 
non-carriers (AD−) and AD APOEε4 carriers (AD+) (rs = 0.64), 
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indicating that at late disease state, the APOEε4 carriership has a 
smaller effect on differential lipids in affected and non-affected 
brain. These results highlight the similarity in lipid profile between 
healthy APOEε4 carriers and MCI non-carriers in the lipid profiles 
within the brain, suggesting a profile shift in early disease 
progression similar to the chronic lipid dysregulation harbored by 
APOEε4 carriers.

Whereas individual lipids show differential abundance across 
groups, aggregating lipids into modules allows for identification of 
groups of lipids that are co-regulated, suggesting biological relevance 
to lipid metabolic pathways. To this end, we  performed module 
analysis with weighted lipid correlation network analysis (WLCNA) 
and opted to use the differential lipids from Figure 1 to enrich lipids 
that are significantly different across disease groups. We examined 

FIGURE 1

Differential lipids across dorsolateral prefrontal cortex and serum samples. (A) Volcano plots from t-tests of lipid species normalized mole percent 
between NCI− individuals and other diagnosis-carrier groups, where +/− indicates APOEε4 carrier status. Left column, brain samples. Right column, 
serum samples. Dashed horizontal line indicates a threshold of p-value: 0.05. Lipid species are grouped by five lipid classes: acylcarnitines (C), diacyl-
phosphatidylcholines (PC.aa), acyl-alkyl-phosphatidylcholines (PC.ae), sphingomyelins (SM), lysophosphatidylcholines (lysoPC). (B) Lipids 
downregulated in both brain and serum across all six diagnosis-carrier groups. (C) Mean values for pairwise correlations at the individual level across all 
six diagnosis-carrier groups in brain and serum data, shaded by level of correlation.
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FIGURE 2

Module analysis of lipidomics in serum. (A) 3D projection of lipid species in the first three MDS dimensions, module assignment for each lipid species is 
indicated by color. (B) Comparison of the first eigenvalues for the turquoise module across diagnosis-genotype groups. Post-hoc pairwise testing is 
conducted for modules with significant results: *p  <  0.10, **p  <  0.05, and ***p  <  0.01. (C) Correlation patterns of lipid profile in turquoise module across 
the six diagnosis-carrier status groups. (D) A list of lipid species in the turquoise module. (E) UMAP representation (x and y-axis) of turquoise module, 
samples are grouped using k-means clustering (k  =  3). Samples are marked by cluster assignment (color) and diagnosis-genotype (shape). APOEε4 
carriers are marked by a filled-in bubble. (F) Heatmap table of k-means cluster assignments and diagnosis-genotype groups with outlined boxes and 
intense red shades indicating significant Fisher’s exact test result when considering marginal tables for each cell (p  <  0.05).

broad patterns of these differential lipids with a significant ANalysis 
Of VAriance (ANOVA) result across diagnosis-carrier status groups 
in the serum data [as mole percent (Mol%)] (Supplementary Figure S1) 
and used WLCNA (with L standing for lipids, instead of genes) to 
perform hierarchical clustering and identify modules from the 
correlation matrix derived across all the samples. For each module, 
we  derived a module eigenlipid defined as the first principal 
component of the expression matrix of all lipids in the module. The 
module eigenlipid encapsulates the largest axis of variation and 
presents a reduced one-dimensional summary of the lipid abundance 
profile for that module. Importantly, we used “unsigned” modules, 
which include lipids with strong correlation or anti-correlation across 
samples, meaning that the overall sign of the eigenlipid is arbitrary 
and does not reflect the direction of the change in lipid abundance.

We found five modules in serum (Figure  2; 
Supplementary Figure S2), of which the turquoise module (Figure 2A) 
shows significant differences among the six diagnostic groups 
stratified by APOEε4 status (ANOVA, p = 0.024). Post-hoc pairwise 
testing of the turquoise module eigenlipid shows that it is differential 
in APOEε4 carriers with MCI (MCI+) compared to all the other 
groups except APOEε4 carriers with AD (AD+) (Figure 2B). Further, 
pairwise correlation of only lipids from the turquoise module shows 
little similarity (rs = 0.49–0.56) across disease diagnosis or APOEε4 
carrier status (Figure 2C), suggesting MCI+ individuals harbor a lipid 
profile in serum that is distinct from the other groups. Interestingly, 

the turquoise module consists solely of acylcarnitine species 
(Figure 2D), which is consistent when adjusting for education in the 
model (Supplementary Figure S3).

To determine if patterns across lipid species in the turquoise 
module are shared between samples, we applied K-means clustering 
of the samples in the serum data. After determining an optimal 
number of clusters (k = 3) (Figures 2E,F), we found that MCI+ samples 
were enriched in the red and orange clusters (Fisher’s exact test, 
Figure 2F), but no other diagnostic group showed enrichment in any 
cluster, suggesting that serum lipid profile biomarkers, including 
acylcarnitine species, may only be applicable to MCI APOEε4 carriers 
(MCI+) and not for other diagnostic groups.

To determine if differential lipids in serum reflected coordinated 
changes in the brain, we next analyzed lipidomics from brain samples 
using a similar analytical pipeline as used for serum lipidomic data 
(Figure  3; Supplementary Figure S4). We  found no overlapping 
species between brain and serum which were upregulated between 
NCI APOEε4 non-carriers (NCI−) and any other group (Figure 1A). 
However, four lipids were downregulated in brain and serum (C9, 
PC.aa.C24.0, PC.aa.C36.5, and PC.aa.C42.6, but not in the same 
diagnostic and genotypic groups). We  next performed module 
analysis to determine whether groups of lipids co-varied by diagnostic 
and genetic categories in the brain tissue data. We  identified five 
modules (Figure 3A), of which the blue module showed significantly 
differential eigenlipid variation across the diagnostic-APOEε4 carrier 
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groups (Figure 3B; Supplementary Figure S4, ANOVA p = 0.045). 
Post-hoc pairwise testing of the blue module eigenlipid showed that 
all NCI+ and MCI− were different from other diagnostic groups but 
not from each other, suggesting a similar lipid profile shift in these 
two disease states (Figure 3B). The distributions of the eigenlipids for 
the remaining modules are shown in Supplementary Figure S4. In 
contrast to the blue module, the other module eigenlipids do not 
show differential profiles across the donor groups 
(Supplementary Figure S4).

Correlation analysis of the diagnosis-carrier status groups 
subsetting for blue module lipids from the brain showed highest 
similarities between NCI+ and MCI− (rs = 0.7, Figure 3C), a stronger 
signal compared to that seen in the serum in Figure 1B. Most of the 
lipids in the blue module are polyunsaturated phosphatidylcholines 
(PC), which are lower in the NCI+ group, suggesting dysregulation of 
a specific metabolic pathway involving activation of phospholipase A2 
(PLA2) (Figure 3D). The brown module was enriched for lysoPC 
species (Supplementary Figures S5, S6), which is the product of PLA2, 
and is therefore expected to be higher with greater PLA2 activity. 
However, differential analysis of the lysoPC species in this module 
showed that lysoPC species are downregulated in early AD, 
contrasting with the expected greater lysoPC production as a result of 
higher PLA2 activity (Supplementary Figure S6), suggesting 
dysregulation of a pathway in lipid metabolism consistent with acyl 
chain remodeling.

Because education levels have been reported to moderate the 
effects of AD pathology on cognitive function in this cohort (Bennett 
et al., 2003), we next performed a correlation analysis of the lipids in 
the blue module in the brain data correcting for education at the 
pre-processing step to factor in the role of educational attainment in 
the lipidomics profiles, especially in the context that NCI+ samples are 
associated with higher years of education compared to the rest of the 
cohort. We observe that the correlation between NCI+ and MCI− no 
longer has the highest magnitude correlation; however, the 
correlations between NCI+ with MCI+ and AD+ are evident as 
cold spots.

K-means clustering of brain samples using blue module lipids 
yielded an optimal number of 3 clusters (Figures 3E,F). Interestingly, 
NCI+ and MCI− follow the same general trend (Figure 3E), suggesting 
similar differences in lipid profiles between these two groups; although 
only the NCI+ category showed statistically significant enrichment in 
the red cluster (Figure 3F), the majority of MCI− donors are also 
found in this cluster, supporting the similarity between NCI APOEε4 
carriers and MCI non-carriers.

Importantly, differences in lipids from the blue module (mole 
percent) are similar between NCI+ and MCI− (Figure 4). From the 
DLPFC, mole percent quantification of lipids in the blue module 
identified three distinct, biphasic patterns across disease progression 
(Figure 4). The patterns consist of (1) lipids that are lower in APOEε4 
carriers and MCI and greater across disease severity including PC.aa.

FIGURE 3

Module analysis of lipidomics in dorsolateral prefrontal cortex. (A) 3D projection of lipid species in the first three MDS dimensions, module assignment 
for each lipid species is indicated by color. (B) Comparison of the first eigenvalues for the blue modules across diagnosis-genotype groups. Post-hoc 
pairwise testing is conducted for modules with significant results: *p  <  0.10, **p  <  0.05, and ***p  <  0.01. (C) Correlation patterns of lipid profile in blue 
module across the six diagnosis-carrier status groups. (D) A list of lipid species in the blue module. (E) UMAP representation (x and y-axis) of lipids in 
blue module, samples are grouped using k-means clustering (k  =  3). Samples are marked by cluster assignment (color) and diagnosis-genotype (shape). 
APOEε4 carriers are marked by a filled-in bubble. (F) Heatmap table of k-means cluster assignments and diagnosis-genotype groups with outlined 
boxes and intense red shades indicating significant Fisher’s exact test result when considering marginal tables for each cell (p  <  0.05).
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FIGURE 4

Relative abundance of blue module lipids across diagnosis-carrier groups in dorsolateral prefrontal cortex data. Box-and-whisker plots for lipids across 
the six diagnosis-carrier groups and post-hoc tests between NCI− and all other groups in the brain data.

C32.0; PC.aa.c32.1; PC.aa.C34.1;; PC.aa.C36.1; PC.aa.C34.2, PC.aa.
C36.2; PC.aa.C36.4; PC.ae.C36.5 (Figure 4A); (2) lipids that trend 
toward being lower in all other groups compared to control including 
PC.ae.C36.0, PC.aa.C36.6; PC.ae.C44.6, and PC.aa.C36.6 (Figure 4B) 
or (3) those that trend to be higher in APOEε4 carriers and MCI and 
decrease across disease severity including PC.aa.C36.0; PC.ae.C36.1; 
PC.ae.C38.1; SM.C24.1 (Figure 4C). This suggests that the lipid profile 
associated with APOEε4 carriership is similar to the lipid profile 
associated with MCI, but dissimilar from other disease states and also 
highlights the non-linearity of the lipid profile shift across disease 
progression. Our results also indicate lipid species specific differences 
across disease progression within each lipid class.

We also considered whether adjusting for education during 
pre-processing would affect the modules in serum and DLPC brain 
tissue (Figures 2, 3). After running module analysis for the education-
corrected serum data, only one module (turquoise) is identified that 

significantly differs across groups (Supplementary Figure S3). The 
turquoise module in Figure 2 is similar to the turquoise module in this 
analysis from the education-corrected serum data, with six lipids 
being shared between these two modules including C10, C12, C14, 
C14.1, C14.2, and C16.1. This new turquoise module maintains a 
significant differentiation between MCI+ and non-cognitively 
impaired carriers and non-carriers (NCI− and NCI+) (p < 0.05) 
(Supplementary Figure S3B). However, the new turquoise module 
corrected for education, displayed hotspots in the correlation 
heatmaps from MCI+/AD− and NCI+/AD− 
(Supplementary Figure S3C) in contrast to the previously identified 
correlations between MCI+/AD+. Using k-means clustering of serum 
samples from lipid species in the new turquoise module, we identified 
two clusters, though neither is significantly enriched in a specific 
cohort, though the cluster assignment for MCI carriers (MCI+) 
approaches significance (p = 0.06) (Supplementary Figure S3F) 
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consistent with the previous analysis not corrected for education 
(Figure 2F).

To determine whether education is associated with the lipid 
modules, we also corrected the lipidomics dataset from DLPC brain 
for education at pre-processing. We identified a new magenta module 
(Supplementary Figure S7) that corresponds to the blue module from 
the initial analysis (Figure 3). The number of lipid species assigned to 
the new magenta module nearly doubles that of the initial blue 
module for the DLPC brain tissue. Interestingly, most of the lipid 
species from the blue module are also found in the new magenta 
module. The distributions of the eigenlipids of the magenta module 
are significantly different between non-impaired APOEe4 carriers 
(NCI+)—and non-carriers (NCI−), however, NCI+ and MCI− 
similarities are no longer present (Supplementary Figure S7). Cluster 
analysis of the lipid species in the new magenta module also showed 
a significant depletion of NCI+ samples in the new red cluster and a 
trend toward a depletion of NCI− samples in the new purple cluster 
suggesting differentiation of the NCI groups from all other 
diagnostic groups.

We found that the brain lipid profile in APOEε4 carriers was 
correlated with MCI only when education was not included as a 
covariate. When education was included as a covariate, the correlation 
was reduced (Supplementary Figure S7). The APOEε4 carriers in this 
study who are not cognitively impaired (NCI+) have a strong trend 
toward a higher education level overall and the age of death was not 
significantly different from non-carriers (Table 1), suggesting that the 
NCI+ group may be considered resilient in this study. Since we found 
a similar lipid profile in the resilient APOEε4 carriers and MCI, this 
suggests that the lipid profile found in both APOEε4 carriers (NCI+) 
and MCI non-carriers (MCI−) may be compensatory.

We next considered the relationship between the brain lipids in 
the blue module found in Figure  3 and global cognition. After 
correcting for education in the blue module at the pre-processing 
stage, we found that education does not make a significant impact in 
the APOEε4 carriers, as the previously observed difference between 
NCI− and NCI+ remains (Figure 5A). Using education-corrected blue 
module lipids, we  plotted this measure against cognitive global 
random slope and show correlation measures and significance values 

FIGURE 5

Impact of lipid species in the dorsolateral prefrontal cortex and serum on cognition controlling for background variables and neuropathological 
markers. (A) Multiple regression models for cognitive global random slope as the dependent variable are conducted for brain and (B) serum. Volcano 
plots present the main results of the regressions with lipid species coefficient and BH-adjusted p-values along the x and y axes, respectively. (C) Models 
are re-run accounting for amyloid plaques and tau tangles markers in brain and (D) serum.
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(Figure 5B). Further, the trend for the similarity between NCI+ and 
MCI− remains. Interestingly, carriers and non-carriers with the least 
cognitive impairment have a high blue ME profile which is 
precipitously lost during the MCI+ stage and absent in AD+ 
(Figure 5B).

To examine the potential mediating role of education in the 
relationship between the blue module lipids and genotype/phenotype 
in brain, we conducted a series of mediation analyses. We considered 
the binary variable of non-cognitively impaired APOEε4 non-carriers 
(NCI−) compared to non-cognitively impaired APOEε4 carriers 
(NCI+) and NCI− compared to mild cognitive impairment APOEε4 
non-carrier (MCI−) as the outcomes for the model. The model did 
not find a significant association between the direct effect between the 
blue module lipids and NCI−/NCI+ status (β = 0.04, p = 0.024); 
integrating the education variable into the mediation model, this effect 
remained non-significant (β = 0.03, p = 0.062). The mediating effect of 
education also was non-significant (β = 0.26 p = 0.104). A similar 
non-significant result on the mediating role of education was found 
in the analysis between NCI− and MCI− (β = 0.15, p = 0.218); 
however, the direct effect between the blue module and NCI− versus 
MCI− was significant (β = 0.04, p = 0.037). Therefore, our findings 
suggest that within the examined population, education does not serve 
as a mediating factor in the association between the blue module and 
phenotypic outcomes in the comparisons of NCI−/NCI+ and NCI−/
MCI−. This implies that the observed relationships between the blue 
module and phenotypes can be attributed to direct effects rather than 
mediated through educational attainment in the sample.

We next used supervised learning approaches to examine the 
relationship between lipid species abundance in the brain and global 
cognition, as shown in Figure  5. We  used the random slope of 
cognitive measurement, which is not adjusted for pathology. In the 
first set of regression models (Figure  5C), we  controlled for 
demographic variables, including age of death, sex, and education. 
We observe four lipids significantly associated with cognitive decline: 
PC.aa.C36.0, PC.aa.C42.6, PC.ae.C38.1, and PC.ae.C42.2 (Figure 5C), 
and three lipids in serum: PC.aa.C34.3, PC.aa.C36.0, and PC.ae.C36.2 
(Figure  5D). We  also ran the same model, except we  used a 
pathological measure-adjusted version of cognitive global random 
slope; however, no lipids remained significant after correction for 
multiple comparisons (data not shown). All the nominally significant 
phosphatidylcholines in the brain show a positive association with 
cognitive global random slope indicating worsening with a decrease 
in the lipid level. This is consistent in the differential analysis of two of 
these lipids found in the blue module, PC.aa.C36.0 and PC.ae.C38.1 
late in disease state (AD− and AD+) (Figure 4).

To contextualize the differences in lipid metabolism, we examined 
the expression of genes that are part of corresponding lipid metabolic 
pathways (Supplementary Figure S8A), and their putative associations 
with cognitive decline. We selected genes involved in lipid metabolism 
from a candidate panel identified in relation to phosphatidylcholine 
metabolism, which was the major class identified in brain in this study 
(Figures 3D, 4; Supplementary Figure S6). We found that candidate 
gene expression from post-mortem dorsolateral prefrontal cortex 
tissue was associated with the slope of cognitive decline when 
adjusting for technical batch effects, age of death, RNA integrity 
number (RIN), education and sex (Figure 6A). Interestingly, when 
controlling for Aβ load and tau tangle density as additional covariates, 
the candidate genes retained their associations, suggesting genetic 
drivers in lipid metabolism with effects on cognitive decline that are 

independent of these two classic AD pathologies (Figure  6; 
Supplementary Figure S8). Phospholipase A2 isoforms PLA2G15 and 
PLA2G12A are two of the genes with the strongest association between 
expression and cognitive slope (Figure  6B). Though the isoform 
specific contributions to Lands cycle are not known, multiple PLA 
isoforms exist with lipid species and cell type specificity (Yarla et al., 
2016; Murakami et al., 2017, 2020). Dysregulated expression of these 
genes suggests potential for regional and/or cell-specific regulation of 
PLA2 activity leading to changes in lipid metabolism which cannot 
be  resolved using bulk lipidomic studies and may benefit from 
emerging spatial imaging mass spectrometry based lipidomics. 
Further, lysoPC acyl transferase2 (LPCAT2) shows a negative 
association with cognitive slope, indicating worsening with a higher 
level of expression, consistent with loss of lysoPC species in NCI+ and 
MCI− in differential analysis (Supplementary Figure S4) and in the 
lysoPC from the brown module (Supplementary Figures S6A,B).

Discussion

The results from the present study support that the differences in 
serum and brain lipidomics implicate acyl chain remodeling is 
associated with APOEε4 genotype and disease stage. A distinct lipid 
profile was observed in DLPC brain tissue from NCI APOEε4 carriers 
(NCI+), which was also observed in MCI APOEε4 non-carriers (MCI−) 
but not in NCI APOEε4 non-carriers (NCI−) (Figures  3, 4). This 
suggests a stereotypical dysregulated lipid profile shift associated with 
disease risk in APOEε4 carriers prior to symptomatic onset, similar to 
the lipid profile shift observed in MCI APOEε4 non-carriers. These 
findings suggest that lipid dyshomeostasis may be most prominent early 
in disease etiology and that APOEε4 contributes to a similar shift in the 
lipid profile. The defining lipids in the identified blue module 
(Figure  3D) and turquoise module, when adjusting for education 
(Supplementary Figure S7), are enriched in phosphatidylcholine 
species, including highly unsaturated lipid species with 4–6 double 
bonds, indicating that dyshomeostasis of polyunsaturated PC species 
may be driving early changes in the brain lipidome.

Given that a majority of the phosphatidylcholine species were 
downregulated in NCI APOEε4 carriers (NCI+) and MCI non-carriers 
(MCI−), this suggests a greater phospholipase A2 (PLA2) activity, 
which has been previously reported in association with AD and in 
mouse models (Sanchez-Mejia et al., 2008; Sanchez-Mejia and Mucke, 
2010). However, we  did not observe greater lysoPC species, the 
product of PLA2 activity, which we identified in the brown module 
and differential analysis (Figure  3; Supplementary Figure S6) 
suggesting more complex regulation than an isolated effect on PLA2 
activity. These differences in brain lipids can be  modeled by 
dysfunction of the acyl chain remodeling pathway, which is referred 
to as Lands cycle (Lands, 1958; O’donnell, 2022). This dysregulation 
suggests more complex cellular regulation of PC and LPC than a single 
enzymatic reaction mediated by PLA2. The result is consistent with 
stimulation of acyl chain remodeling which would utilize excess LPC 
in the remodeling reaction mediated by lysophosphatidylcholine acyl 
transferases (LPCATs) in the Lands cycle (Supplementary Figure S9). 
Supporting this hypothesis, we observed the dysregulation of two 
isoforms of PLA2 and LPCAT2, which are in the Lands cycle pathway, 
however the isoform specific contributions are not yet known (Yarla 
et al., 2016; Murakami et al., 2017, 2020) (Figure 6). In fact, biphasic 
and age-dependent disruption of acyl chain remodeling has recently 

https://doi.org/10.3389/fnagi.2024.1419253
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Mares et al. 10.3389/fnagi.2024.1419253

Frontiers in Aging Neuroscience 11 frontiersin.org

been reported in two mouse models of AD (Granger et al., 2019). 
Further, phospholipid dysregulation has been reported in mouse 
models overexpressing APOEε4 by insertion of the human APOEε4 
allele in the mouse APOE locus (Zhu et al., 2015). While previous 
studies have reported an association between lipid metabolic pathways 
and AD, our work provides evidence for dysregulation in a specific 
lipid metabolic pathway and identifies molecular drivers that may lead 
to progressive differences, particularly implicating Lands cycle in 
association with APOEε4 genotype and disease progression.

Comparing differential lipids from serum and brain tissue 
(Figure 1), our findings are consistent with those reported by other 
groups in that we find few overlapping lipid alterations between brain 
and serum (Arnold et al., 2020; Batra et al., 2022). We identified a 
similar lipid profile difference in DLPFC brain tissue in NCI+ and 
MCI− (Figure 3), as well as a biphasic difference in the mole percent 
of PC and LPC across disease progression (Figure  4; 
Supplementary Figure S6). Interestingly, the differential analysis of 
lipidomics in DLPFC brain tissue failed to identify significant 
differences between NCI and AD in both APOEε4 carriers and 
non-carriers regardless of controlling for education (Figure  4; 
Supplementary Figures S6, S7). Synthesizing these findings indicates 
that the magnitude of the lipid profile shift is most differential early in 
disease state in those at higher risk for AD (i.e., APOEε4 carriers with 
no cognitive impairment) or early in disease progression, in those 
with MCI.

In the serum analysis, most of the differential lipid species are 
acylcarnitines, which are differential primarily comparing NCI− and 
MCI+ groups. Interestingly, all significantly differential acylcarnitines 
are downregulated in the non-NCI− groups compared to the NCI− 
group in both DLPFC brain tissue and serum (Figure 1). Fatty acid 
metabolism is the exclusive source of medium and long chain 
acylcarnitines in contrast to short-chain acylcarnitines which are 
derived from fatty acid degradation, and metabolism of amino acids 
and glucose (Makrecka-Kuka et al., 2017; Melone et al., 2018; Li et al., 
2019; Fernandez and Ellis, 2020). Therefore, since acylcarnitines are 
reflective of free fatty acid content, the product of PLA2 activity, this 
further implicates dysregulation of the Lands cycle because of 
uncoupling between the expected increase of FFA/acylcarnitine and 
the observed decrease which is concurrent with a decrease in PC 
species. Specifically, a greater PLA2 activity would lead to a higher free 
fatty acid content and, potentially, acylcarnitine content. However, 
we found that acylcarnitines were lower, which suggests a change in 
Lands cycle utilization of FFA as substrates for acyl-Co-A synthesis 
and the Lands cycle, as well as a change in brain energy utilization, as 
has been previously described in AD and MCI (Cunnane et al., 2011; 
Toledo et al., 2017; Tyrrell et al., 2017; Yu et al., 2022). From serum, 
the MCI+ diagnosis group shows enrichment in a specific cluster, 
unlike other groups (Figure 2). The red cluster is driven by expression 
of genes within the serum turquoise module, and more than half of all 
MCI+ samples are part of the red cluster, as the reviewer points out. 

FIGURE 6

Impact of candidate genes in lipid metabolism in the dorsolateral prefrontal cortex on cognition controlling for neuropathology. Regression models for 
cognitive global random slope in bulk-RNA seq data with a focus on selected markers. (A) Volcano plots present results of regression models adjusting 
for sex, RIN, and age of death. (B) The panel shows the model also controlling for tangles and plaques. (C) Scatter plots of normalized gene expression 
for markers PLA2G15 and PLA2G12A and cognitive global random slope values in samples. A post-hoc regression line is added, distinct from those in 
(A), to emphasize the direction of association between gene marker and clinical measure.
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From the turquoise module, the major components driving the 
grouping of the red cluster are C12 and C14.2, with module loadings 
0.354 and 0.334, respectively. Across the six diagnosis groups, the 
median abundance levels of both of these lipids is at its lowest in the 
MCI+ group. For the remaining lipids in this module, we see a similar 
trend (of lower magnitude) of down regulation in the MCI+ enriched 
red cluster compared to the remaining clusters.

Our study identified a lipid profile in APOEε4 carriers and 
MCI non-carriers, implicating dysregulation of the Lands cycle 
acyl chain remodeling (Supplementary Figure S9). However, 
based on the panel of lipids represented in the Biocrates p180 
panel (Arnold et  al., 2020), we  cannot exclude other lipid 
pathways from dyshomeostasis early in disease or due to the 
APOEε4 genotype. Future studies utilizing a lipidomic panel with 
increased coverage across lipid classes and species are critical for 
identifying a system wide understanding of lipid metabolism in 
AD brain. Importantly, cluster assignments differentiated NCI+ 
in the red cluster where a majority of MCI− samples are also 
present, supporting the similarity between APOEε4 carriers 
(NCI+) and MCI non-carriers (MCI−) (Figures 3E,F). It is also 
important to note that the orange cluster was enriched in AD 
samples, indicating the dissimilar lipid profile shifts found in 
MCI and AD. This suggests non-linear, biphasic, changes in lipid 
profiles during disease progression from NCI to MCI to AD.

Our findings have shown that APOEε4 carriers and MCI 
non-carriers have a similar lipid profile when the level of 
education is not taken into account. When education is 
considered as a covariate, the similarity in the lipid profiles is no 
longer strongly correlated (Supplementary Figure S7). Though 
the correlations are not significant, it is clear that APOEε4 
carriers have a higher eigen lipid value, a trend that is also seen 
in MCI non-carriers (MCI−) (Figure 5A), suggesting that the 
same lipid profile is present in APOEε4 carriers, who are highly 
educated in this cohort, and MCI non-carriers. Interestingly, the 
APOEε4 carriers at the stage of MCI (MCI+) are very sensitive to 
differences in the eigen lipid profile, which are correlated with 
higher CGRS, suggesting improved cognition with higher levels 
of the eigen lipids in the blue module (Figure 5B).

In the ROSMAP subgroup analyzed for lipidomics in this study, 
the education level of the APOEε4 carriers is the highest of all the 
groups. In previous studies, APOEε4 has been associated with worse 
cognition and earlier death (Robinson et al., 2020; Gharbi-Meliani 
et al., 2021; Pavel et al., 2022); therefore, our study may indicate that 
these cognitively normal APOEε4 carriers in this study are resilient 
and display high cognitive reserve. Further, the age of death in this 
subset is higher than expected for APOEε4 carriers (Robinson et al., 
2020; Pavel et  al., 2022), which may represent selection bias for 
APOEε4 carriers in the subset of this postmortem study and not 
general APOEε4 attributes. The APOEε4 carriers (n = 6) in this study 
who are not cognitively impaired (NCI+) have higher education 
levels than the other groups, potentially through selection bias in the 
ROSMAP cohort, and thus may have maintained their non-impaired 
status (despite higher risk) through putative mechanisms of 
resilience (Table  1). This suggests that the lipid profile we  have 
shown indicates a resilience profile that is present in MCI 
non-carriers and lost in later stage AD. Thus, lipid differences in 
brain tissue from MCI non-carriers may be compensatory to an 
initial challenge to lipid metabolism, which is likely to target acyl 

chain remodeling in both carriers and non-carriers of the APOEε4 
allele at different stages of disease. However, the number (N) of 
APOEε4 carriers at all stages of the disease is small (Table 1) and will 
need to be increased to fully ascertain the effect of carriership on 
lipid content of brain and serum.

Ultimately, the ability to determine clinical progression is 
paramount to identification of biomarkers, so to determine if lipids 
were associated with cognitive decline, we used multiple linear models 
to examine the associations between specific lipid species and a relevant 
measure for clinical AD—cognitive global random slope (CGRS). 
Within these models, we controlled for age, sex and education in both 
brain and serum (Figure 5). We discovered two lipids (both PCs), 
which were identified in the blue module of the brain data, that were 
positively associated with cognitive function: PC.aa.C36.0 and PC.ae.
C38.1 (Figures 3D, 5C,D), suggesting a protective role. Importantly, 
when we controlled for amyloid plaque and tau tangle pathologies 
using a pathological measures-adjusted version of CGRS, these lipids 
did not remain significantly associated with CGRS in contrast to the 
genes involved in phospholipid metabolism. Further studies will 
be required to understand the mechanistic role of these lipid species in 
association with pathology and cognitive decline in the brain.

While our study has provided novel insights into differential 
lipidomic profiles in ApoEe4 carriers and at different stages of 
AD, it is important to acknowledge several limitations. Our 
reported findings are observational, and the cross-sectional 
design of the studies involving post-mortem tissue inherently 
restricts our ability to ascertain causal relationships. 
Consequently, we  cannot definitively determine whether the 
observed changes in brain tissue directly contribute to disease 
development or if they are instead a consequence of the 
pathological alterations within the brain. Secondly, the 
heterogeneity estimates presented in this study require replication 
in an independent cohort with adequate sample sizes for 
meaningful stratification alongside the availability of lipidomics 
and endophenotypic data. Further, there is a bias for females in 
the APOEε4 positive MCI and AD groups, and males are not well 
represented. Additional studies are necessary to determine if 
these findings are dependent on sex, as a has been shown 
previously in the serum metabolome (Arnold et  al., 2020). 
Finally, the p180 Biocrates panel is not comprehensive and 
represents a limited lipid species and class profile. Future studies 
will aim to acquire a full lipidomic profile in plasma and post-
mortem brain tissue, including additional anatomical regions, to 
determine the extent of acyl chain remodeling deficits across 
multiple phospholipid classes as well as potential identification 
of other dysregulated pathways in lipid metabolism.

Our study identifies a common lipid profile shift between 
non-cognitively impaired APOEε4 carriers who are highly educated 
in this cohort and may represent a resilient population and MCI 
APOEε4 non-carriers, supporting a common disease etiology based 
on lipid content in DLPFC brain tissue and supports a non-linear, 
biphasic, shift in the lipid profile across disease progression.
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