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PD is a prevalent and progressive neurodegenerative disorder characterized 
by both motor and non-motor symptoms. Genes play a significant role in the 
onset and progression of the disease. While the complexity and pleiotropy of 
gene expression networks have posed challenges for gene-targeted therapies, 
numerous pathways of gene variant expression show promise as therapeutic 
targets in preclinical studies, with some already in clinical trials. With the 
recognition of the numerous genes and complex pathways that can influence 
PD, it may be possible to take a novel approach to choose a treatment for the 
condition. This approach would be  based on the symptoms, genomics, and 
underlying mechanisms of the disease. We discuss the utilization of emerging 
genetic and pathological knowledge of PD patients to categorize the disease 
into subgroups. Our long-term objective is to generate new insights for the 
therapeutic approach to the disease, aiming to delay and treat it more effectively, 
and ultimately reduce the burden on individuals and society.
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1 Introduction

With the accelerated aging of society, neurological disorders are increasingly becoming 
the leading cause of disability worldwide, with the incidence of Parkinson’s disease (PD) rising 
at an even faster rate (Collaborators, 2019; Armstrong and Okun, 2020). In 2016, an estimated 
6.1 million persons were diagnosed with PD globally, which is 2.4 times the number of 
diagnoses in 1990 (Armstrong and Okun, 2020). It is estimated that approximately 1,238,000 
people will be living with a PD diagnosis in the United States in 2030 (Marras et al., 2018). The 
disease presents with a wide range of clinical manifestations, including motor symptoms like 
resting tremor, rigidity, bradykinesia, and postural balance disorders, as well as non-motor 
symptoms such as rapid eye movement sleep behavior disorder (RBD), depression, autonomic 
dysfunction, cognitive deficits, orthostatic hypotension, and pain (Emamzadeh and Surguchov, 
2018). These symptoms not only diminish the quality of life for patients but also impose a 
burden on their families and society. Among the broad descriptions of PD, the emergence and 
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development of motor and non-motor symptoms may vary 
significantly among individuals (Berg et al., 2021).

Although lewy body disorders and dopamine depletion are 
thought to play a major part in the pathogenesis of PD, abnormal 
aggregation of -synuclein, mitochondrial functional disorders, 
disturbances in immune homeostasis, and lysosomal dysfunction are 
also thought to play significant roles as well (Greenland et al., 2019; 
Berg et al., 2021). It is imperative to acknowledge the heterogeneity of 
PD among individuals, as evidenced by variations in anatomical 
involvement, clinical severity, and diverse pathological changes. 
Furthermore, multiple cellular, organ, and systematic procedures, 
along with risk factors, could have a significance in the causation and 
spatial progression of Parkinson’s disease (Doppler et  al., 2017; 
Knudsen et al., 2018; Johnson et al., 2019; Berg et al., 2021).

PD exhibits significant diversity in motor and non-motor 
symptoms, biomarkers, age of onset, etiological factors, and causal 
genes. This heterogeneity challenges the perception of PD as a singular 
entity, emphasizing its classification as a syndrome with a spectrum of 
overlapping clinical and pathological subtypes (Titova et al., 2017; 
Berg et al., 2021). Through analysis of patient subtypes, including 
detailed differentiation based on onset, clinical presentation and 
understanding of underlying disease mechanisms, is imperative for 
the development of personalized therapeutic interventions (Marras 
and Lang, 2013; Fereshtehnejad et al., 2017).

Currently, there is no conclusive evidence to support the 
effectiveness of treatments that can alter the course of PD. Existing 
therapeutic strategies primarily focus on managing symptoms, a 
reactive approach that inevitably leads to increasing disability and a 
diminishing sense of independence as the disease progresses. The 
complex medical, social, and economic challenges posed by Parkinson’s 
underscore the urgent need for interventions that can modify its 
progression and enhance the quality of life of patients. Given the 
intricate genetic underpinnings of Parkinson’s, a deeper understanding 
of its functional genomics is revealing shared disease mechanisms. This 

knowledge holds immense potential to significantly reshape clinical 
diagnostic and management approaches, paving the way for the 
development of therapies that can modify the course of the disease and 
improve patient outcomes (Ye et al., 2023). In this review, we will discuss 
clinical evidence from genetic, pathological, immunological, and 
epidemiological studies concerning animal studies. These studies have 
helped to explore and validate targets that may serve as therapeutic 
interventions in the disease, to alleviate or treat PD (Figures 1, 2).

2 Clinical heterogeneity in PD

Although clinical diagnostic criteria for PD have been revised, its 
diagnosis remains challenging due to the variety of clinical features 

FIGURE 1

Age, environment and lifestyle are the main factors that influence the phenotype, pathogenesis and genotype of Parkinson’s disease. As a highly 
complex neurological syndrome, Parkinson’s disease needs to be researched in all aspects of its precise treatment, from influencing factors to disease 
phenotypes.

FIGURE 2

How do we balance the scales?
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and lack of specific biomarkers. The current clinical diagnosis of PD 
relies primarily on history and physical examination (Armstrong and 
Okun, 2020). The complexity and variety of clinical signs mark the 
start of a personalized approach to PD (Table 1; Figure 3). Before 
delving into precision medicine, it is helpful to examine what is 
currently understood about the heterogeneity of clinical PD.

The primary clinical manifestations of PD, motor symptoms, 
exhibit discernible variations. Patients with PD can be categorized into 
tremor-predominant, rigid motor and mixed types based on their 
motor symptoms. The most prominent clinical symptoms of PD are 
resting tremor, rigidity, bradykinesia, and postural balance disorders. 
It is commonly believed that these classical motor symptoms result 
from degeneration of the nigrostriatal pathway and depletion of 
dopamine in the striatum (Gelpi et al., 2014; Schapira et al., 2017). The 
onset of motor signs in PD becomes evident when approximately half 
of the cells in the caudal substantia nigra have been lost (Fearnley and 
Lees, 1991). Therefore, the pharmacological treatment for motor 
symptoms in PD primarily focuses on dopamine (Armstrong and 
Okun, 2020). However, it is important to recognize that complications, 
such as dyskinesias, may emerge following a period of dopaminergic 
treatment (Armstrong and Okun, 2020).

While traditionally framed as a motor-centric disorder, PD 
unveils a diverse array of non-motor symptoms, emphasizing the 
significance of a detailed understanding of the condition. This 
heterogeneity encompasses a spectrum of manifestations, including 
rapid eye movement sleep behavior disorder (RBD), depression, 
autonomic dysfunction, orthostatic hypotension, cognitive 
impairments, and discomfort, collectively forming an intricate mosaic 
within the PD clinical spectrum (Pont-Sunyer et al., 2015). Rooted in 
peripheral system or limbic system neurodegeneration, these diverse 
non-motor symptoms transcend the traditional boundaries of PD, 
adding layers to its complexity (Gelpi et  al., 2014; Schapira et  al., 
2017). Compared to motor symptoms, non-motor symptoms exhibit 
a prevalence that surpasses expectations, having a greater impact on 
patients and caregivers. Hyposmia or anosmia, which occurs in about 
90% of people with PD, is listed by the Movement Disorder Society 
(MDS) criteria for PD as one of the four criteria that support a 
diagnosis of PD, illustrating the diverse facets shanping the PD 
narrative (Doty, 2012; Postuma et  al., 2018; Tolosa et  al., 2021). 
Although RBD has only about a 30–50% chance of occurring in PD, 
research has shown that over 90% of individuals with RBD symptoms 
eventually develop synuclein-related neurodegenerative diseases, 
including PD, underlines the intricate and diverse trajectories within 
the PD journey (Howell and Schenck, 2015; Galbiati et al., 2019). This 
diversity extends to cognitive realms, with varied forms of impairment 
influencing the trajectory of the disease and impacting the likelihood 
of developing dementia (Hely et al., 2008; Williams-Gray et al., 2013; 
Armstrong and Okun, 2020). These multifaceted layers, ranging from 
impulsive behaviors to obsessive-compulsive tendencies, add unique 
hues to the overall PD canvas, enriching the narrative with the 
diversity inherent in the condition (Miyasaki et al., 2007; Palmiter, 
2007). However, despite the profound impact of these non-motor 
features on hospitalization, nursing home admissions, and the broader 
socio-familial fabric (Safarpour et al., 2015; Barone et al., 2017), their 
subtlety often renders them unnoticed during clinical consultations 
(Chaudhuri et  al., 2010). This oversight stems from both patient 
unawareness of their association with PD and the diverse, elusive 
forms they may assume during onset, highlighting the imperative of 

recognizing and embracing the diversity inherent in the 
PD experience.

3 Family and sporadic PD

Approximately 15% of patients living with PD have a family 
history of the disease (Deng et al., 2018). Familial PD, also known as 
Mendelian or monogenic PD, is typically investigated when there is a 
high risk of developing the condition due to rare parental variants 
(Luth et  al., 2014). The relative risk (RR) of having a first-degree 
relative with PD, compared to not having a first-degree relative with 
PD, ranged between 1.6 and 10.4 (Wirdefeldt et al., 2011). There is a 
stronger familial aggregation of early-onset PD compared to late-onset 
PD (Payami et al., 2002; Marder et al., 2003; Korchounov et al., 2004). 
Familial PD, in addition, has been reported to exhibit less cognitive 
impairment and a slower progression of dementia compared to 
sporadic PD (Dujardin et al., 2001; Inzelberg et al., 2004).

The sporadic form accounts for the majority of PD cases, and age 
remains the greatest risk factor for its development (Malpartida et al., 
2021). However, it is worth noting that almost all cases of PD are likely 
to have detectable genetic effects, with the frequency and magnitude 
of the effects of the specific genetic variants involved varying in 
individual cases (Luth et al., 2014). However, it is not clear whether 
these mechanistic and pathological associations of clinical 
heterogeneity in hereditary PD also apply to sporadic. Certain genetic 
variants, such as SNCA, LRRK2, and GBA, are considered rare genetic 
variants with large effect sizes or low-penetrance genetic variants. 
These variants are known to be  risk factors for sporadic diseases 
(Deleidi and Gasser, 2013; Nalls et al., 2014).

Interestingly, various variants of the same gene may all 
be associated with PD. For example, autosomal dominant familial PD 
is often caused by missense SNCA variations (p.A53T, p.G51D, 
p.A30P, and p.E46K) (Wittke et  al., 2021). Conversely, common 
variants like SNCA rs356168, found in 40% of people of European 
heritage, have an effect on disease risk that is only slightly elevated 
(odds ratio ∼1.3) and do not significantly increase family risk (Nalls 
et al., 2019). Many families with mutations in the SNCA gene share 
overlapping pathology and clinical features, as evidenced by 
prominent cortical Lewy body formation and early onset of non-motor 
symptoms such as autonomic dysfunction and dementia. The early 
onset, rapid progression, and poor prognosis of these patients suggest 
that SNCA-associated mechanisms may be drivers of disease severity 
(Morris et  al., 2024). Patients with PRKN mutations and 
predominantly mitochondrial dysfunction show a restricted pattern 
of cell loss, largely confined to the substantia nigra striata system, 
without the extensive pathological and non-motor features found in 
typical sporadic PD (Morris et  al., 2024). Mutations in 11 genes 
associated with PD (SNCA, PINK1, PRKN, DJ1, ATP13A2, PLA2G6, 
FBXO7, LRRK2, CHCHD2, VPS35, and VPS13C) influence 
mitochondrial energy generation, reactive oxygen species production, 
mitochondrial biogenesis, and quality control, according to genetic 
research (Li et al., 2021). The utilization of high and low-risk alleles to 
distinguish between familial and sporadic diseases may have 
significant implications for clinical diagnosis, prognosis, and the 
advancement of genetic research (Luth et al., 2014). The biological 
mechanisms and therapeutic strategies may be  highly relevant in 
individuals with a common genetic background. However, since PD 
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TABLE 1 Clinical manifestations of motor and non-motor symptoms in Parkinson's disease.

Symptom Key elements

Motor symptoms

Resting tremor  • 69% patients (Hughes et al., 1993)

 • Between 4 and 6 Hz, the tremor is often unilateral and prominent in the distal part of the limb. It often occurs in the lips, jaw, and legs rather than in the neck and head (Jankovic, 2008).

Rigidity  • Resistance increases during passive movement of the limb (flexion, extension, or rotation of the joint such as neck, shoulders, hips, wrists, ankles) (Jankovic, 2008).

Bradykinesia  • Difficulty in planning, initiating and executing sequential or simultaneous actions.

 • Slow down and reduce amplitude when performing rapid, repetitive, alternating hand movements (finger tapping, forward-superior hand tilt) and heel tapping.

 • Most correlated with the degree of dopamine deficiency (Vingerhoets et al., 1997).

Postural balance disorders  • Caused by loss of postural reflexes, it is usually a manifestation of advanced Parkinson’s disease (Jankovic, 2008).

 • Postural instability (and freezing of gait) is the most common cause of falls (Williams et al., 2006).

Non-motor symptoms

Sensory symptoms Somatosensory 

dysfunction and pain

 • 30–85% patients

 • Paresthesia and numbness

 • Pain: Arthritic or neurogenic distribution

Visual disturbances  • 22–78% patients

 • Visual Hallucinations

Autonomic 

symptoms

Olfactory loss  • 85% patients (Goldman and Postuma, 2014)

 • No response to Parkinson’s drugs now (Morley and Duda, 2011; Choi et al., 2020)

Sleep dysfunction  • 30–50% patients

 • Insomnia

 • Sleeping accompanied by talking, yelling, swearing, scratching, hitting, kicking, jumping, and other dramatic, forceful, and potentially injurious movements (RBD) (Gjerstad et al., 2007).

 • Excessive daytime sleepiness (EDS) (Leite Silva et al., 2023)

 • Restless Legs Syndrome (RLS) (Leite Silva et al., 2023)

 • Possibly related to a decrease in hypocretin (orexin) neurons (Fronczek et al., 2007) (Thannickal et al., 2007)

Orthostatic hypotension  • 70% patients (Palmiter, 2007)

 • In the upright position, patients may present with dizziness, visual disturbances and cognitive deficits, which may precede loss of consciousness (Leite Silva et al., 2023)

Neuropsychiatric 

symptoms

Anxiety  • 40% patients (Leite Silva et al., 2023)

 • Generalized anxiety disorder (GAD) and social phobia (Felice et al., 2016)

 • Dopaminergic damage (Borgonovo et al., 2017)

Apathy  • 60% patients

 • A hypomotivational state (Nassif and Pereira, 2018)

 • Dopaminergic denervation process or serotonergic degeneration (Leite Silva et al., 2023)

Depression  • 30% patients (Jellinger, 1999)

 • Guilt, sadness, lack of self-esteem and remorse (Chaudhuri et al., 2006)

 • Dopaminergic damage (Borgonovo et al., 2017)

Cognitive impairment  • 84% patients (Jankovic, 2008)

 • Can occur throughout Parkinson’s disease, dementia occurs late in the course of the disease

https://doi.org/10.3389/fnagi.2024.1417515
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Wang et al. 10.3389/fnagi.2024.1417515

Frontiers in Aging Neuroscience 05 frontiersin.org

is impacted by a variety of intricate elements, including environment 
and age, familial and sporadic PD are also subtypes that are targets for 
precision medicine.

4 Pathophysiology

Targeted gene-based therapies rely on genetic diagnosis, and valid 
serological biomarkers. Once a specific gene is involved in the 
pathological process, it is essential to identify characteristic blood 
disease markers for personalized treatment. For example, a study 
identified potential blood markers of PD through an integrated 
analysis of gene expression and DNA methylation data. This study 
confirmed the importance of these markers for the early identification, 
diagnosis, and treatment of PD (Wang et al., 2019).

Disease phenotypes are diverse, and the exact etiology has yet 
to be known. These processes may involve endosomal-lysosomal 
malfunction, inflammatory signaling, intracellular trafficking, 
dysregulation of mitochondrial homeostasis, and compromised 
systems linked to cell death mechanisms (Bandres-Ciga et  al., 
2020). As cellular processing is dynamic, neurodegeneration occurs 
in response to prolonged injury or stress, and various compensatory 
mechanisms are at work. Therefore, it is not possible to identify 
these pathways as acting independently or as a single pathway of 
neuronal death (Jankovic and Tan, 2020). The more likely scenario 
is that various pathophysiological processes intersect with each 
other to create a cascade of irreversible cellular damage that 
ultimately leads to disease (Jankovic and Tan, 2020). Each known 

pathological process is gradually being targeted for the treatment 
of diseases.

4.1 α-synuclein

The syndrome manifests itself as a result of progressive neuronal 
degeneration and increased abnormal α-synuclein protein (O'Keeffe 
and Sullivan, 2018). A-synuclein is a small 140-amino acid protein 
divided into three distinct regions: the N-terminal amphipathic 
region, the central hydrophobic region, and the C-terminal domain 
(Bayer et al., 1999; Giasson et al., 2001; Luth et al., 2014). The role of 
α-synuclein in the pathogenesis of PD has been controversial 
(Kalaitzakis et al., 2008). One hypothesis suggests that α-synuclein 
exists as a disordered protein or an unstructured monomer (Beyer, 
2007; Fauvet et al., 2012; Bender et al., 2013). Others suggest that 
α-synuclein may exist as a tetramer and that it may destabilize the 
tetramer, resulting in a monomer (Jensen et al., 2011; Dettmer et al., 
2013). Its physiological role is believed to be  important for the 
aggregation of synaptic vesicles, efflux, and recycling through lectin-
mediated endocytosis (Bayir et al., 2009; Dettmer et al., 2013; Burré 
et al., 2018). A-synuclein is implicated in several processes, including 
neurotransmission, lysosomal dysfunction, mitochondrial 
dysfunction, and activation of the neuroimmune response (Burré 
et al., 2018; Ye et al., 2023). It aggregates to create protein inclusions 
inside the Lewy bodies and Lewy neurites. Lewy’s lesions are assumed 
to progress in the following manner: they are believed to start in the 
caudal brainstem or the olfactory bulb, and move via the limbic areas, 

FIGURE 3

Non-motor symptoms of Parkinson’s are detected more than a decade before the onset of motor symptoms, and their therapeutic targets should 
be studied in greater depth.
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upper brainstem, and neocortex (Braak et al., 2002). The development 
of PD’s clinical phenotype is tightly linked to this pattern.

A-synuclein protein is widely regarded as an essential component 
in the pathogenesis of PD, and several pathogenic genes can influence 
the aggregation of α-synuclein protein, hence contributing to the 
development of PD (Ye et al., 2023). Apart from SNCA, PD is also 
caused by other genes including GBA, LRRK2, and MAPT, which 
interfere with the regular functioning of α-synuclein proteins. 
Mutations in LRRK2 might potentially intensify the harmful 
consequences of α-synuclein proteins by impacting the autophagy-
lysosome system, mitochondrial operations, phosphorylation of RAB 
protein, or interactions between 14 and 3-3 proteins (Cresto et al., 
2019). GBA genes regulate the activity of β-glucocerebrosidase, which 
modifies glycosphingolipid balance and causes pathological alterations 
including aberrant α-synuclein aggregation (Vijiaratnam et al., 2021).

In vitro testing of proteins that act as biomarkers for PD improves 
the accuracy of early diagnosis of the disease, clarifies subtypes and 
accelerates clinical trials. Recent studies have shown that seeded 
amplification assays (SAAs) are capable of detecting αSyn-related 
aggregates in brain homogenates (BHs) and cerebrospinal fluid sample 
(Majbour et  al., 2022). Real-time shock-induced conversion 
(RT-QuIC) and protein misfolding cyclic amplification are both SAA 
(Shahnawaz et al., 2020; Orrù et al., 2021; Mammana et al., 2024). A 
meta-analysis demonstrated its ability to accurately and reliably 
diagnose Lewy body diseases such as PD (Wang et al., 2022). Studies 
have shown that α-synuclein-specific analyses performed in 
cerebrospinal fluid (CSF) can differentiate patients with PD from 
healthy controls with a high degree of sensitivity and specificity 
(Siderowf et al., 2023).

It has long been known that α-synuclein plays a key role in PD 
therapy options. Targets may be divided into three categories: directly 
targeting α-synuclein itself; upstream variables that may cause 
pathological α-synuclein alterations; or downstream pathways linked 
to the spread of pathogenic α-synuclein changes or potentially 
stimulating neural compensatory responses (Vijiaratnam et al., 2021). 
These findings laid the groundwork for comprehending the disease’s 
pathophysiology and its treatment goals, which are mainly enhancing 
clearance and preventing aggregation. Clinical trials are presently 
being conducted on a number of these tactics (Jankovic and Tan, 2020; 
Vijiaratnam et al., 2021). Many of the relevant therapeutic approaches 
will be detailed below in the presentation of the SNCA gene.

4.2 Lysosome

The lysosome can act as a regulatory hub for homeostasis through 
endocytosis, phagocytosis, or autophagy (Ballabio and Bonifacino, 
2020; Ye et al., 2023). It can also exchange content and information 
and establish membrane contact sites to communicate with other 
cellular structures (Ballabio and Bonifacino, 2020). Remarkably, 
lysosomes are closely related to α-synuclein in the pathogenic process 
of PD (Nguyen et al., 2019; Ye et al., 2023). In the abnormal state, 
autophagy-lysosomes hinder the clearance of αSyn and facilitate its 
aggregation, pathological spread, and cytotoxicity. Conversely, toxic 
αSyn species disrupt the biogenesis and function of lysosomes. This is 
a positive feedback loop that eventually leads to the abnormal death 
of dopaminergic neurons and the onset of PD (Horowitz et al., 2022). 
Many genes related to PD play a role in encoding proteins that are 

associated with lysosomes. These proteins include lysosomal 
membrane proteins (e.g., TMEM175), lysosomal enzymes (e.g., GBA), 
and regulators of endosomal-lysosomal trafficking (e.g., 
LRRK2, VPS35).

4.3 Mitochondria

Under normal physiological conditions, mitochondria are the 
most important organelles that provide energy to neurons. 
Mitochondrial dysfunction is strongly associated with both sporadic 
and familial PD (Rocha et  al., 2018). Abnormal mitochondrial 
dynamics, biogenetic damage, complex I inhibition of the electron 
transport chain (ETC), and increased reactive oxygen species (ROS) 
are particularly noteworthy (Winklhofer and Haass, 2010; Ryan et al., 
2015). Mitochondria produce ATP through oxidative phosphorylation 
(OXPHOS), which consists of an electron transport chain (ETC) and 
ATP synthase. Supplying carbon fuels to the tricarboxylic acid cycle 
(TCA) produces electron donors NADH and FADH2, which provide 
electrons for mitochondrial complexes I-V (MCI-MCV). These 
complexes are transmembrane proteins located in the inner 
mitochondrial membrane (Subramaniam and Chesselet, 2013; Greene 
et al., 2022). Intracellular reactive oxygen species mainly originate 
from mitochondrial complex I (MCI) and mitochondrial complex III 
(MCIII) of the electron transport chain (ETC). Abnormalities in the 
ETC not only result in the loss of mitochondrial biological functions 
but also cause oxidative stress and increase the susceptibility of 
neurons to excitotoxic damage, ultimately leading to PD (Zuo and 
Motherwell, 2013).

Mitochondrial homeostasis is connected to the majority of genes 
linked to PD, including SNCA (PARK1/4), PRKN (PARK2), PINK1 
(PARK6), DJ-1 (PARK7), LRRK2 (PARK8), ATP13A2 (PARK9), 
PLA2G6 (PARK14), FBXO7, VPS35, CHCHD2, and VPS13C 
(Monzio Compagnoni et al., 2020; Toffoli et al., 2020). Through a 
variety of processes, including mitochondrial morphology, quality 
control, biogenesis (fission/fragmentation), and processes like the 
electron transport chain (ETC) and reactive oxygen species (ROS) 
release, these genes contribute to the maintenance of mitochondrial 
homeostasis (Li et  al., 2021). Due to the unique structure of 
α-synuclein, it has an affinity for the mitochondrial membrane and 
tends to accumulate there (Subramaniam and Chesselet, 2013). Once 
this occurs, it will also contribute to abnormal mitochondrial function. 
The fundamental process of the reciprocal association between 
α-synuclein and mitochondrial dysfunction could offer fresh 
perspectives on the etiology of PD and potential avenues for treatment 
(Rocha et al., 2018). The proteins encoded by PRKN, PINK1, DJ-1, 
LRRK2, and FBXO7 are closely related to α-synuclein (Li et al., 2021). 
Excessive α-synuclein accumulation is caused by mutations in LRRK2, 
ATP13A2, PLA2G6, VPS35, CHCHD2, and VPS13C. α-synuclein is 
closely related to proteins encoded by PRKN, PINK1, DJ-1, LRRK2, 
and FBXO7 (Li et al., 2021). Mutations in ATP13A2, LRRK2, VPS13C, 
VPS35, CHCHD2, and PLA2G6 cause an increase in the buildup of 
α-synuclein (Li et al., 2021).

With the growing understanding of mitochondrial homeostasis 
and the role of mitochondrial damage in PD, several potential 
therapeutic approaches have been increasingly validated. Small 
molecule activators of parkin and PINK1 may be  one of these 
therapeutic targets (Malpartida et  al., 2021). Currently, kinetin 
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triphosphate (KTP) and other small molecules act as activators of 
PINK1 by directly expressing highly soluble and cell-permeable 
recombinant Parkinson’s proteins. This approach aims to protect 
neurons from toxins and α-synuclein damage, while also exploring the 
potential of bioavailable KTP precursors (Hertz et  al., 2013; 
Lambourne and Mehellou, 2018; Chung et  al., 2020). Moreover, 
several deubiquitinases (DUBs), including USP30, USP8, USP14, 
USP15, and USP35, regulate mitosis by antagonizing parkin activity. 
Therefore, inhibitors targeting these DUBs may be a promising area 
of research (Durcan et al., 2014; Chakraborty et al., 2018; Harper et al., 
2018; Teyra et al., 2019). In addition, several studies have shown that 
LRRK2 kinase inhibitors, nicotinamide riboside, and the 
repositionable drug ursodeoxycholic acid can correct or enhance 
mitochondrial function (Schöndorf et al., 2018; Bonello et al., 2019; 
Carling et al., 2020; Wauters et al., 2020).

4.4 Neuroinflammation

Although it is uncertain whether neuroinflammation promotes or 
prevents neurodegeneration, there is sufficient evidence to prove that 
immune factors play an important role in the pathogenesis of 
PD. Cellular and humoral immunity can mediate the immune 
response, and significantly elevated levels of complement, cytokines 
(such as IL-1, IL-2, IL-6, and TNF), NO, and reactive oxygen species 
(ROS) have been observed in the substantia nigra and cerebrospinal 
fluid (CSF) of patients with PD (Liu et al., 2003). Among them, brain 
immune cells, especially microglia, play a crucial role in driving the 
disease process. Microglia activation is often discussed as a double-
edged sword for tissue homeostasis. On one hand, microglia activation 
is required to remove apoptotic debris from dopamine neurons. 
However, on the other hand, it results in the excessive production of 
ROS, cytokines, and chemokines due to the direct stimulation of 
α-synuclein and indirect inflammatory signals. A-synuclein-induced 
microglia activation generates a burden of reactive oxygen species 
(ROS) that is particularly harmful to dopamine neurons. This effect is 
exacerbated in neurons that already have mitochondrial dysfunction, 
and it may contribute to either dopamine neuron dysfunction or cell 
death. Autoantibodies against antigens associated with the 
pathogenesis of PD have been identified in several studies. This 
confirms that immune factors can be the cause of PD development, 
not just the process. Triggers of the neuroinflammatory response, as 
part of the pathological process of a disease, may include protein 
aggregates (such as α-syn and amyloid β), dysregulation of 
inflammatory pathways (associated with aging or genetic 
susceptibility), and pathogens (bacterial or viral infections) (Deleidi 
and Gasser, 2013).

The expression of numerous genes implicated in PD is not 
exclusive to neurons but is also highly expressed in the immune 
system (Allen et al., 1997; Hakimi et al., 2011; Deleidi and Gasser, 
2013; Guilhem de Lataillade et  al., 2023). Some of the genes that 
regulate immune function by encoding proteins include LRRK2, 
SNCA, DJ1, GBA, PRKN, and PINK1 (Magistrelli et al., 2022; Tansey 
et al., 2022). Not only can LRRK2 and GBA directly influence the 
inflammatory process by being highly expressed in immune cells, but 
they can also trigger an inflammatory response due to their roles in 
autophagy and lysosomal function (Orenstein et  al., 2013). Anti-
inflammatory medications do not offer neuroprotection in the latter 

stages of PD, even though inflammation plays a major role in the onset 
and progression of the disease (Aisen et al., 2003; Cudkowicz et al., 
2006). In addition, the lack of disease biomarkers has impeded 
research on anti-inflammatory medications at the prodromal stage of 
the illness (Deleidi and Gasser, 2013). Although immunomodulatory 
drugs have not been rigorously demonstrated in clinical pilot studies, 
immunomodulatory interventions have shown some superiority when 
used in combination with other neuroprotective agents. For instance, 
minocycline has been evaluated in PD patients and experimental 
models, exhibiting its anti-inflammatory and neuroprotective qualities 
(Plane et al., 2010). Since genes related to PD play a significant role in 
the inflammatory response process, there is also great potential for 
studying precision therapeutic genes involved in inflammatory 
pathways for the treatment of PD (Deleidi and Gasser, 2013).

5 Genetics

Our understanding of the genetic origins and risk variations of PD 
is rapidly advancing due to recent advancements in high-throughput 
genomic analysis and bioinformatics. We need to answer not only how 
genes affect disease mechanisms, but also how disease-associated genetic 
variants affect genes (Ye et al., 2023). Ninety independent variations in 
78 genomic areas associated with PD have been identified via a meta-
analysis of genome-wide association studies (GWAS). However, little is 
known about the processes by which these variants affect the 
development of PD (Farrow et al., 2022). For PD, autosomal dominant, 
recessive, and non-Mendelian types are thought to represent the main 
inheritance patterns. Thus far, autosomal dominant genes for PD have 
been discovered as SNCA, Leucine-Rich Repeat Kinase 2 (LRRK2), 
Vacuolar protein sorting-35 (VPS35), and eukaryotic translation 
initiation factor 4γ (EIF4G1). The genes linked to autosomal recessive 
PD include Parkin (PARK2), PTEN-induced kinase (PINK1), Daisuke-
Junko-1 (PARK7), phospholipase A2, group VI (PLA2G6), F-box only 
protein 7 (FBXO7), and spastic paraplegia 11 (SPG11). Moreover, the 
inclusion of some non-Mendelian loci and disorders that do not follow 
the classic pattern of PD remains somewhat unclear. PD with a 
Mendelian, monogenic variant affects about 5–10% of PD patients 
(Deng et al., 2018; Chan, 2022). Mutations in genes such as SNCA, 
PRKN, PINK1, DJ-1, LRRK2, and VPS35 have been found to cause the 
deletion of dopamine (DA) neurons (Li et al., 2021). A genome-wide 
association study (GWAS) confirmed several known pathogenic genes 
related to PD, including SNCA, GBA1, LRRK2, and MAPT (Chang 
et al., 2017). Table 2 lists the mutations linked to monogenic forms of 
PD, but excludes loci without known causal genes. Much progress has 
been made in understanding the relationship between genetic variables 
and diseases, as well as in linking genes and pathways in Mendelian and 
non-Mendelian disorders (Lubbe and Morris, 2014). Directly targeting 
proteins affected by single-gene mutations in PD provides a strategy for 
expanding treatment to patients with genetic connections.

5.1 SNCA (PARK1)

SNCA (NG_011851), the α-synuclein gene, its mutations, locus 
multiplication, promoter polymorphisms, and rare missense 
mutations are closely related to syndromes, particularly motor 
symptoms and cognitive decline (Shulman et  al., 2011). SNCA 
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TABLE 2 Parkin Genes of PD.

Mutations Genes Chromosomal position Inheritance pattern Pathology Major manifestations References

PARK1(MIM 168601) SNCA 4q21–22 AD Lewy bodies Early onset, rigidity, cognitive 

impairment

Polymeropoulos et al., (1997), Mizuno 

et al. (2008), Lesage and Brice (2009), 

and Caccappolo et al. (2011)

PARK2(MIM 602544) PRKN 6q25.2–27 AR Tau pathology Early onset, no neuropsychological 

impairments,classic motor 

symptoms

Inzelberg and Polyniki (2010) and 

Caccappolo et al. (2011)

PARK4 SNCA 4q21–22 AD Lewy bodies Marked dementia and frequent 

dysautonomia

Lesage and Brice (2009)

PARK6 PINK1 1p35-36 AR Lewy bodies Early onset, psychiatric features Valente et al. (2001)

PARK7 DJ-1 1p36 AR Unknown Early onset, psychiatric symptoms Dekker et al. (2003)

PARK8(MIM 607060) LRRK2 12q12 AD Lewy bodies Early onset, classic PD, dementia Funayama et al. (2002), Lesage and 

Brice (2009), and Inzelberg and 

Polyniki (2010)

PARK9 ATP13A2 1p36 AR Lysosomes Early onset, cognitive impairment Di Fonzo et al. (2007) and Mizuno 

et al. (2008)

PARK14 PLA2G6 22q13.1 AR Iron accumulation on MRI Early onset, cognitive impairment, 

dystonia

Paisan-Ruiz et al. (2009)

PARK15 FBXO7 22q12–13 AR Modulate proteasome 

functions

Early onset, classic PD Zhou et al. (2018)

PARK17 VPS35 16q11.2 Unknown Lysosomal Late onset, classic PD Zimprich et al. (2011)

PARK19(MIM 615528) DNAJC6 1p31.3 AR Synaptic vesicles 

endocytosis and trafficking

Early onset, slow disease 

progression, dystonia

Olgiati et al. (2016) andNg et al. 

(2020)

PARK20 SYNJ1 21q22.11 AR Tau pathology Early onset, seizures Hardies et al. (2016)

PARK21 DNAJC13 3q22.1 AD Lewy bodies Classic PD Vilariño-Güell et al., (2014) and 

Gagliardi et al. (2018)

PARK23 VPS13C 15q22.2 AR Mitochondrial 

Dysfunction, Lewy bodies

Early onset, rapid progression, 

classic PD, early cognitive decline

Lesage et al. (2016) and Schreglmann 

and Houlden (2016)

Classic PD refers to symptoms that resemble sporadic PD. PD, Parkinson’s disease; AD, autosomal dominant; AR, autosomal recessive.
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genomic triplication has been reported to cause autosomal-
dominant early-onset PD with dementia (Chartier-Harlin et al., 
2004; Farrer et al., 2004). The missense mutations A30P, E46K, and 
A53T in the N-terminal region of the α-synuclein protein are 
associated with familial PD (Table 3; Chartier-Harlin et al., 2004). 
Significant loss of hippocampal CA2/3 neurons was found in brains 
with SNCA missense mutations (Waters and Miller, 1994; Muenter 
et al., 1998; Gwinn-Hardy et al., 2000; Spira et al., 2001). Dementia 
may result from a single gene over-replication of SNCA, which may 
be linked to the start, course, and severity of PD (Chartier-Harlin 
et al., 2004). Genetic research has demonstrated that idiopathic PD 
is associated with genetic diversity within the α-synuclein promoter 
(Farrer et  al., 2001). Therefore, reducing the production of 
α-synuclein, inhibiting its aggregation, and increasing its clearance 
may be a very promising therapeutic approach.

There have been many attempts at therapies targeting SNCA. First 
of all, RNA interference (RNAi) technologies are intended for the 
targeted suppression of α-synuclein synthesis before its polymerization 
(Toffoli et al., 2020). When short hairpins and small interfering RNA 
(siRNA) were injected into the striatum and hippocampus of mouse 
and primate models, the production of α-synuclein was reduced even 
after three weeks. This demonstrates the potential therapeutic impact 
of RNA-based therapy on α-synuclein-associated diseases (Sapru 
et al., 2006; Lewis et al., 2008; McCormack et al., 2010). Alternatively, 
the use of β2-adrenergic receptor (β2AR) agonists, which regulate 
gene transcription through histone 3 lysine 27 acetylation, reduces the 
transcription of the α-synuclein gene (Mittal et al., 2017; Gronich 
et al., 2018).

Neurotoxicity occurs due to misfolding or aggregation of 
α-synuclein proteins and the formation of Lewy bodies (Toffoli et al., 
2020). A small antibody fragment, known as an antibody endosome, 
binds to intracellular A-SYN, preventing its oligomerization. This 
fragment can be delivered either as a protein or a gene (Chatterjee 
et al., 2018). Despite this, several other therapies, such as the small 
molecule NPT200-11 and the biological compound NPT088, are 
currently in early clinical trials to inhibit α-synuclein aggregation 
(Levenson et al., 2016; Krishnan et al., 2017).

Thirdly, increased α-synuclein clearance can be achieved through 
immunotherapy and activation of autophagic pathways (Toffoli et al., 
2020). The two forms of anti-α-synuclein immunotherapy used in 
clinical programs include passive immunization, which involves the use 
of specific antibodies against α-synuclein, and active immunization, 
which involves the injection of modified α-synuclein to stimulate the 
production of endogenous antibodies (Toffoli et al., 2020). In particular, 
there is a growing number of active and passive immunization methods 
being developed. Humanized IgG1 monoclonal antibodies such as 
ABBV-0805, RO7046015/PRX002, and BIIB-054 are a few examples 
(McFarthing and Simuni, 2019; Zella et al., 2019). Several obstacles exist 
when using immunotherapy to increase A-SYN degradation, including 
the possibility of off-target reactions, the requirement for frequent 
administration, the absence of an immune response to active treatments, 
and the lack of certainty about whether the restricted antibody 
penetration into the central nervous system (CNS) is sufficient for 
meaningful A-SYN elimination (Lindström et al., 2014). Autophagy has 
been recognized as one of the major pathways for degrading intracellular 
A-SYN aggregates (Xilouri et al., 2016). The neuroprotective effects of 
the autophagy enhancers rapamycin and lithium are currently being 
investigated for their ability to reduce A-SYN aggregates (Webb et al., T
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2003; Crews et al., 2010; Decressac et al., 2013; Forlenza et al., 2014). 
However, neither lithium nor rapamycin are appropriate for long-term, 
high-dose usage since they both have adverse effects, lack specificity, 
and interact with several cellular processes (Toffoli et  al., 2020). 
Interestingly, the inhibitor of the mitochondrial pyruvate carrier (MPC), 
MSDC-0160, and an anti-cancer drug called Nilotinib, act as therapeutic 
approaches to reduce protein aggregation (Ghosh et al., 2016). Finally, 
it is worth noting that the mechanisms of SNCA pathogenesis are still 
under debate. Therefore, large-sample, high-quality clinical and 
preclinical trials will continue to be the main focus of future research.

5.2 LRRK2 (PARK8)

Unlike SNCA, measures of LRRK2 expression do not affect the 
disease phenotype (Lesage and Brice, 2009). LRRK2 is one of the genes 
associated with autosomal dominant PD and belongs to the ROCO 
family of proteins. It consists of five major functional domains: the 
Roc structural domain (Ras in complex proteins), the leucine-rich 
repeat sequence (LRR), the COR structural domain (located at the 
C-terminus of the Roc), the WD40 structural domain, and the TyrKc 
structural domain (catalyzed by tyrosine kinases) (Bosgraaf and Van 
Haastert, 2003; Zimprich et al., 2004). Some early studies have shown 
that PD caused by LRRK2 mutations is difficult to distinguish from 
sporadic and idiopathic PD (Adams et al., 2005; Ross et al., 2006). 
When compared to patients with idiopathic PD, the most prevalent 
cause of autosomal-dominant PD (Gly2019Ser in LRRK2) was linked 
to a decreased likelihood of cognitive impairment and olfactory 
hyposmia (Healy et al., 2008). There are additional LRRK2 variants 
that significantly alter the risk of PD (Table 4). The motor phenotype 
of LRRK2 PD is thought to progress slowly (Healy et  al., 2008). 
However, a previous series of studies revealed differences in the 
non-motor symptoms between individuals with PD who carry the 
LRRK2 mutation and those who do not. Some studies suggest that 
Parkinson’s disease (PD) related to LRRK2 may exhibit milder 
cognitive symptoms (Aasly et al., 2005; Lesage et al., 2005; Healy et al., 
2008; Ben Sassi et al., 2012; Srivatsal et al., 2015). According to other 
research, there is no difference in Minimum Mental State Examination 
(MMSE) scores between those with and without Parkinson’s disease 
(PD) who carry the LRRK2 mutation (Belarbi et al., 2010; Alcalay 
et al., 2010a; Shanker et al., 2011; Ben Sassi et al., 2012; Trinh et al., 
2014). Regarding the milder cognitive symptoms found in LRRK2 
mutations, a study suggests that it may be related to the prevalence of 
Lewy body-negative cases in LRRK2 cohorts (Srivatsal et al., 2015).

The pathogenicity of LRRK2 may be related to the GTPase and 
kinase activities of the gene’s protein (Toffoli et al., 2020). Abnormally 
elevated intracellular and extracellular LRRK2 protein kinase activities 
are strongly associated with PD pathogenesis (West et al., 2005; Sheng 
et al., 2012). Efforts to reverse this pathological process have primarily 
focused on reducing kinase activity through the use of kinase inhibitors. 
Studies have ranged from non-selective kinase inhibitors that are unable 
to cross the blood–brain barrier to a new generation of selective LRRK2 
inhibitors that can cross the blood–brain barrier, such as HG10-102-01 
(Choi et al., 2012), JH-II-127 (Hatcher et al., 2015), and TAE684 (Zhang 
et al., 2012). Subsequently, MLi-2 (Fell et al., 2015; Scott et al., 2017) and 
PFE360 (Andersen et al., 2018) were developed, which demonstrated 
excellent performance in terms of inhibiting LRRK2 kinase activity, 
selectivity, pharmacokinetics, and safety. Several preclinical and clinical 
studies have been conducted progressively on this basis (Choi et al., 

2012; Zhang et al., 2012; Fell et al., 2015; Hatcher et al., 2015; Scott et al., 
2017; Andersen et al., 2018). Denali Therapeutics demonstrated that the 
inhibitor may act on the lysosomal pathway of PD by testing DNL201 
and BIIB122 in both healthy volunteers and patients with PD (Jennings 
et  al., 2022, 2023). Although the LRRK2 gene pathways appear 
promising for the precise treatment of PD, several challenges still exist, 
such as toxicity and the absence of specific biomarkers. If people with 
sporadic PD share the same processes or whether these prospective 
therapies may be more broadly applicable are still unclear issues (Di 
Maio et al., 2018).

5.3 MAPT

It is well known that protein aggregation and inclusion formation 
are facilitated by the microtubule-associated protein tau (MAPT). PD 
autosomal dominant variants have been associated with mutations in 
MAPT (Simón-Sánchez et al., 2009). Numerous investigations have 
revealed a strong correlation between cognitive impairment in PD 
patients and the advancement of dementia and mutations in the 
MAPT gene (Goris et  al., 2007; Williams-Gray et  al., 2009). In 
contrast, the strong correlation between MAPT and cognitive decline 
was found to be highly dependent on age (Goris et al., 2007; Williams-
Gray et al., 2009). Notably, MAPT and SNCA have synergistic effects 
in the pathogenesis of PD (Goris et al., 2007; Clarimón et al., 2009; 
Williams-Gray et al., 2009; Setó-Salvia et al., 2011; Morley et al., 2012; 
Nombela et al., 2014; Winder-Rhodes et al., 2015; Paul et al., 2016). 
However, due to the polymorphism of MAPT loci and its genetic 
imbalance, the mechanism by which MAPT causes PD is still unclear.

Notably, Roberto et  al. demonstrated that reduced levels of 
MAPT-AS1 and the presence of the MAPT H1 haplotype may 
combine to cause high tau-IRES activity and increase the risk of PD 
by disrupting tau protein homeostasis (Simone et al., 2021). Therefore, 
reversing this pathological change may be the key to targeting the 
MAPK pathway for future therapeutic purposes.

5.4 GBA

Mutations in the glucocerebrosidase (GBA) gene have been 
identified as risk factors for PD, with Lewy bodies being implicated in 
the pathogenic processes of these mutations (Clark et  al., 2009; 
Neumann et al., 2009; Sidransky et al., 2009; Alcalay et al., 2012; Smith 
and Schapira, 2022). It is now well-established that GBA mutations 
occur in both familial and sporadic PD (Winder-Rhodes et al., 2013). 
The most prevalent single mutation linked to sporadic PD is GBA 
heterozygous mutations, which are five times higher in PD patients 
than in the general population (Sidransky et al., 2009). The risk of PD 
is modified by several frequent GBA mutations (Table 5). Non-motor 
symptoms, a more severe clinical history, and an early onset are typical 
features of GBA mutation-associated PD. It primarily leads to 
cognitive impairment or dementia (Clark et al., 2007; Gan-Or et al., 
2008; Mitsui et al., 2009; Alcalay et al., 2010b, 2012; Chahine et al., 
2013; Oeda et al., 2015; Mata et al., 2016). In the meanwhile, a research 
revealed that compared to controls, PD patients with GBA mutations 
experienced a faster progression of motor symptoms (Brockmann 
et al., 2015). Individuals with PD who have GBA mutations respond 
well to levodopa and do not develop progressively severe motor 
impairments during the course of the disease (Setó-Salvia et al., 2012). 
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TABLE 4 Variants of LRRK2.

Variant and amino acid 
sequence

Inheritance pattern Age of onset Pathology Major manifestations References

c.6055G > A

p.G2019S

AD/both familial and sporadic Both early and late onset Increase kinase activity Earlier age at onset motor symptoms, 

depression and hallucinations

Aasly et al. (2005), Nichols et al. (2005), 

Goldwurm et al. (2006), Healy et al. 

(2008), Lesage and Brice (2009), Belarbi 

et al. (2010), Alcalay et al. (2010b), 

Shanker et al. (2011), Thaler et al. (2012), 

and Cookson (2015)

c.7153G > A

p. G2385R

Sporadic NA Increases kinase activity Motor scores worsened more rapidly Rudenko et al. (2012) and Marras et al. 

(2016)

c.4883G > C

p.R1628P

AD/both familial and sporadic NA COR, increases kinase activity Motor scores worsened more rapidly Marras et al. (2016) and Zhang et al. 

(2017)

c.4939 T > A

p.S1647T

Familial NA COR Motor scores worsened more rapidly Marras et al. (2016)

c.4321C > T/G/A

p.R1441C/G/H/S

AD NA Decrease GTPase activity NA Paisán-Ruíz et al. (2004)

c.6059 T > C

p.I2020T

AD NA Increase kinase activity NA Ray et al. (2014)

c.4309A > C

p.N1437H

AD/both familial and sporadic Early onset ROC, decrease GTPase activity Early development of marked motor 

fluctuations and dyskinesias.

Puschmann et al. (2012) and Cookson 

(2015)

c.5096A > G

p.Y1699C

AD NA Strengthens the intra-molecular ROC: 

COR interaction, decrease GTPase 

activity

NA Daniëls et al. (2011) and Cookson (2015)

c.1464A > T

p.A419V(rs34594498)

Increased sporadic PD risk Early onset NA Cognitive impairment Li et al. (2015)

c.4937 T > C

p.M1646T

NA NA Increase kinase activity NA Sosero et al. (2021)

For each variant, the nucleotide and amino acid change is provided along with Inheritance patterns, known kindreds, clinical and pathological features, and relevant references.
AD, autosomal dominant; COR, C-terminal of Ras; ROC, Ras of complex proteins; NA, not applicable.
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One study, which explores the various non-motor characteristics in 
patients with GBA-PD, suggests that the severity of the GBA variant 
may be responsible for different phenotypic features. Therefore, it may 
be essential to stratify patients with PD based on the severity of the 
GBA variant to select appropriate treatments (Ren et al., 2022).

Mechanisms of GBA gene mutations associated with PD lesions 
may include α-synuclein protein deposition, mitochondrial 
dysfunction, and inhibition of autophagy. Genetic variation of the 
GBA gene, which encodes the lysosomal enzyme β-glucosylceramide 
(GCase), has been associated with PD (Sidransky et  al., 2009). 
β-glucocerebrosidase is synthesized, folded, and delivered to the 
lysosomes under normal conditions. Nevertheless, the endoplasmic 
reticulum retains the mutant β-glucocerebrosidase, which causes 
abnormal vesicular trafficking, a reduction in lysosomal concentration, 
and α-synuclein aggregation (Do et al., 2019; Vijiaratnam et al., 2021). 
Based on the expression of the GBA gene product, several therapeutic 
approaches have been attempted, including Enzyme Replacement 
Therapy (ERT), which involves regular infusions of GCase (Stojkovska 
et al., 2018). Though not very successful, other approaches have been 
investigated, including chaperoning GCase to the lysosome, substrate 
reduction treatment, and using viral vectors to insert wild-type GBA1 
alleles into the genomes of GBA1 mutation carriers (Morabito et al., 
2017). Apart from these endeavors, there exists an additional 
conjecture. When a misfolded GCase protein is unable to be refolded 
by ER chaperones, it experiences ER-associated degradation (ERAD). 
The unfolded GCase proteins are then redirected to the proteasome 
for degradation, which promotes ER stress and activates the unfolded 
protein response (UPR) (Gegg et al., 2022). Misfolded GCase proteins 
will block CMA, and the activated Unfolded Protein Response (UPR) 
will disturb intracellular calcium homeostasis. All of these factors will 
speed up the progression of PD (Schöndorf et al., 2014; Kilpatrick 
et al., 2016; Kuo et al., 2022). Therefore, therapeutic strategies aimed 
at stabilizing and refolding misfolded GCase proteins, thereby 
relieving ER stress, maybe another attractive option for the treatment 
of PD (Menozzi et  al., 2023). Nevertheless, the pathological 
mechanisms of GBA-mutant PD are still unclear, and as a result, no 
effective treatment has been found to date.

6 Age

Normal aging occurs due to an array of elements that include 
genomic instability, telomere attrition, loss of proteostasis, epigenetic 
modifications, mitochondrial dysfunction, cellular senescence, stem 

cell fatigue, unregulated nutrition sensing, and altered intercellular 
communication. Precision therapy must therefore take age-related PD 
into account (Hou et al., 2019). With a median age at onset of 60 years 
old, age is the most important risk factor for PD (Ascherio and 
Schwarzschild, 2016; Simon et al., 2020). Age has a substantial effect on 
PD symptoms, especially when it comes to motor fluctuations and 
cognitive function. In general, younger patients are more likely to 
experience significant motor benefits from levodopa therapy (Berg 
et al., 2021). In contrast, dementia occurs almost exclusively in older 
patients, and cognitive impairment is more closely related to age than 
to the duration of the disease (Anang et  al., 2014). However, the 
age-related pathology of PD has not yet been clarified. Some studies 
suggest age-related dysfunctions in proteostatic mechanisms may lead 
to α-synuclein folding errors, leading to a diffuse rather than a 
‘mitochondrial’ pattern of selective substantia nigra degeneration. New 
potential targets for intervention in PD may emerge from the 
significance of age-related DNA damage and repair (Li et al., 2022).

7 Lifestyle and environment

Underlying genetic factors, lifestyle choices, and environmental 
influences, along with their interactions, play crucial roles as both 
causative and therapeutic factors in PD at different stages. Exercise, 
smoking, alcohol consumption, and the consumption of dairy products 
and coffee are the main lifestyle factors that influence disease (Miyake 
et al., 2010; Ascherio and Schwarzschild, 2016; Collaborators, 2019). 
Interestingly, there is considerable evidence that smoking, caffeine 
consumption, and moderate alcohol consumption reduce the risk of PD 
by about 50% (Shaltouki et al., 2018; Jankovic and Tan, 2020). A study 
by Yoshihiro Miyake and his colleagues showed a significant additive 
interaction between the LRRK2 Gly2385Arg SNP and smoking in 
relation to the risk of sporadic PD (Miyake et al., 2010). Higher serum 
urate, history of melanoma, type 2 diabetes mellitus, and head trauma 
are other reported associations with ibuprofen use (Ascherio and 
Schwarzschild, 2016). Finally, patients with higher levels of education 
exhibited superior baseline motor and cognitive functioning in 
comparison to those with lower levels of education (Lee et al., 2019).

The neuroprotective benefits from different lifestyle decisions in 
PD are uncertain. Nicotine may have a protective effect on 
dopaminergic neurons because it stimulates the release of dopamine 
(Jankovic and Tan, 2020). Caffeine may exert neuroprotective effects 
by blocking adenosine A2a receptors (Jankovic and Tan, 2020). Uric 
acid may have neuroprotective properties due to its ability to act as a 

TABLE 5 Variants of GBA.

Variant and amino 
acid sequence

Inheritance 
pattern

Age of onset Pathology Major manifestations References

c.1448 T > C

p.L444P

Sporadic Average: 47 years Lewy bodies Dementia Clark et al. (2007)

c.1226A > G

p.N370S

Sporadic Early onset Lewy bodies Dementia Clark et al. (2007)

c.1223C > T

p.T369M

Sporadic NA Lewy bodies Dementia Clark et al. (2007)

c.1604G > A

p.R496H

Sporadic NA Lewy bodies Dementia Clark et al. (2007)

For each variant, the nucleotide and amino acid change is provided along with Inheritance pattern, known kindreds, clinical and pathological features, and relevant references.
NA, not applicable.
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free radical scavenger. Although research on this topic is still ongoing, 
various lifestyles interact with each other, and the research 
methodology makes it difficult to draw definitive conclusions.

Environmental factors can interact with genetic factors, 
contributing to the diversity observed in Parkinson’s disease. Scientists 
are finding out that certain genes can make someone more likely to 
get PD, but the things they are exposed to in their environment can 
also affect this. Things like pesticides, head injuries, and certain toxins 
from industries might play a role. Pesticides can specifically affect the 
substantia nigra and associated brainstem nuclei. This can result in a 
purely motor phenotype, with dementia appearing later in the disease 
(Elbaz et  al., 2004; Berg et  al., 2021). Besides, exposure to 
environmental pesticides enhances the immune response in 
individuals carrying the HLA-DR variant and increases the risk of 
developing the disease by a factor of 2.48 (Kannarkat et al., 2015). In 
addition to pesticide exposure, water pollutants, heavy metal exposure, 
noise, rural living, and agricultural occupation, among many others, 
can affect the onset and development of PD (Ascherio and 
Schwarzschild, 2016; Collaborators, 2019). While MAPT-related PD 
is primarily linked to familial PD, environmental influences have less 
of an impact on its allelic pathogenesis (Hill-Burns et al., 2014). It’s like 
a puzzle where genes and environment pieces fit together to influence 
PD. Learning about these interactions helps us understand more about 
how PD happens and could even help in the future to figure out who 
might be at higher risk and how to prevent it.

8 Other practice

8.1 Calcium

It is noteworthy that specific groups of neurons, such as those 
found in the parietal region of the substantia nigra pars compacta, 
exhibit self-generated pacing and rely on L-type voltage-gated Ca2+ 
channels (Cav1.3) to facilitate the entry of calcium into the cell (Chan 
et  al., 2007). This increased level of calcium entry is linked to 
heightened oxidative stress, mitochondrial impairment, and cellular 
demise (Vijiaratnam et  al., 2021). The dihydropyridine channel 
blocker, isradipine, is sensitive to the central nervous system and 
blocks Cav1.3 or Cav1.2 L-type channels. It has demonstrated 
neuroprotecNtive properties in animal models exposed to dopamine 
toxin (Ilijic et al., 2011). Nonetheless, the results from a Phase III 
clinical trial were not as promising (Investigators, 2020).

8.2 Iron

One hallmark of PD is iron overload in the substantia nigra 
compacta area (Dexter et al., 1987). Because iron overload increases 
mitochondrial oxidative stress, which in turn causes α-synuclein to 
accumulate and aggregate and neuronal apoptosis, it can lead to 
neuronal loss (Vijiaratnam et al., 2021). Moreau et al. conducted a 
related experimental study using iron chelators that showed great 
potential (Moreau et al., 2018).

8.3 GLP-1

Type 2 diabetes is frequently treated with GLP-1 receptor 
agonists. Additionally, found in the brain are GLP-1 receptors, and 

agonists have demonstrated advantages in animal models of both 
dopaminergic and α-synuclein disorders. Possible explanations for 
these advantages might involve lower inflammatory responses (Chen 
et al., 2018) and α-synuclein buildup (Zhang et al., 2019). In an open-
label Phase II research, exenatide was found to ameliorate the 
disease’s cognitive and motor symptoms (Nalls et al., 2019). Moreover, 
there are more trials underway to investigate the role of GLP-1 
receptor agonists in alleviating symptoms of PD.

A growing number of clinical trials targeting specific genes for PD 
are underway. In addition to searching for therapeutic modalities 
targeting the causative factor, there is also confirmation of the clinical 
serendipity in discovering drugs that can alleviate the symptoms of PD 
through the genetic pathway in reverse. A study investigating the 
response phenotypes of Parkinson’s drugs, their gene target pathways, 
and pathological processes reinforces our belief that precision therapy 
for PD is possible in the future. Zonisamide was first created as an 
antiepileptic medication, however, it has now been discovered to 
significantly reduce PD symptoms. Recently, Tatsuhiko et  al. 
discovered that the regulation of glutamate-associated synaptic 
activity and the p53 gene-mediated protection against the loss of 
dopaminergic neurons are primarily responsible for the beneficial 
effects of zonisamide on PD. Additionally, the immune system also 
plays a role in this process (Naito et al., 2022).

However, further investigation into prodromal and clinical data is 
necessary. The future remains challenging due to the limited 
availability of examination methods and the absence of established 
clinical models. In addition, we cannot ignore the variability caused 
by geography, which may lead to genetic mutations.

9 Conclusion and future directions

The extensive work of PD genome-wide association studies (PD 
GWAS) has identified an increasing number of loci associated with an 
increased risk of the disease. By integrating expression, epigenetic, and 
genomic association studies, candidate genes for PD are identified 
(Kia et al., 2021). Understanding the genes and mechanisms behind 
these loci is crucial for comprehending the pathogenesis of 
PD. Research on genetics, pathological progress, and symptomatology 
makes it possible to distinguish between healthy controls and patients 
via machine learning algorithms or multigene risk scores. Additionally, 
it may be applied to forecast different patient subgroups, age of onset, 
genotypes, and clinical patterns (Escott-Price et al., 2015; Nalls et al., 
2015, 2019). In the age of machine learning and big datasets, there are 
a lot of prospects for PD diagnosis and therapy.

Highlighting this, common mechanisms among subtypes have 
been noted for a long time, further demonstrating the important 
role of subtypes in the precise treatment of PD and the necessity of 
multiple pathways converging to trigger disease pathology. 
Pathological development, genetic progression, and subtyping of 
PD are important factors in identifying new biomarkers and 
therapies for the disease. The fact that reassuring therapy is not 
influenced by environment, lifestyle, ethnicity, or other variables is 
reassuring. Instead, it is individualized based on genes, pathogenic 
pathways, and clinical manifestations. In the future, PD may no 
longer be  seen as a single pathological entity but rather as a 
condition that can be divided into subtypes with varying prognoses 
and responses to treatment. This division would allow for precision 
therapy (Berardelli et  al., 2013; Figure  4). PD has a diverse 
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phenotype and low heritability. While the underlying disease 
mechanisms are still being debated, cohorts of deep phenotypes 
have been developed to collect detailed, fine-grained data. These 
cohorts will help us study the underlying biological pathways and 
risk factors in order to identify therapeutic targets for advancing 
precision medicine (Schalkamp et al., 2022).

It must be recognized that research into precision Parkinson’s 
therapy, based on existing knowledge of genetics, is currently 
facing many dilemmas at both the clinical and preclinical stages. 
These dilemmas include the selection of preclinical models and 
the failure to recruit appropriate patient subtypes (Vijiaratnam 
et  al., 2021). At the same time, there is insufficient research 
evidence to explain the interaction between multiple genes related 
to PD. To achieve this goal, the field should collect cells and 
tissues longitudinally from individuals with PD who are at genetic 
and environmental risk, not only those with clinical symptoms. 
This will allow for comprehensive genetic, transcriptional, and 
mechanistic analyses (Tansey et  al., 2022). This will lead to a 
deeper understanding of the mechanisms underlying the 
pathogenesis of the disease, which will facilitate targeted 
drug research.

No gene, clinical feature, or disease pathway exists in isolation; 
each is interconnected and not specific to one condition. Disease 
stratification and typing will demonstrate their superiority in the 
future when dealing with complex and multifaceted clinical diseases 
(Chan, 2022). Research on novel genes that cause PD, combined with 
studies on deficits of α-synuclein, mitochondria, immune system, and 
lysosomes, will help identify new and overlapping mechanisms of 
dysfunction. This will enhance our understanding of the disease’s 
onset and progression. These insights from mechanistic studies and 
the resulting therapeutic opportunities may also have implications 
beyond PD.
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FIGURE 4

Simplified overview of the known mechanisms leading to neurodegeneration in PD.
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