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Introduction: Early-onset Alzheimer’s disease (EOAD) is sporadic, highly 
heterogeneous, and its underlying pathogenic mechanisms remain largely 
elusive. Proteomics research aims to uncover the biological processes and key 
proteins involved in disease progression. However, no proteomic studies to date 
have specifically focused on EOAD brain tissue.

Method: We integrated proteomic data from brain tissues of two Alzheimer’s 
disease (AD) cohorts and constructed a protein co-expression network using 
weighted gene co-expression network analysis (WGCNA). We  identified 
modules associated with EOAD, conducted functional enrichment analysis to 
understand the biological processes involved in EOAD, and pinpointed potential 
key proteins within the core modules most closely linked to AD pathology.

Results: In this study, we  identified a total of 2,749 proteins associated with 
EOAD. Through protein co-expression network analysis, we  discovered 41 
distinct co-expression modules. Notably, the proteins within the core module 
most closely linked to AD pathology were significantly enriched in neutrophil 
degranulation. Additionally, we identified two potential key proteins within this 
core module that have not been previously reported in AD and validated their 
expression levels in 5xFAD mice.

Conclusion: In summary, through a protein co-expression network analysis, 
we identified EOAD-related biological processes and molecular pathways, and 
screened and validated two key proteins, ERBB2IP and LSP1. These proteins may 
play an important role in the progression of EOAD, suggesting they could serve 
as potential therapeutic targets for the disease.
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1 Introduction

Alzheimer’s disease (AD) is one of the most prevalent forms of dementia globally. When 
symptoms manifest before the age of 65, the condition is classified as early-onset Alzheimer’s 
disease (EOAD), which is relatively rare, accounting for only 5% of all AD cases. In contrast, 
the majority of cases, where symptoms develop after the age of 65, are classified as late-onset 
Alzheimer’s disease (LOAD) (Gauthier et al., 2022). There are notable differences between 
EOAD and LOAD in terms of clinical symptoms, genetics, neuroimaging, and pathological 
changes (Sirkis et al., 2022). The clinical heterogeneity observed in EOAD underscores the 
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importance of dedicated research on this subgroup. Understanding 
the underlying pathogenesis of EOAD could also facilitate the 
development of new therapeutic agents (Fang et al., 2022).

Weighted gene co-expression analysis (WGCNA) is a specialized 
bioinformatics methodology used to investigate biological networks, 
signaling pathways, and variations in cell types within human tissues 
(Miller et  al., 2008). By linking co-expressed protein modules to 
clinical features, WGCNA helps to elucidate the relationship between 
these modules and specific clinical characteristics. Moreover, it can 
identify key drivers of disease onset within the proteins most strongly 
associated with these co-expressed modules (Barabási et al., 2011). 
Consequently, WGCNA is widely employed to pinpoint potential 
biomarkers or therapeutic targets (Yue et al., 2017).

Due to the rarity of EOAD and the strict requirements for 
collecting human brain tissue within hours postmortem, obtaining 
brain samples from EOAD patients is extremely challenging. In this 
study, as outlined in the workflow chart in Figure 1, we integrated 
and analyzed proteomic data from two AD cohorts at Emory 
University to conduct a preliminary investigation of molecular 
changes in the brains of individuals with EOAD. After adjusting for 
batch effects and covariates, we  identified 2,749 EOAD-related 
proteins. We then constructed an EOAD brain protein co-expression 
network, comprising 41 protein modules, and performed 
correlation analyses with AD pathology and biomarkers from 

various brain cell types. This approach allowed us to explore the 
biological processes and signaling pathways enriched in the protein 
modules associated with EOAD. Furthermore, we identified two 
key proteins within the modules most significantly linked to EOAD 
and validated their potential as therapeutic targets in an AD 
mouse model.

2 Methods

2.1 Controlling for batch effects in 
proteomic datasets

In this study, clinical information and protein expression profiles 
for two cohorts were downloaded from Synapse (Synapse ID: 
syn20821165). We used the TAMPOR method to eliminate technical 
batch differences within the proteomic data while preserving 
meaningful biological variations in protein expression levels. This 
method normalizes samples within selected batches or cohorts to a 
central tendency, ensuring consistency across the data (Johnson et al., 
2020). The TAMPOR algorithm is fully documented and available as 
an R function, which can be accessed at https://github.com/edammer/
TAMPOR. Initially, we removed intra-cohort batch effects from each 
cohort separately. We then merged the protein expression profiles of 

FIGURE 1

Workflow to identify the key proteins of EOAD.
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the two cohorts based on UniProt IDs and subsequently eliminated 
inter-cohort batch effects.

2.2 Statistical analysis

Statistical analysis was conducted using SPSS (version 26). 
Student’s t-test was used for pairwise comparisons of continuous 
variables. Chi-square test was employed for between-group 
comparisons of categorical variables.

2.3 WGCNA

The protein co-expression network was constructed using the 
“WGCNA” package in R, where the Pearson correlation coefficient 
(cor) was calculated to determine the correlations between proteins. 
To ensure a scale-free network, a soft-thresholding power (β) of 13.5 
was selected to transform the similarity matrix into an adjacency 
matrix. Subsequently, a topological overlap matrix was built to 
measure the average network connectivity for each protein. Based on 
the parameters (deepSplit set to 2 and minModuleSize set to 30), 
proteins with similar expression profiles were divided into different 
modules using the dynamic tree cutting method, with a cutHeight 
value set to 0.9. Hierarchical clustering was used to construct a 
dendrogram, calculate the correlation between module eigengenes 
and traits, and thereby select module eigengenes (MEs). Modules with 
the highest correlation to AD pathology were further analyzed as 
core modules.

2.4 Enrichment analysis

Gene Set Enrichment Analysis (GSEA) was conducted using the 
“clusterProfiler” package in R (Yu et al., 2012). Functional clustering 
analysis was carried out using Metascope (Zhou et al., 2019). Fisher’s 
exact test was employed with a human cell type marker list to 
determine cell type enrichment, and adjustments were made using the 
Benjamini-Hochberg procedure (Johnson et al., 2022).

2.5 Experimental animals

All animal experiments were approved by the Animal Ethics 
Committee of the First Affiliated Hospital of University of Science and 
Technology of China (2024-N(A)-30). 5xFAD transgenic mice and 
their littermate wild-type mice at the ages of 3, 6, and 10 months were 
selected for the study. All mice were housed in groups of 5–6 per cage 
under aseptic conditions with controlled temperature (22–25°C), and 
a 12-h light/dark cycle alternation.

2.6 Sample processing and 
immunoblotting experiments

The mouse brain tissue was ground into powder in liquid 
nitrogen, weighed using an analytical balance, and then proportionally 
added to RIPA lysis buffer. The mixture was ground with a pestle for 

100 times, followed by sonication for 3 min, and centrifugation at 
12,000 g for 30 min. Loading buffer and DTT were then added to 
prepare the samples for immunoblotting.

The protein lysates were separated on a sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) gels and then 
transferred onto a polyvinylidene fluoride (PVDF) membranes 
(Millipore, USA). The membranes were blocked with 5% non-fat milk 
at room temperature for 1 h to prevent nonspecific binding. 
Subsequently, the membranes were incubated overnight at 4°C with 
primary antibodies as follows: mouse anti-APP-6E10 (1:2,000, 
BioLegend, Cat# SIG-39320), mouse anti-LSP1 (1:1,000, Santa Cruz 
Biotechnology, Cat#sc-271137), rabbit anti-Erbin (1:500, Novus 
Biologicals, Cat#NBP2-56104), mouse anti-GAPDH (1:10,000, 
Milipore, Cat#MAB374), mouse anti-β-actin (1:10,000, Proteintech, 
Cat#60008-1-Ig). The membranes were then washed three times for 
10 min each with TBST solution to remove unbound antibodies. 
Subsequently, they were incubated with secondary antibodies 
(HRP-conjugated anti-rabbit or anti-mouse IgG, 1:5,000, Proteintech) 
for 1.5 h, followed by washing and chemiluminescent detection.

3 Results

3.1 Data collection

Given the rarity of EOAD and the difficulties in obtaining brain 
tissue specimens, we  conducted a preliminary investigation of 
molecular changes in the brains of individuals with EOAD by 
integrating proteomic data from the dorsolateral prefrontal cortex of 
two AD cohorts at Emory University. The AD cases in these cohorts 
were diagnosed according to the NIA-Reagan criteria for AD (Hyman 
and Trojanowski, 1997). Protein quantification was performed using 
multiplex tandem mass tag technology. Before analysis, we used the 
TAMPOR method to eliminate batch effects between the two cohorts 
and excluded proteins that had missing values in 50% of the samples. 
The final proteomic profiles contained 8,973 quantified proteins in 
cohort one and 11,247 in cohort two. We then merged the proteomic 
profiles from both cohorts based on UniProt IDs, resulting in a 
combined profile of 8,777 proteins. Due to residual batch effects, 
we reapplied the TAMPOR method (Supplementary Figures S1A,B). 
Finally, we used non-parametric bootstrap regression to adjust for 
covariate effects [age, sex, and post-mortem interval (PMI)] on 
protein abundance, which had minimal impact on the final proteomic 
profiles (Supplementary Figure S1C).

Because the clinical data for the cohorts did not include age of 
onset information, we defined EOAD cases as those patients who died 
before the age of 65 and were posthumously diagnosed with AD, in 
accordance with the EOAD definition. Ultimately, we selected the 
proteomic data of 11 EOAD cases and 10 controls for subsequent 
analysis. The demographic characteristics of these subjects are 
presented in Table 1.

3.2 Identification of differentially expressed 
proteins in EOAD brain tissues

We conducted Student’s t-tests to evaluate differential protein 
expression between the EOAD and control groups. The analysis 
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revealed significant alterations in protein abundance in the EOAD 
group, with a total of 2,749 proteins showing significant changes 
(p < 0.05). Of these, 1,395 proteins exhibited significantly increased 
abundance, while 1,354 proteins showed significantly decreased 
abundance, as illustrated in Figure  2A. When applying a more 
stringent threshold of p < 0.0001, 255 proteins were identified as highly 
differentially expressed, with 159 proteins showing increased 
abundance and 96 proteins showing decreased abundance.

To account for the possibility that some proteins may influence 
the onset and progression of EOAD without displaying significant 
differential abundance, we performed GSEA on all detected proteins. 
The corrected p-values for enriched terms were all below 0.5. The 
results revealed enrichment in a total of 529 Gene Ontology (GO) 
terms. Specifically, biological processes (GO-BP) were primarily 
associated with phosphate metabolism, molecular functions (GO-MF) 
were predominantly related to DNA binding, and cellular components 
(GO-CC) were significantly enriched in supramolecular polymers 
(Figure  2B). Enriched pathways included the PI3K-Akt signaling 
pathway, complement and coagulation cascades, protein digestion and 
absorption, and staphylococcus aureus infection, among others 
(Figure 2C). Our findings highlight significant changes in the protein 
profile of EOAD brain tissue compared to the control group.

3.3 Construction of co-expressed protein 
networks

We employed the WGCNA algorithm to analyze the detected 
proteins in the brain, clustering their expression profiles into modules 
with similar patterns. The soft-thresholding power was set to 13.5 
(R2 = 0.8) based on our calculations (Figure 3A). We then constructed 
the Topological Overlap Matrix (TOM) and merged the modules 
using hierarchical clustering and dynamic tree cutting (Figure 3B). 
Ultimately, 5,612 proteins were included, forming 41 distinct protein 
modules (Figure 3C), which were sorted and numbered according to 
the number of proteins in each module. The largest module contained 
603 proteins, while the smallest had 37.

We calculated the eigenprotein for each module (i.e., the first 
principal component of the module proteins) and correlated it with 

neuropathological features of AD, specifically amyloid plaque 
deposition (CERAD score) and neurofibrillary tangles (BRAAK 
staging) (Figure  3D). Of the modules, 26 showed significant 
associations with the CERAD score (p < 0.05), with 12 exhibiting 
negative correlations and 14 positive correlations. Similarly, 25 
modules were significantly associated with BRAAK staging (p < 0.05), 
with 11 showing negative correlations and 14 positive correlations.

Given that co-expression changes in brain proteins are often 
driven by alterations in cell types, we assessed the cellular nature of 
each module by identifying enrichment for cell-type-specific protein 
markers (Figure 3D). We found that 10 modules were associated with 
oligodendrocytes, 12 with neurons, 8 with microglia, 3 with 
endothelial cells, and 9 with astrocytes. In summary, our network 
efficiently detects modules associated with AD.

3.4 Identification of core module and key 
proteins

We performed a comparative analysis of the eigenproteins within 
each module. Notably, the M3 module was identified as the core 
module due to the most significant changes observed in its 
eigenprotein (Figure 4A). Functional enrichment analysis of the M3 
module highlighted its primary involvement in neutrophil 
degranulation and the VEGFA-VEGFR2 signaling pathways 
(Figure 4B). Additionally, proteins within the M3 module showed a 
strong positive correlation with CERAD score and BRAAK staging, 
suggesting their potential role in promoting AD pathology progression 
(Figures  4C,D). We  identified the top  10 proteins based on the 
absolute values of their significance for both CERAD scores and 
BRAAK staging as key proteins (Tables 2, 3). Among these, 9 proteins 
overlapped: SMOC1, NTN1, COL25A1, GMPR, ERBB2IP, SNTA1, 
CSK, ILK, and LSP1 (Figures 4E,F). These proteins are also among the 
most significantly different in EOAD compared to LOAD. Except for 
ERBB2IP and LSP1, the remaining seven proteins have been 
documented in AD research, confirming the reliability of our 
screening process (Tong et al., 2010; Georgakopoulos et al., 2011; 
Wyssenbach et al., 2016; Liu et al., 2018; Bai et al., 2020; Harrison 
et al., 2020; Wang et al., 2020). This suggests that ERBB2IP and LSP1 
may also influence the progression of EOAD.

3.5 Validation of key proteins in AD model

In the proteomic analysis of our cohort, ERBB2IP and LSP1 were 
found to be significantly upregulated in the EOAD group compared 
to the control group (Supplementary Figure S3). Due to the limited 
availability of human brain tissue samples from EOAD patients, 
we validated the expression of ERBB2IP and LSP1 using a mouse 
model of AD. Specifically, we employed 5xFAD mice, which carry 
human APP and PSEN1 genes with five AD-related mutations, 
enabling early onset of amyloid deposition. We  examined 
3-month-old, 6-month-old, and 10-month-old 5xFAD mice alongside 
their wild-type (WT) littermates and performed immunoblotting 
analysis on their brain tissues.

Our results revealed no significant differences in the expression of 
ERBB2IP and LSP1 between 3-month-old and 6-month-old 5xFAD 
mice and their WT counterparts. However, in 10-month-old 5xFAD 

TABLE 1 Participant descriptions.

Control 
(n =  20)

EOAD 
(n =  11)

P-value

Age, mean yrs. 

(SD)

63.7 (10.0) 60.0 (4.2) 0.161

Sex, (Male/

Female)

10/10 6/5 0.553

PMI, median 

(IQR)

7.0 (3.0–28) 4.0 (3.5–6.0) 0.002

APOE-e4, at least 

one allele (%)

4 (20%) 9 (81.8%) 0.001

GREAD Score, 

mean (SD)

0.0 (0.0) 3.0 (0.0) 0.000

BRAAK Score, 

mean (SD)

1.5 (0.5) 6 (0.0) 0.000
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mice, the expression levels of both ERBB2IP and LSP1 were markedly 
increased (Figures 5A,B). This observation aligns with the proteomic 
data obtained from human brain tissues. In summary, these findings 
suggest that ERBB2IP and LSP1 may be involved in the late-stage 
progression of EOAD.

4 Conclusion

EOAD is a rare condition with notable heterogeneity, which may 
differ from LOAD in terms of etiology and pathogenesis. Proteomic 
studies of AD brain tissue seek to uncover the underlying biological 
processes and molecular mechanisms. However, no proteomic studies 
have specifically focused on EOAD brain tissue to date. In this study, 
we performed an integrated analysis of two AD cohorts, encompassing 
a total of 11 EOAD patients, to preliminarily investigate the molecular 
changes and biological processes in the brains of individuals 
with EOAD.

In this study, we  observed significant changes in the protein 
profiles of EOAD brain tissue compared to controls. We constructed 

a protein co-expression network through WGCNA. We found that the 
core module most closely associated with the disease reflects biological 
processes of neutrophil degranulation and the VEGFA-VEGFA2 
signaling pathway. Neutrophil degranulation has not received much 
attention in previous proteomic studies of AD (Wu et  al., 2020). 
Neutrophils release various toxic molecules—such as reactive oxygen 
species, myeloperoxidase, glucosidase, proteases, and antimicrobial 
peptides—when activated by inflammation or infection (Kruger et al., 
2015). This finding suggests a significant inflammatory response in the 
brains of individuals with EOAD. In AD model mice, Aβ can induce 
LFA-1 integrin-mediated cytoskeletal changes in endothelial cells, 
facilitating neutrophil infiltration into the brain parenchyma, a 
phenomenon not observed in wild-type mice (Baik et  al., 2014; 
Zenaro et  al., 2015). Research indicates that myeloperoxidase 
produced by neutrophils may contribute to oxidative stress in the 
brain vasculature, compromise the blood–brain barrier, and thereby 
accelerate AD progression (Smyth et  al., 2022). Additionally, the 
expression of VEGFA in the brains and vascular systems of individuals 
with AD is complex and dysregulated. While VEGFA signaling can 
lead to capillary blockage and abnormal blood–brain barrier 

FIGURE 2

Proteomic characteristics of EOAD brain tissues. (A) Differentially expressed proteins were analyzed between groups within the cohort using volcano 
plots. p-values were calculated using students’ t test. A bold horizontal dashed line indicates the adjusted p-value threshold of <0.05. The number of 
significantly downregulated (blue) and upregulated (red) proteins is displayed at the top. (B,C) GO enrichment (B) and pathway enrichment (C) by 
GSEA.
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permeability, it may also facilitate Aβ clearance from the vasculature 
by promoting vascular repair in the AD brain (Chiarini et al., 2010; 
Ali et al., 2022).

We also identified two key proteins, ERBB2IP and LSP1, within the 
core module that have not been previously reported in AD. We validated 
their expression levels in an AD mouse model. Both proteins have been 
implicated in inflammatory responses in prior studies. ERBB2IP, a 
member of the epidermal growth factor receptor family (Borg et al., 
2000), functions as a negative regulator and is involved in several cell 
signaling pathways, including the MAP kinase pathway, NF-κB 
signaling pathway, Ras–Raf–ERK signaling pathway, and TGF-β 
signaling pathway (Huang et al., 2003; McDonald et al., 2005; Dai et al., 
2006; Dai et al., 2007). Research has demonstrated that ERBB2IP plays 
a crucial role in inflammatory diseases. A deficiency in ERBB2IP 
impairs NOD2-mediated NF-κB activation, while its overexpression in 
mouse embryonic fibroblasts significantly inhibits MDP-induced 
production of pro-inflammatory cytokines (Jang et  al., 2021). 

Additionally, in a mouse colitis model, ERBB2IP expression in colonic 
tissues was notably reduced, and ERBB2IP-deficient mice exhibited 
increased susceptibility to intestinal inflammation (Shen et al., 2018). 
ERBB2IP can also mitigate the activation of the NLRP3 inflammasome 
and inhibit microglial pyroptosis, thereby reducing neuroinflammation 
associated with sepsis-related brain syndrome (Jing et al., 2022).

LSP1 is predominantly expressed in monocytes, macrophages, 
neutrophils, and endothelial cells (Jongstra and Davis, 1988; Jongstra 
et al., 1988; Pulford et al., 1999). Although the exact function of LSP1 
remains not fully understood, it is known to play a crucial role in 
leukocyte chemotaxis during organ inflammation (Wang et al., 2007). 
In mouse models, the absence of LSP1 has been shown to reduce 
endotoxin-induced acute lung inflammation and decrease neutrophil 
migration to the lungs (Le et al., 2015). Additionally, elevated levels of 
LSP1 are associated with impaired myosin activity in neutrophils and 
are also linked to T cell migration in rheumatoid arthritis (Hwang 
et al., 2015; Ihentuge and Csoka, 2022).

FIGURE 3

Protein network analysis of EOAD brain tissues. (A) Soft threshold (power  =  13.5) and mean connectivity (R2  =  0.8) in the cohort. (B) Protein hierarchy 
tree-clustering diagram. The diagram represents different proteins horizontally and the correlation between them vertically. The lower the branch, the 
stronger the protein correlation within the branch. (C) The protein co-expression network consists of 41 protein modules, composed of 5,612 proteins 
from two cohorts. (D) Biweight mid-correlation (BiCor) analysis was conducted to assess the relationship between module eigenproteins and 
neuropathological features of AD (top), including CERAD scores and Braak staging. The strength of positive correlations is represented in red, while 
negative correlations are depicted in blue, with asterisks indicating statistical significance (p  <  0.05). Cell-type associations for each protein module 
were evaluated using hypergeometric Fisher exact test (FET) (bottom). p-values resulting from FET were adjusted using the Benjamini-Hochberg (BH) 
method. The intensity of red shading reflects the degree of cell type enrichment, with asterisks indicating statistically significant differences (p  <  0.05).
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FIGURE 4

Identification of key proteins for EOAD (A) Boxplot show the level of eigenprotein between the CN and EOAD groups of M3. Student’s t test was used 
for comparison between the two groups. (B) Functional enrichment analysis of M3 module protein. Functional enrichment was performed using 
Metascape. For analysis, the top 20 most significantly enriched items were selected for presentation. Darker colors indicate a higher degree of 
enrichment. (C,D) Correlation of M3 module with CERAD score (C) and BRAAK staging (D). Correlation coefficients and p-values were calculated by 
Pearson correlation analysis. (E,F) The protein significance of CERAD score (E) and BRAAK stage (F) in M3 module ranked in the top 10 proteins, 
respectively.
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The expression of ERBB2IP and LSP1 is significantly elevated in 
EOAD; however, their specific roles in EOAD, as well as their potential 
mechanisms and functions, remain unclear and warrant further 
investigation. Considering that both proteins are linked to inflammatory 
responses in other diseases, and given that neuroinflammation is a 
major pathological feature of AD, we hypothesize that they may also 
be involved in neuroinflammation. Inhibiting their expression could 
potentially reduce the neuroinflammatory response and thereby 
mitigate the pathology and cognitive decline associated with AD.

This study has several limitations. Firstly, due to the rarity of 
EOAD, the sample size is relatively small, which may introduce bias 
into the results. Secondly, in the absence of human brain samples 
from EOAD patients, we validated the expression of the key proteins 
using AD mouse models. Future research is needed to confirm these 
findings in human brains with EOAD. Thirdly, due to dataset 
limitations, we were unable to compare the proteomic data of EOAD 
with that of LOAD, thus preventing us from elucidating the 
differences between EOAD and LOAD. Understanding these distinct 
or shared molecular mechanisms may offer valuable insights into 
both diseases. In the future, we aim to include brain tissue from 
patients with confirmed EOAD and LOAD for proteomic analysis to 
elucidate their molecular differences. Finally, further in vivo and in 
vitro experiments are needed to determine whether these two key 

proteins impact AD pathophysiology or cognitive function, and to 
explore their biological functions.

In summary, we  analyzed proteomic data from human brain 
tissue in cases of EOAD. This analysis allowed us to construct a 
protein co-expression network and identify biological processes and 
molecular pathways associated with EOAD. Within the core module, 
we  pinpointed two key proteins, ERBB2IP and LSP1, that may 
be  implicated in the progression of EOAD. These preliminary 
findings suggest that these proteins could serve as potential 
therapeutic targets for EOAD.
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can be found here: syn20821165.
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and Technology of China to study publicly available datasets from the 

TABLE 2 Protein significance and module membership of top 10 proteins for CERAD in brown module.

PS.CERAD p.PS.CERAD MMbrown p.MMbrown

SMOC1|Q9H4F8–2 0.914215576 6.71 × 10−13 0.855946868 8.36279 × 10−10

NTN1|O95631 0.889272802 2.3 × 10−11 0.748725451 1.27026 × 10−6

COL25A1|Q9BXS0 0.82764751 9.3 × 10−9 0.842563444 2.77008 × 10−9

GMPR|P36959 0.826932818 9.83 × 10−9 0.935039441 1.36332 × 10−14

ERBB2IP|Q96RT1–8 0.800532891 6.42 × 10−8 0.921758006 1.85543 × 10−13

AHNAK|Q09666 0.798483113 7.34 × 10−8 0.943818931 1.75781 × 10−15

SNTA1|Q13424 0.79427638 9.62 × 10−8 0.783797625 1.83809 × 10−7

CSK|P41240 0.792862739 0.000000105 0.850261079 1.41077 × 10−9

ILK|A0A0A0MTH3 0.792135471 0.00000011 0.86910486 2.2781 × 10−10

LSP1|P33241-3 0.789544893 0.000000129 0.684760786 2.14708 × 10−5

PS, protein significance; MM, module membership.

TABLE 3 Protein significance and module membership of top 10 proteins for BRAAK in brown module.

PS.BRAAK p.PS.BRAAK MMbrown p.MMbrown

NTN1|O95631 0.881952961 5.55 × 10−11 0.748725451 1.27 × 10−6

SMOC1|Q9H4F8–2 0.881580767 5.79 × 10−11 0.855946868 8.36 × 10−10

COL25A1|Q9BXS0 0.801734896 5.93 × 10−8 0.842563444 2.77 × 10−9

RENBP|P51606 0.797731053 7.71 × 10−8 0.851002472 1.32 × 10−9

LSP1|P33241-3 0.79739162 7.88 × 10−8 0.684760786 2.15 × 10−5

CSK|P41240 0.793245815 1.03 × 10−7 0.850261079 1.41 × 10−9

SNTA1|Q13424 0.782983503 1.93 × 10−7 0.783797625 1.84 × 10−7

GMPR|P36959 0.778916225 2.46 × 10−7 0.935039441 1.36 × 10−14

ILK|A0A0A0MTH3 0.776594576 2.81 × 10−7 0.86910486 2.28 × 10−10

PS, protein significance; MM, module membership.
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Emory University AD cohort. The animal study was approved by the 
Animal Ethics Committee of the First Affiliated Hospital of University of 
Science and Technology of China. The study was conducted in 
accordance with the local legislation and institutional requirements.
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FIGURE 5

Expression of key proteins in 5xFAD mice brain tissue. (A) Representative immunoblots of ERBB2IP and LSP1 in the brain tissue. Internal protein was 
normalized to β-actin or GAPDH. (B) Quantification of ERBB2IP and LSP1 in the brain tissue. * means a p-value ≤0.05, **p means a p-value ≤0.01 
(Students’ t test, n  =  6 per each group).
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SUPPLEMENTARY FIGURE S1

Batch correction of the cohort. (A-B) Batch correction was performed within 
cohort one (A) and cohort two (B). Batch correction was conducted 
between the merged protein expression profiles from cohort one and 
cohort two.

SUPPLEMENTARY FIGURE S2

Principal component analysis. Principal component analysis was conducted 
on protein expression profile of the merged cohort prior to regression 
analysis for covariates including age, sex, and postmortem time interval (PMI).

SUPPLEMENTARY FIGURE S3

Key proteins in the EOAD brain were significantly increased in the merged 
cohort. Boxplots show ERBB2IP and LSP1 protein levels in the control and 
EOAD groups. Asterisks represent the significance level of the Student's t-
test: **** means a p-value ≤0.0001.
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