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Generative AI unlocks PET
insights: brain amyloid dynamics
and quantification

Matías Nicolás Bossa1*, Akshaya Ganesh Nakshathri1,

Abel Díaz Berenguer1, and

HichemSahli1,2*, for theAlzheimer’sDiseaseNeuroimaging Initiative

1Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel (VUB), Brussels, Belgium,
2Interuniversity Microelectronics Centre (IMEC), Leuven, Belgium

Introduction: Studying the spatiotemporal patterns of amyloid accumulation in

the brain over time is crucial in understanding Alzheimer’s disease (AD). Positron

Emission Tomography (PET) imaging plays a pivotal role because it allows for

the visualization and quantification of abnormal amyloid beta (Aβ) load in the

living brain, providing a powerful tool for tracking disease progression and

evaluating the e�cacy of anti-amyloid therapies. Generative artificial intelligence

(AI) can learn complex data distributions and generate realistic synthetic images.

In this study, we demonstrate for the first time the potential of Generative

Adversarial Networks (GANs) to build a low-dimensional representation space

that e�ectively describes brain amyloid load and its dynamics.

Methods: Using a cohort of 1,259 subjects with AV45 PET images from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI), we develop a 3D GAN

model to project images into a latent representation space and generate back

synthetic images. Then, we build a progression model on the representation

space based on non-parametric ordinary di�erential equations to study brain

amyloid evolution.

Results: We found that global SUVR can be accurately predicted with a linear

regressionmodel only from the latent representation space (RMSE = 0.08±0.01).

We generated synthetic PET trajectories and illustrated predicted Aβ change in

four years compared with actual progression

Discussion: Generative AI can generate rich representations for statistical

prediction and progression modeling and simulate evolution in synthetic

patients, providing an invaluable tool for understanding AD, assisting in diagnosis,

and designing clinical trials. The aim of this study was to illustrate the huge

potential that generative AI has in brain amyloid imaging and to encourage its

advancement by providing use cases and ideas for future research tracks.
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1 Introduction

The discovery of the presence of Amyloid-beta (Aβ) plaques in the brain was a

crucial breakthrough in understanding the pathology of Alzheimer’s disease (AD). The

development of Positron Emission Tomography (PET) imaging has allowed for the

visualization of Aβ plaques in vivo, providing unprecedented insights into the progression

of AD (Klunk et al., 2004). Since then, many efforts have been made to study the regional

and temporal patterns of amyloid accumulation and identify the stages of its spread

throughout the brain (Thal et al., 2002; Murray et al., 2015). Noteworthy, the findings are

not always consistent, and different amyloid staging models were proposed (Grothe et al.,

2017, cf. Koychev et al., 2020). More accurate and versatile tools to analyze PET images
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and evaluate the amyloid pathology progression could help unravel

the source of these discrepancies.

Numerous methodologies for amyloid quantification have

been introduced over time. In general, Magnetic Resonance

Imaging (MRI) scans have been crucial in accurately mapping

the accumulation of amyloid in the brain because they provide a

detailed image of the brain’s structure. This is usually followed by

brain parcellation and mapping of brain segmentation to the PET

image. After that, a group comparison of normalized PET signals

within each region is carried out (Grothe et al., 2017; Moffat et al.,

2022; Patow et al., 2023). These techniques, however, are often

hindered by complex preprocessing steps and the requirement for

an accompanying MRI scan (Pemberton et al., 2022). In addition,

different preprocessing pipelines produce different estimation

results (Kolinger et al., 2021). To overcome these limitations,

some researchers have recently suggested automatic quantification

methodologies based on deep learning solely utilizing amyloid PET

images (Kim et al., 2019; Reith et al., 2020; Komori et al., 2022;

Lee et al., 2022; Kang et al., 2023; Maddury and Desai, 2023).

These networks are specifically trained to estimate the cortical-

to-cerebellum standardized uptake value ratio (SUVR) average,

determine amyloid positivity, or compute a few regional SUVR

averages. Consequently, the rich spatial information inherent in the

data is lost.

An alternative approach, embraced in this work, is to encode

PET images in a convenient space that can be used later for

several analyses. Combining this representation with a generative

process provides a powerful modeling framework for analysis and

simulation (Schön et al., 2022). Generative artificial intelligence

(AI) makes use of advanced models like generative adversarial

networks (GANs), diffusion models, and variational autoencoders

(VAEs) to learn complex data distributions and generate realistic

synthetic data (Alamir and Alghamdi, 2022). These models have

shown their potential to mitigate the issue of data scarcity,

improving algorithm performances by artificially expanding the

pool of images available for training (Frid-Adar et al., 2018; Yi

et al., 2019). They were also integrated into AI interpretability

frameworks through counterfactual examples to understand how

AI systems make decisions or identify the source of errors they

produce (Chang et al., 2021).

Progression models take image generation a step further

by generating synthetic images and simulating the evolution

of a synthetic patient over time. These models can provide

a continuous, patient-specific timeline of disease progression,

enhancing our understanding of disease trajectories and the factors

influencing them (Ravi et al., 2022). In the context of clinical trial

design, longitudinal models allow for the measurement of expected

pathological changes from the generated images, providing

valuable insights into disease progression. Data augmentation via

simulation can be used to optimize different aspects of the trial,

such as sample sizes, enrollment criteria, trial duration, and the

number of intermediate time points. This is especially important

when conducting PET imaging studies due to the technique’s high

cost, technical limitations, and invasive nature.

Generative adversarial networks (GANs) (Goodfellow et al.,

2014) synthesize realistic-looking features by learning the sample

distribution from real data, providing a powerful way to model

and manipulate images directly. In neuroimaging, the latent space

of GAN models was used as a low-dimensional representation for

uncovering disease-related imaging patterns (Wang et al., 2023).

Several works studied progression due to age or disease. Bowles

et al. (2018) built a progression model for AD and a latent encoding

with disentangled AD features using a Wasserstein GAN (W-

GAN) (Arjovsky et al., 2017). MRI scans with different grades

of AD severity were simulated by manipulating specific elements

of the latent encoding. A GAN variant was used to identify

subtypes of Alzheimer’s disease in MRI scans by studying the

pathologic neuroanatomical heterogeneity in brains with AD and

the differences with healthy brains (Yang et al., 2021). The disease

progression was described as the hypothetical order in which

subtypes are visited. In Ravi et al. (2022), a 2D plus time model was

designed to generate high-resolution, longitudinal MRI scans that

mimic subject-specific neurodegeneration in aging and dementia.

It proposes a modular framework based on adversarial training and

spatiotemporal, biologically-informed constraints. The progression

model is based on a Conditional Deep Autoencoder (CDA) (Zhang

et al., 2017). In Zhao et al. (2021), a GAN model based on 3D U-

Net was proposed to generate MRI images at pre-specified future

time-points, 1 and 4 years after the baseline, conditioned on the

image at the baseline and other covariates. A similar approach

was applied in Campello et al. (2022), where a conditional GAN

was used to synthesize older and younger versions of a heart MRI

scan using only cross-sectional data. Other works used GANs for

disease prediction or classification without modeling AD evolution.

In Gao et al. (2022) and Pan et al. (2022), GAN-based models

were used to impute missing PET images from the available

MRI images. This approach allowed them to utilize the complete

multimodal data (both MRI and PET images) for more accurate

disease classification.

In this study, we propose to leverage a 3D GAN model,

3D-StyleGAN (Hong et al., 2021), for PET image representation

and synthesis. 3D-StyleGAN is an extension of StyleGAN (Karras

et al., 2019) developed for medical images and evaluated on MRI

images. StyleGAN-based architectures generate highly realistic

and diverse images. They also contain an intermediate latent

space less entangled than the input space, showing better control,

and interpretability on image synthesis compared to previous

generative models (Karras et al., 2018; Hong et al., 2021). We

quantify the latent space information content by fitting a linear

regression model to predict SUVR and evaluate the performance

degradation when projecting the latent vector in even lower

dimensional spaces given by Principal Component Analysis. To

illustrate the potential of this representation for modeling brain

amyloid evolution, we use a non-parametric ODE model based

on Gaussian Process (GP) regression (Bossa et al., 2022) to model

amyloid dynamics on a five-dimensional PCA subspace of the

latent space.We visualize the individual evolutions on this subspace

and generate synthetic image trajectories for a few examples to

visually compare synthetic and real images after four years of

evolution.

Our approach presents several differences from the previous

works. First, it is the first to study the amyloid progression in PET

images. Previous studies used generative AI to model progression

only MRI images and, therefore, the neuroanatomical changes.

Second, our approach is more straightforward and versatile

because several generative models can be combined with different
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progression models. Previous works used conditional networks to

learn progression, which requires a large amount of longitudinal

data. Compared with the conditional networks, our framework

allows recomputing the dynamics in new settings, diseases, or sub-

populations or incorporating more covariates without re-training

the GAN model, which could be pre-trained on large cross-section

databases.

2 Materials and methods

2.1 Participants

We used publicly available data from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) database1 to fit the models. The

ADNI was launched in 2003 as a public-private partnership, led by

Principal InvestigatorMichaelW.Weiner,MD. The primary goal of

ADNI has been to test whether serial magnetic resonance imaging

(MRI), positron emission tomography (PET), other biological

markers, and clinical and neuropsychological assessment can be

combined tomeasure the progression ofmild cognitive impairment

(MCI) and early Alzheimer’s disease (AD). All ADNI participants

provided written informed consent, and study protocols were

approved by each local site’s institutional review board. All methods

were carried out in accordance with relevant guidelines and

regulations. Further information about ADNI, including full study

protocols, complete inclusion and exclusion criteria, and data

collection and availability can be found at adni.loni.usc.edu.

The amyloid PET scans are from the longitudinal PET imaging

study conducted during the ADNI-2 and ADNI-GO phase. These

PET images are acquired by administering 18F Florbetapir (18F

AV-45) to the subject and are imaged 50–70 min post injection

for continuous 20 minutes to obtain the brain PET images2. All

subjects with AV45 PET scans were included, resulting in a total

of 1,259 participants and 2,920 AV45 PET images.

The characteristics of the population included in the analysis

are summarized in Table 1. The mean number of PET scans per

subject was 2.3, with 800 participants having at least two scans and

243 having four scans. The mean PET follow-up duration was 2.6

years, with 280 participants with more than 5 years of follow-up.

2.2 Image preprocessing

PET scans consist of four 5-min frames co-registered to the base

frame and averaged into a single static frame. Each scan is then

reoriented into a standard 160× 160× 96 voxel image grid, having

1.5 mm cubic voxels (Jagust et al., 2015). Since these scans are

procured from different scanners of varied resolutions, the image

sets are filtered with a scanner-specific filter function in order to

have uniform resolution across all images.3

SUVR estimates for most of these scans are provided with

the ADNI dataset and were estimated using various image

1 adni.loni.usc.edu

2 https://adni.loni.usc.edu/wp-content/uploads/2010/05/

ADNI2_PET_Tech_Manual_0142011.pdf

3 https://adni.loni.usc.edu/methods/pet-analysis-method/pet-analysis/

preprocessing steps. This includes the coregistration of a PET image

of each subject to theMRI scan of that subject using SPM software.4

Further, Freesurfer software5 is used to skull-strip, segment, and

delineate cortical and subcortical regions in all MRI scans. SUVR is

thus calculated by dividing the conventional average across the four

main cortical regions (frontal, anterior/posterior cingulate, lateral

parietal, lateral temporal) by one of the reference regions.6

2.3 GAN-based latent space representation

GAN is a deep learning-based generative modeling approach

in which two networks are trained simultaneously in a min-max

game via an adversarial process (Goodfellow et al., 2014). A GAN

architecture involves two networks: a generator and a discriminator

model. The generator model captures the data distribution to

generate new plausible data samples. The discriminator model

estimates the probability that a sample came from the training

data rather than the generator. The generator network G takes a

normally distributed random vector z ∼ N (0, I) as input, which is

used to seed the generative process. This noise vector is transformed

to generate samples G(z) from the data distribution. Discriminator

network D gets real data or generator output G(z) as inputs, one

at a time. The discriminator network is trained to distinguish these

inputs as real or fake. The generator network, in turn, is trained

to fool the discriminator into accepting its outputs as being real.

During training, the generator tries to minimize the loss while the

discriminator tries to maximize it.

2.3.1 3D-StyleGAN
Various modifications and innovations have been developed

using this original framework. In the original generator network,

the latent vector z is provided to the generator through an input

layer. The input latent space Z is usually entangled and challenging

to interpret and manipulate. StyleGAN (Karras et al., 2018, 2019)

is a family of GANs that use an alternative generator architecture

borrowed from style transfer architecture (Huang and Belongie,

2017). They include a disentangled latent space to generate highly

realistic images with control over the image synthesis process via

style mixing.

Themain components of StyleGAN are illustrated in Figure 1A.

The input vector z is embedded into an intermediate latent space

W through an 8-layer fully connected (FC) MLP mapping network

M, i.e., w = M(z). Another particularity of StyleGAN is in its

generator or synthesis network G. A constant layer is used as input

to a set of successive convolutional networks, each modulated by

the latent vector w via respective affine transforms A. This leads

to a less entangled, more linear representation of latent factors of

variation (Karras et al., 2018). Later, the StyleGAN generator was

re-designed to improve image quality and remove artifacts, leading

to StyleGAN2 (Karras et al., 2019).

4 https://www.fil.ion.ucl.ac.uk/spm/

5 https://surfer.nmr.mgh.harvard.edu/

6 https://adni.bitbucket.io/reference/docs/UCBERKELEYAV45/

ADNI_AV45_Methods_JagustLab_06.25.15.pdf
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TABLE 1 Demographics for included participants.

CN MCI AD

Male Female Male Female Male Female

Participants (N) 222 216 345 260 127 89

N APOE-ǫ4 (0/1/2) 159/51/5 139/58/9 170/123/33 137/90/22 47/46/27 25/45/14

PET scans (N) 623 577 749 532 244 195

Follow-up (years) 3.0 (7.5) 2.6 (7.3) 2.0 (5.9) 1.8 (5.6) 0.5 (2.0) 0.7 (2.1)

Follow-up ( N scans
N participants

) 2.6 (5) 2.4 (4) 2.0 (4) 1.9 (3) 1.3 (2) 1.4 (2)

APOE information was not available for all of them. Follow-up is reported as:mean (90th percentile).

StyleGAN and StyleGAN2 were initially developed to

synthesize high-quality 2D images and gained popularity for

generating realistic human faces. More recently, StyleGAN2 was

extended to three-dimensional (3D) medical image synthesis.

3D-StyleGAN is an adaptation of StyleGAN2 to enable synthesis

of 3D medical images (Hong et al., 2021). Several changes are

made to the original StyleGAN2 architecture, including the

depths of the filter maps and latent vector sizes, which are

significantly reduced to limit the high memory requirements and

computational complexity. See Hong et al. (2021) for additional

implementation details.

2.3.2 Encoder
An encoder E is added to invert the synthesis network

of the 3D-StyleGAN to obtain the intermediate latent vector

representation of the real images. The task of the encoder network

is to map the input PET image to the output features w as

illustrated in Figure 1B. Each block in this network consists of

filtered downsampling followed by a 3 × 3 × 3 convolution layer.

Leaky Rectified Linear Unit (LReLU) activation is applied after each

block. No output activation is applied after the dense layer. These

convolution layers have a filter depth of 16, 32, 32, 32, and 16.

The size of the final dense layer of the network is 96 to match the

intermediate latent vector size of the 3D-StyleGAN generator.

2.4 PET image trajectory modeling using
non-parametric ODEs

We follow the approach proposed in Bossa et al. (2022)

to estimate the brain amyloid evolution. Feature velocities are

modeled as a function of their current value and, eventually, other

covariates. This is expressed mathematically as a set of ordinary

differential equations (ODEs):

dxi(t)/dt = V(xi(t), ci) , (1)

where xi(t) is a dynamical feature vector of subject i at time t, ci
is a vector with covariates (age and number of APOE−ǫ4 alleles

in our case), and V(·, ·) is a vector function to be estimated from

the data. We opted to model V(·, ·) using Gaussian process (GP)

regression, as described in Bossa et al. (2022). Observed velocities

were approximated with finite differences between features from

consecutive images of the same subject. GP regression was used to

estimate a smooth function for each component of the velocity field.

Three assumptions motivate this choice:

1. The velocity observations are noisy due to the finite difference

approximation, intersubject variability that can not be modeled

with covariates, and feature variations unrelated to amyloid

progression.

2. The velocity is not expected to change abruptly between

two similar PET images. This is grounded in biological

considerations and the observed patterns and rates of amyloid

accumulation.

3. Velocity is only determined by current status and covariates.

This is the most limiting assumption because it rules out

the possibility that two individuals have the same condition

and, at some point, they start to diverge in their evolution

due to unknown factors, such as genetic or environmental

differences. However, accounting for these possibilities would

present significant challenges requiring more training data and

complex modeling tools.

After learning the velocity model, it can predict the velocity for

any given combination of latent representation and covariates. We

forecast long-term trajectories from the given initial states using

forward Euler integration.

The feature vector x could be either the latent vector w

or a low-dimensional representation of it. Further reducing the

dimensionality may increase the robustness of the dynamical

pattern estimation and reduce the risk of overfitting. We used

Principal Component Analysis (PCA) to reduce the dimensionality

and to investigate if the information in the latent space W is

redundant for amyloid quantification and progression modeling.

Let {vk}
K
k=1

be the first K Principal Components (PCs), and b
i the

corresponding vector of principal scores for subject i, such that

w
i ≈ w̄ +

∑K
k=1 vkb

i
k
, where w̄ is the latent vector mean across

subjects.

Let Îit be a synthetic PET image trajectory whose initial value

corresponds to the baseline PET image of the participant i, Ii
baseline

,

so that Îi0 = G(wi
0) ≈ Ii

baseline
with w

i
0 = E(Ii

baseline
). Then, Îit is

computed as

Îit = G(w̄+

K∑

k=1

vkPMk(b
i
0, c

i, t)) (2)

where PMk(b0, c, t) is the output of the progression model for

component k, i.e., the result of integrating the velocity field

V(b(τ ), c) starting at b(0) = b0 during a time τ = t.
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FIGURE 1

Components of the proposed methodology. (A) Schematic representation of 3D-StyleGAN. A mapping network M maps a normally distributed

random vector z to an intermediate latent vector w, which is then used to feed a style-based generator network G. The generator G produces a

realistic-looking synthetic PET image. A discriminator network D is trained to di�erentiate the synthetic from the real images while D and M are

trained adversarially, i.e., to prevent the discriminator from detecting the synthetic image. The details of each block’s architecture and training are

given in Section 2.3 and in Hong et al. (2021). (B) Details of the encoder network, E, used to invert the pre-trained 3D-StyleGAN generator, G. Five

convolutional layers followed by a dense layer map a PET image into the intermediate latent vector w = E(PET). A mean squared error loss on the

di�erence between the input and reconstructed images ‖PET −G(E(PET))‖2 is used to train the encoder. (A) 3D-StyleGAN. (B) Encoder.

The velocity field V(b(τ ), c) is computed as follows. Let B

denote the space of principal scores, i.e., bj ∈ B. A set of velocities

in B is computed using finite differences of principal scores from

consecutive images of the same subject. A Gaussian Process (GP)

regression is then fitted to these velocity estimations, resulting in a

smooth velocity field in the B space.

We explored the performance of the PCA projected latent

vector to predict SUVR for different numbers of components.

Based on this analysis, we selected the optimal number of

PCA dimensions and fitted the progression model to this

subspace. Then, we projected back the estimated trajectories to

the corresponding hyperplane on the original latent space W and

generated the images. The entire pipeline is illustrated in Figure 2.

3 Results

3.1 Latent space representation

3.1.1 SUVR prediction
We first aim at determining the quality and redundancy of

the information contained in the latent representation. For that,

trained a linear regression model to predict SUVR solely based

on the complete latent vector. Figure 3A shows the observed

vs. predicted SUVR for the training and test sets. We made a

bootstrap experiment with 1,000 random training/test splitting

and obtained (mean (95%CI)) RMSE = 0.081(0.072, 0.092),

AUROC = 0.985(0.975, 0.992), and MAE = 0.061(0.055, 0.067).

This performance is comparable to that of DL models specifically

trained for predicting SUVR (Kim et al., 2019; Reith et al., 2020;

Komori et al., 2022; Lee et al., 2022; Kang et al., 2023; Maddury and

Desai, 2023).

Then, we did the same bootstrap experiment on the PC

projection for several number of PCA dimensions (see Figure 3B).

There is a dramatic improvement in SUVR prediction around five

PCs, followed by a plateau (see Figure 3Bright panel). Performance

improves again after seven PCs, but no other clear-cut points

exist. Therefore, at five dimensions, it is the first and most evident

“elbow” in the SUVR error prediction curve.

3.1.2 Progression modeling
We explored the amyloid dynamics in a low-dimensional PCA

subspace. We kept the first five PCs for the qualitative analysis

for two reasons. First, visualization is more complex and prone to

arbitrary choices on higher dimensions. Second, from the previous

analysis (see Figure 3), we concluded that five PCs is the smaller

number of PCA dimensions containing a sufficient amount of

amyloid-related information.
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FIGURE 2

Amyloid feature representation and progression modeling pipeline. Top (from left to right): The encoder (E, see Figure 1) projects each PET image

into the 3D-StyleGAN latent representation W. Dimensionality is further reduced using PCA. Bottom (from left to right): A smooth, continuous

velocity field is estimated from the participants’ projected PET image pairs. The velocity field is used to predict trajectories on the PCA subspace,

which are then projected back to the 3D-StyleGAN latent space W. The 3D-StyleGAN synthesis network (G, see Figure 1) generates a synthetic PET

image evolution of a given synthetic or real patient.

By inspecting the histograms of negative and positive amyloid

scans on each PC, we identified two dimensions that differentiate

low vs high amyloid and three that do not. Figure 4A shows

the distribution of subjects’ baseline scans in the two PCs

correlated with amyloid levels, and Figure 4B shows two from

the non-correlated ones. The general dynamics are illustrated with

lines representing the predicted short-term progression. Long-term

progression is illustrated in a few selected subjects representing

different dynamics, from stable to fast amyloid accumulators. These

groups were defined based on the observed SUVR change in the real

data after 4 years of evolution.

The first observation is that the predicted progression moves

mainly toward regions populated with high amyloid subjects

(to the right and sometimes upwards). This is an important

consistency check. The dynamics estimated from consecutive scans

of individual subjects reflect changes in the scan features and do

not inherently account for the overall population distribution of

amyloid load in the latent space. However, they are expected to

align locally with the trend of increasing amyloid load observed

in the population. The second observation is that the stable

subjects (orange) or slow progressors (blue) travel a shorter

distance on the x-axis, suggesting that this dimension represents

amyloid progression. Conversely, the trajectories on the right do

not differentiate fast and slow progressors, being very similar for all

subjects. Most likely, these dimensions encode aspects of the image

related to age that change at the same rate for all subjects.

3.2 Amyloid PET progression simulation

For each of the selected sample cases, illustrated in Figure 4,

we generated the PET image at baseline and after four years of

evolution. The evolution is computed in the five-dimensional PCA

space and projected back to the latent space.

We generated a PET scan from the reconstructed latent

vectors after projecting back from the PCA space to the latent

representation space. Figure 5 shows the subject with slow Aβ rate

of accumulation (labeled as 1 in Figure 4) and two subjects with a

rapid Aβ accumulation (subjects numbered as 3 and 7). Figure 6

shows the images of the subjects who are not accumulating Aβ .

The first row from both figures contains the baseline scans (original

and reconstructed), the second row contains the image after 4 years

(original and predicted), and the third row contains the difference.

The original and reconstructed images present similar patterns

despite the latent representation being projected in a 5-dimensional

space. Moreover, the predicted progress after four years was similar

to the observed. In order to interpret these images, it is important

to take into account that the Aβ accumulation is reflected in the

ratio of the cortex signal to that of the cerebellum. The changes

in amyloid load (either positive or negative) are not expected to

occur outside the cortex. The patterns observed outside the cortex

should be attributed to factors such as anatomical changes or

misalignments. In the simulated images, the signal, when present, is

almost exclusively concentrated on the cortex and ventricles. Signal

change is expected to occur in ventricles because of the expansion

they experience during age or dementia-related brain atrophy.

4 Discussion

Generative AI can address, in a single framework, various

needs in medical neuroimaging modeling and analysis (Wang

et al., 2023). These include progression modeling, statistical image

analyses (such as statistical parametric mapping or voxel-level
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FIGURE 3

Performance (RMSE) of a linear regression model trained to predict SUVR from the 3D-StyleGAN latent representation (A) and the PCA projections

(B). Confidence intervals (CI) were estimated with 100 random training/test splittings. (A) Observed vs predicted SUVR in train and testing sets

(random partition 65%/35%). (B) SUVR prediction error vs number of PCs.

regression), AI interpretability [achieved through counterfactual

analysis (Mertes et al., 2022)], and synthetic data simulation. This

work aimed to explore the potential of generative AI for amyloid

PET analysis and to illustrate that it can effectively achieve some of

these goals with a concrete model architecture and a few practical

applications.

Generative AI and GANs, in particular, have complex models

that require non-naive optimization strategies. They have been

intensively studied for 2D images until they could produce

realistic images. Extension from 2D to 3D is not immediate,

and memory requirements often make 3D deep neural networks

models challenging (Singh et al., 2020; Volokitin et al., 2020).

For example, the progression model for AD proposed in

Bowles et al. (2018) was developed only for 2D images. For

this reason, we have used 3D-StyleGAN (Hong et al., 2021)

for image generation and representation. 3D-StyleGAN is a

recently proposed model that leverages GANs for 3D brain

image generation. It showed sufficient quality for 3D MRI

image generation, including a latent space where we could do

longitudinal analyses, and does not include unnecessary features for

our purposes.

We extended the 3D-StyleGANmodel with an encodermodule.

In the original 3D-StyleGANmodel, image projection is obtained a

posteriori via optimization (Hong et al., 2021). Our approach with
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FIGURE 4

Amyloid PET dynamics on a PCA subspace of the 3D-StyleGAN latent representation space. Thin semitransparent lines represent five years of

evolution, with the dots being the starting points. The colors represent the amyloid positiveness according to the SUVR: blue for amyloid negative

(SUVR < 1.1), red for amyloid positive (SUVR > 1.2), and green for intermediate values. Thick, solid lines represent 15 years of evolution for a few

representative participants. The colors denote whether they are positive (Pos) or negative (Neg) and the SUVR increase rate (stable, slow, or fast). See

the legend. (A) PCs one and four. These two PCs have the maximum separation between amyloid-positive and negative projections. (B) PCs two and

five. These two PCs have the minimum separation between amyloid-positive and negative projections among the first five PCA projections. (A) PCA

dimensions 4 vs. 1. High amyloid correlation. (B) PCA dimensions 5 vs. 2. Low amyloid correlation.

an encoder module offers two significant benefits compared to the

optimization approach. First, running a trained encoder is much

faster. Second and more importantly, an encoder module allows

for extending the architecture, using the latent representation of

real images as input to other subnetworks or adding additional loss

terms, facilitating further downstream tasks.
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FIGURE 5

Synthetic vs. observed 4-year progression for participants experiencing brain amyloid accumulation. Participant 1 has a lower rate of SUVR increase

than participand 3 and 7. The image range is from 0 to 4 for the gray images (first and second rows) and from −0.4 to 0.4 for the colored images

(third rows), where blue corresponds to more negative values, yellow to positive values and green to zero. See Figure 4 for the corresponding latent

representation.

We showed that the latent representation encodes the

information relative to amyloid load and can accurately predict

global SUVR. This is not immediate, as the amyloid load

is not directly reflected in the PET image intensities but

should be derived from the relative intensities of the brain

cortex to those of a reference region. Principal component

analysis showed that this information is mainly encoded in

the latent dimensions with higher variability in the population.

Dimensionality reduction is particularly convenient for modeling

dynamics because progression models are more robust in

low-dimensional spaces, and it will become critical when

extending the model with more biomarkers. Lastly, we illustrated
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FIGURE 6

Synthetic vs. observed four-year progression for amyloid-positive and stable participants, i.e., those without significant brain amyloid accumulation

as measured by SUVR change. See Figure 4 for the corresponding latent representation.

that synthetic realistic-looking PET image trajectories could

be generated.

Some previous works studying progression in neuroimaging

did not provide a dynamic model describing rates of change or

a continuous description of the progression path from healthy

to diseased. In Yang et al. (2021), for example, progression

pathways are inferred through a secondary analysis of the degree of

expression or occupancy of a small set of identified patterns, and

the progression is encoded in the order in which these patterns

are visited. Other works proposed conditional networks to model

progression (Zhao et al., 2021; Campello et al., 2022). These

models predict next image from previous ones leveraging a U-

Net backbone. They can predict image changes for a particular

individual. However, they are not designed to generate completely
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synthetic image trajectories because the generator backbone can

only generate images from other images and not from a latent

vector alone.

Several limitations of the present study, as well as future

research directions, can be highlighted. One major limitation is

the lack of voxel-wise statistical analysis, which could provide a

more detailed understanding of the spatial distribution of amyloid

deposition. Both longitudinal and cross-sectional analysis (such

as group comparison or regression) require the selection of a

reference image. The analysis can be performed on the latent

space, and statistical maps could be estimated with permutation

tests (Bossa et al., 2010). Another limitation is the lack of

quantitative evaluation of the predicted evolution, for example,

comparing the SUVR of predicted trajectories with actual patient

evolutions. Modeling the joint evolution of MRI and amyloid PET

could be used to compute SUVR by traditional means to evaluate

quantitatively the progression model. Furthermore, it would allow

us to study the spatiotemporal SUVR distribution in predefined

regions and compare it with previous works (e.g., Whittington

et al., 2018). Modeling MRI is required to compute global or

regional SUVR values because the precise extent of anatomical

regions can not be determined from the PET image.

One potential extension of the present work is to evaluate

the performance, benefit, and limitations of different generative

approaches, including GANs, VAEs, and diffusion models (Bond-

Taylor et al., 2022). Another promising extension is the joint

modeling of PET amyloid with other dynamical variables, including

imaging, biofluid biomarkers, or cognitive assessments. Aβ and tau

levels in the blood or cerebrospinal fluid (CSF), neurodegeneration

measured as brain atrophy in structural MRI, and metabolism (e.g.,

FDG PET) could inform more precisely the expected change in

brain amyloid levels, and, in turn, amyloid PET could predict the

expected progression on these biomarkers (Bossa et al., 2022; Bossa

and Sahli, 2023).

This work contributes to recent efforts to build Digital Twins

of the brain. The model’s ability to provide a continuous, patient-

specific prediction of disease progression can be used to tailor

treatment plans to individual patients and inform clinical decisions

(Ravi et al., 2022). Clinical trial designs for anti-amyloid treatments

could also benefit from these models. Identifying the subjects

with faster progression could reduce the costs associated with

sample size or trial duration. Given the expected effect of a

treatment on slowing amyloid accumulation, the model could be

used to simulate PET images from the untreated group from

specific populations and predict the effect size. Then, clinical trial

costs could be optimized by tuning parameters such as follow-up

duration (Bossa and Sahli, 2023). Some authors proposed using

ODE-based progression models to simulate the effect of amyloid

treatments on the disease course (Abi Nader et al., 2021). Such a

causal model can be used to evaluate the treatment’s efficacy by

simulating the potential drug’s effect on the synthetic images before

conducting expensive and time-consuming clinical trials.
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