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Introduction: Alzheimer’s disease (AD) is highly heterogeneous, with substantial 
individual variabilities in clinical progression and neurobiology. Amyloid 
deposition has been thought to drive cognitive decline and thus a major 
contributor to the variations in cognitive deterioration in AD. However, the 
clinical heterogeneity of patients with early symptomatic AD (mild cognitive 
impairment or mild dementia due to AD) already with evidence of amyloid 
abnormality in the brain is still unknown.

Methods: Participants with a baseline diagnosis of mild cognitive impairment or mild 
dementia, a positive amyloid-PET scan, and more than one follow-up Alzheimer’s 
Disease Assessment Scale-Cognitive Subscale-13 (ADAS-Cog-13) administration 
within a period of 5-year follow-up were selected from the Alzheimer’s Disease 
Neuroimaging Initiative database (n = 421; age = 73±7; years of education = 16 ± 3; 
percentage of female gender = 43%; distribution of APOE4 carriers = 68%). A non-
parametric k-means longitudinal clustering analysis in the context of the ADAS-
Cog-13 data was performed to identify cognitive subtypes.

Results: We found a highly variable profile of cognitive decline among patients 
with early AD and identified 4 clusters characterized by distinct rates of 
cognitive progression. Among the groups there were significant differences in 
the magnitude of rates of changes in other cognitive and functional outcomes, 
clinical progression from mild cognitive impairment to dementia, and changes 
in markers presumed to reflect neurodegeneration and neuronal injury. A 
nomogram based on a simplified logistic regression model predicted steep 
cognitive trajectory with an AUC of 0.912 (95% CI: 0.88 – 0.94). Simulation of 
clinical trials suggested that the incorporation of the nomogram into enrichment 
strategies would reduce the required sample sizes from 926.8 (95% CI: 822.6 – 
1057.5) to 400.9 (95% CI: 306.9 – 516.8).

Discussion: Our findings show usefulness in the stratification of patients in early 
AD and may thus increase the chances of finding a treatment for future AD 
clinical trials.
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Introduction

Alzheimer’s disease (AD) is a heterogeneous disorder with high 
individual variabilities in cognitive progression (Jutten et al., 2021; 
Cohen et al., 2024). In the search for treatment, people have so far 
predominantly targeted one single clinical entity and assumed that 
individuals are homogeneous in the course of cognitive decline and 
the placebo and treatment groups should demonstrate equal rates of 
cognitive deterioration if the treatment is ineffective (Fogel, 2018). 
Nevertheless, several longitudinal studies have found substantial 
variations in the rates of cognitive decline among patients with AD 
despite being matched for clinical severity at the beginning of the 
study (Jack et al., 2010b; van Rossum et al., 2012; Vos et al., 2015; 
Scheltens et al., 2018). A consequence is that cognitive heterogeneity 
may bias the results of therapeutic clinical trials of AD. For instance, 
even though within most previous trials no difference between 
placebo and treatment groups was observed, we cannot fully rule out 
the probability that the null effect was actually attributed to over-
representation of individuals with slow rates of cognitive decline in the 
treatment group or over-representation of individuals with rapid rates 
of cognitive decline in the placebo group, if treatments were actually 
effective (Jutten et al., 2021). Moreover, a specific therapeutic strategy 
may only benefit certain subgroups of patients, and thus identification 
of meaningful subgroups of individuals with AD may be a crucial first 
step towards improving the clinical trial design, increasing the chance 
of finding an efficacious treatment and developing 
personalized medicine.

One strategy to identify subtypes is to categorize patients based 
on cognitive features using empirical methods in a non-biased manner 
(Gamberger et  al., 2017; Lee et  al., 2018; Kim et  al., 2019, 2022; 
Blanken et al., 2020; Edmonds et al., 2021; Giraldo et al., 2021; Wang 
et al., 2023; Kim B. S. et al., 2023; Kim Y. J. et al., 2023). For cross-
sectional neuropsychological data, several previous studies utilized a 
data-driven approach to sort out the cognitive heterogeneity of AD by 
applying clustering methods, leading to the identification of 
differential cognitive subtypes (Scheltens et al., 2015, 2017; Qiu et al., 
2019). However, cross-sectional cognitive data can only capture the 
heterogeneity in cognitive deficits at a snapshot and are unable to 
delineate the temporal nature of disease progression. For these 
reasons, several investigators (Geifman et al., 2017; Ziegler et al., 2020; 
Levine et  al., 2021) have undertaken subtyping approaches to 
understand the heterogeneity of AD by using repeatedly measured 
cognitive outcomes, namely Alzheimer’s Disease Assessment Scale-
Cognitive Subscale (ADAS-Cog), which is a commonly used primary 
endpoint in clinical trials of AD. In Geifman et al.’s study (Geifman 
et al., 2017), latent class mixed modeling (LCMM) has been conducted 
to successfully identify 3 distinct longitudinal cognitive subgroups 
(i.e., rapid decliners, slow decliners, and severely-impaired slow 
decliners) over a period of 18 months in a clinical trial database 
involving clinically diagnosed AD dementia patients (Geifman et al., 
2017). In Ziegler et  al.’s study (Ziegler et  al., 2020), a statistical 
clustering method has been performed to identify 3 different cognitive 
subgroups (i.e., “mild impairment” group, “memory impaired” group, 
and “fast progressing” group) over a period of 2 years among patients 
with a clinical diagnosis of AD dementia. More recently, by leveraging 
data from five clinical trials of donepezil for AD patients, Levine et al. 
(2021) performed a latent class model to identify 3 subgroups (i.e., low 
scorers, improvers, and high scorers) over a period of 12 weeks. 

Nevertheless, despite the shift from a syndromal definition to a 
biological definition of AD in observational and interventional 
research, and AD clinical trials are moving earlier in the disease 
process (Jack et  al., 2018), no studies have yet investigated the 
cognitive heterogeneity of early symptomatic AD [mild cognitive 
impairment (MCI) or mild dementia due to AD] with evidence of 
abnormal amyloid in the brain. We undertook such a study, using 
repeatedly measured longitudinal cognitive outcomes over a period of 
5 years to identify classifications of patients with early AD that show 
distinct clinical progression trajectories.

In this study, we expanded upon previous research by applying a 
state-of-the-art statistical clustering method to longitudinal ADAS-
Cog-13 data collected within a 5-year period from patients with early 
AD who showed evidence of abnormal amyloid and met inclusion and 
exclusion criteria commonly applied in a typical clinical trial involving 
patients with early AD (van Dyck et al., 2023). Following the clustering 
analysis, we  examined associations of the identified cognitive 
trajectories with changes in other cognitive and functional measures, 
neurogenerative biomarkers, in vivo CSF AD biomarkers, and disease 
progression to AD dementia. We  investigated potential baseline 
predictors that may be associated with membership in the identified 
subtypes. Finally, a nomogram was created to facilitate an easy and 
practical prediction of probabilities of experiencing steep cognitive 
decline, and simulated clinical trials were conducted to examine 
whether the incorporation of the nomogram into the enrichment 
strategy would lead to the reduction of sample size for trials involving 
early AD.

Materials and methods

Study participants

Data were obtained from the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI) database.1 ADNI is a multicenter longitudinal 
cohort study with the main research goal of examining whether 
clinical, neuropsychological, biological, and other neuroimaging 
markers can be  combined to track clinical progression in the 
Alzheimer’s disease continuum. The ADNI study was approved by an 
ethical review board of participating study centers and all subjects 
provided written informed consent.

For the current study, we selected subjects with a baseline clinical 
diagnosis of either MCI or mild AD dementia who had elevated 
amyloid as determined by PET imaging (specific methods and cutoff 
described below) and had at least 1 follow-up measurement available 
(with ADAS-Cog-13 administration) the next 5 years. Criteria for 
MCI were (1) memory complaint; (2) abnormal memory function 
evidenced by the Logical Memory II subscale (Delayed Paragraph 
Recall) from the Wechsler Memory Scale-Revised; (3) Mini-Mental 
State Examination (MMSE) score ≥ 24; (4) global Clinical Dementia 
Rating (CDR) score of 0.5; (5) absence of dementia. Criteria for mild 
AD dementia were (1) memory complaint; (2) abnormal memory 
function evidenced by the Logical Memory II subscale from the 
Wechsler Memory Scale-Revised; (3) MMSE score between 20–26 

1 https://adni.loni.usc.edu/
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(inclusive); (4) global CDR score of 0.5 or 1; (5) NINCDS/ADRDA 
criteria for probable AD dementia (Mckhann et al., 1984). This study 
included 421 participants with early AD (MCI or mild dementia due 
to AD). The inclusion criteria for participants with early AD in the 
current study largely aligned with those used in a recent anti-amyloid 
AD clinical trial (van Dyck et al., 2023). For detailed sample selection 
procedures, please see Figure 1.

Clustering cognitive variable

The ADAS-Cog (Rosen et al., 1984) is a commonly used cognitive 
outcome for tracking disease progression and measuring the efficacy 
of antidementia treatments and the most used cognitive outcome 
measure in AD clinical trials (Cano et al., 2010). Thus, we treated 
ADAS-Cog as our primary cognitive outcome and used it as the 
variable for longitudinal cluster analysis (specific procedures for 
cluster analysis described below). The 13-item version of ADAS-Cog 

(ADAS-Cog-13) includes 13 tasks that primarily assess the cognitive 
domains of episodic memory, praxis, and language. Total score ranges 
from 0 to 85, with higher scores indicating greater cognitive 
impairment (Rosen et al., 1984).

Other cognitive measures

Apart from the ADAS-Cog, the second and third most frequently 
used cognitive outcome measures in AD clinical trials were the MMSE 
(Folstein et al., 1975) and the CDR-sum of boxes (CDR-SB) (Williams 
et al., 2013; Jutten et al., 2021). The Functional Activities Questionnaire 
(FAQ) (Pfeffer et al., 1982) is a commonly used instrumental activities 
of daily living (IADLs) scale that predicts clinical progression 
(Marshall et  al., 2015). Therefore, these cognitive measures (i.e., 
MMSE, CDR-SB, and FAQ) were taken to assess and validate cognitive 
and functional changes over time between different cognitive 
subgroups. The MMSE is a widely used global cognitive screening test, 

FIGURE 1

Flowchart showing the sample selection procedure. MCI, Mild cognitive impairment; AD, Alzheimer’s disease; PiB, Pittsburgh compound B; AV45, 
Florbetapir; ADAS-Cog-13, Alzheimer’s Disease Assessment Scale-Cognitive Subscale 13; APOE, Apolipoprotein E.
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with total scores ranging from 0 to 30, and a lower score indicates 
greater cognitive impairment (Folstein et  al., 1975). The CDR-SB 
captures 6 cognitive and functional domains, including memory, 
orientation, judgment and problem-solving, community affairs, home 
and hobbies, and personal care (Williams et al., 2013). Scores for each 
domain range from 0 to 3, with higher scores reflecting greater 
impairment. Adding scores of each domain leads to a total score, 
which ranges from 0 to 18 (Williams et al., 2013). The FAQ rates 10 
functional domains, with total scores ranging from 0 to 30, and higher 
scores indicate greater impairment (Pfeffer et al., 1982).

Determination of amyloid positivity

Amyloid status (amyloid negative vs. amyloid positive) was 
determined based on Pittsburgh compound B (PiB) or Florbetapir 
AV-45 PET imaging (summarized data were pulled from the ADNI 
Laboratory of Neuroimaging database: ida.loni.usc.edu; the file name 
is ADNIMERGE.csv). Amyloid positivity was determined by 
calculating the standardized uptake value ratio of the mean uptake in 
four cortical regions (frontal, cingulate, parietal, and temporal 
cortices), which was normalized to the uptake in the entire cerebellum. 
We  used validated tracer-specific cutoff values to determine 
abnormality, which were > 1.47 for PiB-PET and > 1.10 for AV45-PET 
(Landau et al., 2013).

Neurodegenerative markers

Hippocampal atrophy, ventricular enlargement, and cerebral 
glucose hypometabolism are presumed to reflect neurodegenerative 
alterations most proximal to the onset of cognitive decline, and valid 
predictors of disease progression (Jack et al., 2004, 2010a). Therefore, 
we took these three imaging markers to characterize neurodegenerative 
changes among cognitive subgroups. Summary data were obtained 
from the ADNI Laboratory of Neuroimaging database: ida.loni.usc.
edu; the file name is ADNIMERGE.csv. The proportional approach 
[(normalization of regional volumes by intracranial volume (ICV)] 
was taken to adjust sex differences in head size since women and men 
differ substantially in ICV. Adjusted ventricular volume (aVV) was 
calculated using the following equation: aVV = ventricular/intracranial 
volume × 103. Adjusted hippocampal volume (aHV) was calculated 
using the following equation: aHV = hippocampal/intracranial volume 
× 103. Cerebral glucose metabolism was measured by Fludeoxyglucose 
PET (FDG-PET). The global FDG SUVRs were measured by 
calculating the mean FDG uptake in three brain regions (posterior 
cingulate, angular gyri, and inferior temporal gyri), which was 
normalized to the uptake in the pons and cerebellum.

CSF AD biological markers

Lumbar puncture was conducted as described in the ADNI 
manual.2 The levels of CSF AD biomarkers, including CSF Aβ 1–42 

2 www.adni-info.org

(Aβ42), total tau (t-tau), and phosphorylated-tau at threonine 181 
(p-tau), were measured by the Roche Elecsys Aβ42 CSF, Elecsys t-tau 
CSF, and Elecsys p-tau CSF immunoassays at the Biomarker Research 
Laboratory, University of Pennsylvania, USA, as previously described 
(Bittner et al., 2016). In this study, Elecsys Aβ42 values >1700 pg./mL 
(upper technical limit) were fixed at 1700 pg./mL. CSF Aβ42 values 
below 1,098 pg./mL were used to classify individuals as amyloid-
positive, based on thresholds established in a previous study 
(Schindler et al., 2018).

Statistical analyses

Statistical work and data visualization were conducted using R 
version 4.1.2 (Team, R.Core, 2014).

First, to identify distinct longitudinal cognitive profiles, a 
non-parametric k-means longitudinal clustering method from the R 
package “kml” (Genolini et al., 2015) was used to detect the ADAS-
Cog-13 trajectories over a 5-year follow-up period. This method 
allows for the investigation of how a parameter of interest changes 
over time and categorizes individual trajectories into distinct groups 
of participants with homogeneous characteristics. The ADAS-Cog-13 
was treated as our clustering variable given its predominant role in AD 
clinical trials. In the cluster analysis, we only included participants 
who had undergone at least one follow-up assessment using ADAS-
Cog-13 within 5 years since baseline. K-means is an algorithm in the 
expectation–maximization (EM) (Celeux and Govaert, 1992) class 
that utilizes a hill-climbing approach. EM algorithms initially assign 
each observation to a cluster and then achieve optimal clustering by 
alternating between two phases. In the expectation phase, the centers 
of the different clusters (known as seeds) are computed. The 
maximization phase involves assigning each observation to its “nearest 
cluster.” The alternating between the two phases is repeated until no 
further changes occur in the clusters. Models were constructed for 1 
to 8 clusters, and the 4-cluster solution was chosen based on several 
factors, including the Bayesian information criterion (BIC) (Schwarz, 
1978), the elbow method, and ensuring that each cluster had an 
adequate sample size. The graph showing the BIC per cluster solution 
is provided in Supplementary Figure S1. The individual trajectories 
and resulting 4-cluster trajectories are shown in Figure 2A.

Second, the differences in demographics, APOE4 genotype, 
clinical diagnosis, cognitive evaluations, neurodegenerative markers, 
and CSF AD biological markers between 4 clusters at baseline were 
compared. We used analysis of variance (ANOVA) to assess differences 
between clusters for continuous variables and Pearson’s x2 tests for 
categorical variables. If group differences were detected using ANOVA 
or Pearson’s x2 tests, we performed pairwise t-tests or x2 tests in post 
hoc analyses and corrected for multiple testing using the false 
discovery rate (FDR) correction (Benjamini and Hochberg, 1995). To 
demonstrate group comparisons of means, we also presented visual 
representations, as shown in Figure 3.

Third, to characterize the longitudinal changes over a 5-year 
follow-up period in cognitive measures, neurodegenerative markers, 
and CSF AD biological markers for each cluster, linear mixed-effects 
models were built using the R package “lme4” (Bates et al., 2014). 
We constructed nine models for the dependent variables, including 
MMSE, CDR-SB, FAQ, aVV, aHV, FDG SUVRs, CSF Aβ42, t-tau, and 
p-tau. These models included time since baseline (in years), clusters, 
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and their interaction as fixed effects, and age, gender, years of 
education, APOE4 status, and their interactions with time as 
covariates. Additionally, a random intercept was included for each 
participant in all models. Each model was fit using maximum 
likelihood, which is a method used to estimate the parameters of a 
statistical model by finding the parameter values that maximize the 
likelihood function. We also used Satterthwaite’s method to estimate 
the degrees of freedom in the t-tests, which allowed us to test the 
significance of the fixed effects and calculate the 95% confidence 
intervals. The models can be summarized as the following equations: 
Ychange∼ Clusters∗time + Age∗time + Gender∗time + Education∗time + 
APOE4 status∗time. Ychange represents the annual change in the 
aforementioned nine dependent variables from the baseline. To 
further understand the differences in slopes among the four cluster 
groups, we conducted pairwise comparisons between clusters using 
estimated marginal means (EMMs). To adjust for multiple testing, 
we applied the FDR method for correction.

Fourth, the bootstrap was used to quantify the uncertainty 
associated with the coefficients and to test the robustness of the results 
from the aforementioned linear mixed-effects models. We generated 

1,000 bootstrapped samples by randomly resampling the data with 
replacement and refitting the linear mixed-effects models. The 
random effects were included to generate bootstrapped samples and 
a semiparametric bootstrap method was performed. The bootstrapped 
estimates were used to estimate the sampling distribution of the fixed 
effects, and the 95% confidence intervals (CIs) for the fixed effects 
were also calculated. A forest plot demonstrating the effect difference 
relative to Cluster 1 (the reference group) was also created to conduct 
bootstrap inference.

Fifth, to examine whether cluster membership was predictive of 
progression from MCI to dementia over a 5-year follow-up period, a 
Kaplan–Meier plot was utilized to demonstrate the conversion rate to 
dementia in the four clusters, and log-rank tests were employed to carry 
out pairwise comparisons of the survival curves and the FDR method 
was used to correct for multiple testing. Initially, we segregated MCI 
participants from each cluster, yielding a sample size of 130 in Cluster 
1, 119 in Cluster 2, 40 in Cluster 3, and 2 in Cluster 4. Due to the limited 
number of MCI participants in Cluster 4, we merged MCI participants 
from Clusters 3 and 4 into a revised Cluster 3. Subsequently, 
we performed survival analysis utilizing the newly configured cluster 

FIGURE 2

.The ADAS-Cog-13 trajectories from baseline to 5 years and their relations with APOE 4 genotype, gender, and clinical diagnosis. Panel (A): Longitudinal 
cluster analysis of the ADAS-Cog-13 scores. Panel (B): Relationship between APOE4 status and Clusters. Panel (C): Relationship between gender and 
Clusters. Panel (D): Relationship between diagnostic status and Clusters. Notes: The solid blue, long-dash green, dash orange, and dot-dash red lines in 
(A) represent Clusters 1, 2, 3, and 4, respectively. The thin gray lines represent individual trajectories. Abbreviations: ADAS-Cog-13: Alzheimer’s Disease 
Assessment Scale-Cognitive Subscale 13; APOE: Apolipoprotein E; MCI: Mild cognitive impairment; AD: Alzheimer’s disease.
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variable (consisting of 3 clusters) as the primary predictor. The duration 
of follow-up was calculated as the interval between the baseline 
evaluation and the diagnosis of dementia at the last visit. For those 
subjects who did not develop dementia during the 5-year follow-up 
period, their data were censored at the time of their last visit.

Sixth, to estimate associations between baseline predictors and 
cluster membership, multivariable multinomial logistic regression 
models by the R package “nnet” (Venables and Ripley, 2002) were 

performed, with Cluster 1 as the reference category. To handle missing 
values among predictors, 5 complete-data replicates were computed 
by Multivariate Imputation by Chained Equations using the R package 
“mice” (Buuren and Groothuis-Oudshoorn, 2011). The overall 
variable-level missingness is shown in Table 1. We imputed a score 
using the “predictive mean matching” method, and the imputation 
model included all predictors that were part of the multinomial 
logistic regression models, while the outcome variable (cluster 

FIGURE 3

Cluster comparison on baseline cognitive measures, neurogenerative makers, and CSF AD pathologies. Panel (A): MMSE as the outcome. Panel (B): 
CDR-SB as the outcome. Panel (C): FAQ as the outcome. Panel (D): aVV as the outcome. Panel (E): aHV as the outcome. Panel (F): FDG SUVRs as the 
outcome. Panel (G): CSF Aβ42 as the outcome. Panel (H): CSF t-tau as the outcome. Panel (I): CSF p-tau as the outcome. Notes: P values were 
adjusted by the FDR method. Abbreviations: MMSE: Mini-Mental State Examination; CDR-SB: Clinical Dementia Rating-sum of boxes; FAQ: Functional 
Activities Questionnaire; aVV: Adjusted ventricular volume; aHV: Adjusted hippocampal volume; FDG: fludeoxyglucose; Aβ: β-amyloid; t-tau: total tau; 
p-tau: phosphorylated tau.
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membership) was not included in the predictor matrix of the 
imputation scheme. The multinomial logistic regression modeling was 
then applied to the 5 imputed data sets and results were pooled 
utilizing Rubin’s rules to yield estimates and confidence intervals that 
incorporate the imputed values’ uncertainty (Rubin, 1989). A total of 
four multinomial logistic regression models with cluster membership 
as the dependent variable were constructed: the base model included 
age, gender, years of education, APOE4 genotype, and clinical 
diagnosis as predictor variables; the cognition model included all the 

predictors from the base model and additionally incorporated MMSE; 
the neurodegeneration model further included aHV and FDG-PET at 
the basis of the cognition model; the AD biomarker model included 
all the predictors from the neurodegeneration model and additionally 
incorporated CSF Aβ42 and p-tau proteins. Adjusted odds ratios 
(ORs) with 95% CIs were computed for all other three clusters by 
comparing them with Cluster 1 (the reference category).

Seventh, given that cluster 1 showed negligible decline and cluster 
2 only exhibited a slightly higher decline, while clusters 3 and 4 

TABLE 1 Baseline characteristics by cluster.

Characteristic Overall 
N =  421

Cluster 1 
N =  131

Cluster 2 
N =  141

Cluster 3 
N =  108

Cluster 4 
N =  41

p-value

Age, years 73 (7) 72 (7) 73 (7) 75 (7)a 72 (9)c 0.035

Education, years 16 (3) 16 (3) 16 (3) 16 (3) 16 (3) 0.12

Female gender, n (%) 183 (43%) 59 (45%) 60 (43%) 43 (40%) 21 (51%) 0.6

APOE4 carriers, n (%) 287 (68%) 80 (61%) 100 (71%) 77 (71%) 30 (73%) 0.2

Clinical diagnosis, n (%) <0.001

  MCI 291 (69%) 130 (99%) 119 (84%) 40 (37%) 2 (4.9%)

  Mild AD 130 (31%) 1 (0.8%) 22 (16%)a 68 (63%)a,b 39 (95%)a,b,c

Follow-up duration, years 2.55 (1.55) 3.55 (1.37) 2.71 (1.53)a 1.66 (1.07)a,b 1.13 (0.66)a,b,c <0.001

MMSE 26 (3) 28 (2) 27 (2)a 24 (3)a,b 22 (2)a,b,c <0.001

CDR-SB 2.45 (1.80) 1.17 (0.84) 2.00 (1.22)a 3.57 (1.64)a,b 5.07 (1.68)a,b,c <0.001

FAQ 6 (7) 2 (3) 5 (5)a 10 (7)a,b 15 (7)a,b,c <0.001

  Missing, n 3 1 1 0 1

aVV 27 (13) 24 (12) 26 (12) 31 (12)a,b 35 (14)a,b,c <0.001

  Missing, n 28 5 11 10 2

aHV 4.34 (0.75) 4.84 (0.71) 4.31 (0.67)a 3.91 (0.62)a,b 3.92 (0.51)a,b <0.001

  Missing, n 43 9 17 12 5

FDG-PET 1.15 (0.17) 1.28 (0.13) 1.16 (0.13)a 1.07 (0.13)a,b 0.92 (0.15)a,b,c <0.001

  Missing, n 8 2 2 4 0

CSF Aβ42, pg./ml 726 (282) 877 (345) 685 (221)a 643 (214)a 586 (178)a <0.001

  Missing, n 74 21 25 19 9

Aβ positivity based on CSF Aβ42 <0.001

  Aβ- 32 (9.2%) 25 (23%) 5 (4.3%) 2 (2.2%) 0 (0%)

  Aβ+ 315 (91%) 85 (77%) 111 (96%)a 87 (98%)a 32 (100%)a

  Missing, n 74 21 25 19 9

CSF t-tau, pg./ml 348 (145) 290 (126) 354 (143)a 382 (142)a 435 (157)a,b <0.001

  Missing, n 74 21 25 19 9

CSF p-tau, pg./ml 35 (16) 28 (14) 36 (16)a 38 (15)a 43 (16)a,b <0.001

  Missing, n 74 21 25 19 9

AV45 PET 1.41 (0.18) 1.32 (0.16) 1.41 (0.17)a 1.46 (0.17)a,b 1.52 (0.16)a,b,c < 0.001

  Missing, n 12 3 6 1 1

PiB PET 1.91 (0.26) 1.63 (0.18) 2.00 (0.24) 1.95 (NA) 2.06 (0.23) 0.2

  Missing, n 409 128 135 107 39

For continuous variables, the mean and standard deviation are used to summarize the data, while for categorical variables, the data are expressed as counts and percentages. We used ANOVA 
to compare continuous variables and Pearson’s chi-squared tests to compare categorical variables between the four clusters. In case of significant differences detected by ANOVA or Pearson’s 
chi-squared tests, pairwise t-tests or chi-squared tests were used in post hoc analyses with FDR correction for multiple testing. APOE, Apolipoprotein E; MCI, Mild cognitive impairment; AD, 
Alzheimer’s disease; MMSE, Mini-Mental State Examination; CDR-SB, Clinical Dementia Rating-sum of boxes; FAQ, Functional Activities Questionnaire; aVV, Adjusted ventricular volume; 
aHV, Adjusted hippocampal volume; FDG, fludeoxyglucose; Aβ, β-amyloid; t-tau, total tau; p-tau, phosphorylated tau. AV45, Florbetapir; PiB, Pittsburgh Compound B. 
aFDR-adjusted p < 0.05 compared with Cluster 1.
bFDR-adjusted p < 0.05 compared with Cluster 2.
cFDR-adjusted p < 0.05 compared with Cluster 3.
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demonstrated similar rates of cognitive decline, we  decided to 
combine clusters 1 and 2 into a group called “non/slow decliners,” and 
merge clusters 3 and 4 into a group referred to as “steep decliners.” 
Binary logistic regression models were built with same predictors 
included in the AD biomarker model and the two groups (non/slow 
decliners vs. steep decliners) as the outcome. To select the predictors 
that explain the bulk of variance in cognitive decline and create a 
simplified model for practicality, we employed a fast backward variable 
selection method (Lawless and Singhal, 1978), using the total residual 
Akaike’s information criterion (AIC) (Akaike, 1974) as the stopping 
rule. A nomogram was created to facilitate an easy and visual 
estimation of probabilities of steep cognitive decline based on the 
reduced model. Finally, in order to examine whether the inclusion of 
our nomogram for enrichment can reduce sample size, simulation of 
clinical trials were performed using the longpower R package, with a 
25% treatment effect on cognitive performance over time, a statistical 
power of 80%, 1:1 allocation of placebo and treatment groups, and a 
total duration of 18 months with cognitive assessments at 0, 3, 6, 9, 12, 
15, and 18 months. Bootstrap with 500 iterations was conducted.

Results

Findings of longitudinal cluster analysis

Four clusters were identified. Figure  2A demonstrates the 
categorization of participants with symptomatic early AD based on 
their ADAS-Cog-13 trajectories over a 5-year follow-up period into 
the following clusters: Cluster 1 (n = 131, 31%), characterized by stable 
cognitive performance; Cluster 2 (n = 141, 34%), characterized by a 
mild cognitive decline; Clusters 3 (n = 108, 26%) and 4 (n = 41, 9%), 
characterized by moderate to rapid rates of cognitive decline, with 
Cluster 4 showing more impaired cognitive performance at baseline 
and greater rates of cognitive decline than Cluster 3 as shown by the 
intercepts and slopes.

Baseline cluster characteristics

As shown in Table  1 and Figures  2B–D, 3, the baseline 
sociodemographic and clinical characteristics were compared between 
clusters. For age, Cluster 3 was older than Cluster 1, and Cluster 4 was 
younger than Cluster 3, but no other pairwise difference was observed. 
For years of education, APOE4 status (Figure  2B), and gender 
(Figure 2C), clusters did not differ significantly. For clinical diagnosis 
(Figure 2D), the distribution of mild AD dementia was significantly 
different between each cluster, with Cluster 4 having the highest 
percentage of patients with mild AD dementia. For follow-up 
duration, four clusters differed significantly, with Cluster 1 having the 
longest follow-up duration. Regarding cognitive and functional 
measures, all tests (MMSE, CDR-SB, and FAQ) showed significant 
differences between the four clusters. For neurodegenerative markers 
(aVV, aHV, and FDG-PET), four clusters showed significant 
differences, except no difference in aVV between clusters 1 and 2 and 
no difference in aHV between clusters 3 and 4. Regarding CSF Aβ42 
levels, Clusters 2–4 had lower levels of CSF Aβ42 than Cluster 1, while 
no other pairwise difference was observed. Regarding CSF tau 
proteins, Clusters 2–4 had higher levels of CSF t-tau and p-tau than 

Cluster 1, and Cluster 4 had higher levels of CSF t-tau and p-tau than 
Cluster 2, while no other pairwise difference was observed.

Associations of cluster membership with 
longitudinal changes in cognitive 
measures, neurodegenerative markers, and 
CSF AD biological markers

The results of the linear mixed-effects models, which investigated 
the relationship between cluster membership and longitudinal 
changes in other cognitive measures, neurodegenerative markers, and 
CSF AD pathologies over a 5-year follow-up period, are presented in 
Table 2 and Figure 4.

Concerning the models that involve cognitive and functional 
assessments (MMSE, CDR-SB, and FAQ), our analysis revealed that 
Clusters 2 through 4 experienced significantly greater decline (or 
worsening) relative to Cluster 1 (refer to Table 2 and Figures 4A–C). 
Utilizing EMMs for pairwise comparisons, we  observed that the 
differences in slopes were statistically significant between each cluster 
(with all FDR-adjusted p-values being less than 0.0001).

For the aVV model (see Table 2 and Figure 4D), the cluster × time 
interactions were all significant, indicating that Clusters 2–4 had 
greater slopes (i.e., faster rates of ventricular enlargement) compared 
to Cluster 1. Pairwise comparisons showed that the slope difference 
was significant between each cluster (all FDR-adjusted p < 0.0001). For 
the aHV model (see Table 2; Figure 4E), the cluster × time interactions 
were all significant, indicating that Clusters 2–4 had steeper slopes 
(i.e., faster rates of hippocampal atrophy) compared to Cluster 1. 
Pairwise comparisons showed that the slope difference was significant 
between each cluster (all FDR-adjusted p < 0.05), except for a 
comparable level between Clusters 3 and 4 (FDR-adjusted p = 0.289). 
For the FDG-PET model (see Table 2 and Figure 4F), Clusters 2 and 
3, but not Cluster 4, had steeper slopes (i.e., faster decline in brain 
glucose metabolism) compared to Cluster 1. Pairwise comparisons 
showed that the slope difference was significant between Clusters 1 
and 2 (FDR-adjusted p = 0.0026), and between Clusters 1 and 3 
(FDR-adjusted p = 0.007), while no other pairwise comparison was 
significant (all FDR-adjusted p > 0.05).

Regarding the models that invovle CSF AD biological markers (CSF 
Aβ42, t-tau, and p-tau levels), the cluster × time interactions were not 
significant, except for a slope difference on CSF p-tau between Clusters 4 
and 1 (see Table 2 and Figures 4G–I). These findings suggested that the 
changes in CSF AD biomarkers over time were consistent across clusters, 
with the exception of CSF p-tau, where a difference in the rate of change 
was observed between Clusters 4 and 1. Pairwise comparisons showed 
that there were significant slope differences in CSF p-tau between Clusters 
4 and 1 (FDR-adjusted p = 0.04), and between Clusters 4 and 2 
(FDR-adjusted p = 0.04), while no other pairwise comparison was 
significant (all FDR-adjusted p > 0.05).

Additionally, a semiparametric bootstrap method was performed to 
quantify the uncertainty associated with the coefficients and to test the 
robustness of the results from the linear mixed-effects models 
(Supplementary Figure S2). For example, as shown in 
Supplementary Figures S2A–C, the findings from the models involving 
cognitive and functional measures can further be evidenced by visually 
examining the forest plots showing the slope difference relative to Cluster 
1 (the reference group). The plots demonstrate how much the effect of 
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TABLE 2 Summary of linear mixed effects models.

Predictors Coefficients SE p-value Coefficients SE p-value Coefficients SE p-value

MMSE CDR-SB FAQ

Age × time 0.00517 0.00543 0.34103 0.00501 0.00318 0.115 −0.00853 0.00906 0.3468

Female gender × time −0.03209 0.07337 0.66196 0.04473 0.04344 0.303 0.14227 0.12266 0.2463

Education × time −0.00308 0.01374 0.82277 −0.00768 0.00818 0.348 −0.02221 0.02299 0.3342

APOE4 carriers × time −0.09874 0.07737 0.20211 0.07859 0.04563 0.085 0.34530 0.12932 0.0077

Cluster 2 × time −0.76090 0.07896 < 0.001 0.68107 0.04656 < 0.001 1.63580 0.13178 < 0.001

Cluster 3 × time −2.67502 0.12525 < 0.001 1.58459 0.07449 < 0.001 3.72023 0.20776 < 0.001

Cluster 4 × time −4.97333 0.29352 < 0.001 3.04552 0.17219 < 0.001 5.22412 0.49006 < 0.001

aVV aHV FDG SUVRs

Age × time 0.00450 0.00739 0.543 −0.00186 0.00068 0.0059 0.00005 0.00038 0.89570

Female gender × time −0.09106 0.09402 0.333 −0.02882 0.00889 0.0012 −0.00857 0.00499 0.08743

Education × time 0.01274 0.01694 0.452 0.00307 0.00167 0.0667 −0.00009 0.00087 0.91645

APOE4 carriers × time 0.19189 0.09692 0.048 −0.01589 0.00944 0.0926 −0.00242 0.00500 0.62848

Cluster 2 × time 0.70912 0.09689 < 0.001 −0.04347 0.00949 < 0.001 −0.01746 0.00505 < 0.001

Cluster 3 × time 2.00695 0.16203 < 0.001 −0.09211 0.01549 < 0.001 −0.03043 0.00756 < 0.001

Cluster 4 × time 3.43357 0.32123 < 0.001 −0.12947 0.03251 < 0.001 −0.02434 0.01518 0.11045

CSF Aβ42 CSF t-tau CSF p-tau

Age × time −0.0573 0.5792 0.9213 0.168 0.251 0.50419 −0.0212 0.0270 0.43234

Female gender × time −5.7159 7.7435 0.4613 0.346 3.356 0.91793 −0.1093 0.3603 0.76202

Education × time −0.8924 1.3041 0.4946 −0.579 0.571 0.31207 −0.0185 0.0607 0.76075

APOE4 carriers × time −9.3435 8.0439 0.2468 −5.199 3.493 0.13829 −0.5993 0.3741 0.11084

Cluster 2 × time 9.7768 8.3837 0.2449 2.498 3.613 0.49024 0.3131 0.3897 0.42282

Cluster 3 × time −3.9152 11.1462 0.7258 3.690 4.865 0.44909 −0.4855 0.5194 0.35108

Cluster 4 × time −4.3862 25.9948 0.8662 17.413 11.405 0.12841 −3.0757 1.2123 0.01196

All models include the main effects of predictors, such as age, gender, years of education, APOE4 status, cluster membership, and years since baseline. However, for the sake of brevity, their coefficients are not displayed. Coefficients represent unstandardized values that 
indicate the yearly changes in each AD biomarker. APOE, Apolipoprotein E; MMSE, Mini-Mental State Examination; CDR-SB, Clinical Dementia Rating-sum of boxes; FAQ, Functional Activities Questionnaire; aVV, Adjusted ventricular volume; aHV, Adjusted 
hippocampal volume; FDG, fludeoxyglucose; Aβ, β-amyloid; t-tau, total tau; p-tau, phosphorylated tau.
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interest in each of the three clusters differed relative to Cluster 1. All effects 
were significant relative to the reference group because none of the 95% 
confidence intervals contained 0. Additionally, the coefficients of Clusters 
2–4 fell outside each other’s intervals, indicating that they were 
significantly different from each other. For other models, the results were 
largely unchanged and consistent with the pairwise comparisons 
described above.

Clinical progression from MCI to dementia

Of the 291 MCI participants, two participants initially assigned to 
Cluster 4  in the cluster analysis (see Table  1) were reclassified as 
Cluster 3 due to the inadequacy of their small size as an independent 
group. Therefore, the cluster variable used in the survival analysis 
included 3 subgroups rather than 4 subgroups. Over a 5-year 

FIGURE 4

Cluster membership and longitudinal changes. Panel (A): MMSE as the outcome. Panel (B): CDR-SB as the outcome. Panel (C): FAQ as the outcome. 
Panel (D): aVV as the outcome. Panel (E): aHV as the outcome. Panel (F): FDG SUVRs as the outcome. Panel (G): CSF Aβ42 as the outcome. Panel (H): 
CSF t-tau as the outcome. Panel (I): CSF p-tau as the outcome. Abbreviations: MMSE: Mini-Mental State Examination; CDR-SB: Clinical Dementia 
Rating-sum of boxes; FAQ: Functional Activities Questionnaire; aVV: Adjusted ventricular volume; aHV: Adjusted hippocampal volume; FDG: 
fludeoxyglucose; Aβ: β-amyloid, t-tau: total tau, p-tau: phosphorylated tau.
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follow-up period, 103 (35%) participants converted to dementia. 
Figure  5 demonstrates the conversion rate to dementia using the 
Kaplan–Meier curves. A significant cluster difference in the conversion 
rate was observed using a log-rank test (x2[2] = 124; p < 0.001). All 
pairwise comparisons between the 3 clusters were significant (all 
FDR-adjusted p < 0.001). With regard to the type of dementia, of the 
103 MCI participants who progressed to dementia, 98 (95.1%) 
participants were diagnosed with AD dementia, while 5 (4.85%) 
progressed to non-AD dementias, including 2 with primary 
progressive aphasia, 1 with Parkinson’s disease and Lewy body 
dementia features, 1 with progressive supranuclear palsy, and 1 who 
had experienced delirium in the past after being infected with the 
West Nile Virus.

Findings of multinomial logistic regression 
models

Multinomial logistic regression models were performed to 
examine the associations between potential predictors at baseline and 
cluster membership. Table  3 shows the summary of multinomial 
logistic regression models. We built four models and assessed model 
fit using Nagelkerke’s R2 (Nagelkerke, 1991). In the base model, all 
predictors captured 47.5% of the variability in the Cluster outcome 
(R2 = 0.475). The cognition model explained 56.7% of the variability in 
the Cluster outcome (R2 = 0.567), indicating that the MMSE explained 
an additional 9.2% of the total Cluster variability. In the 
neurodegeneration model, all predictors captured 67.4% of the 
variability in the Cluster outcome (R2 = 0.674), suggesting that aHV 
and FDG-PET explained an additional 10.7% of the total Cluster 
variability. Meanwhile, the AD biomarker model explained 68.8% of 
the variability in the Cluster outcome (R2 = 0.688), indicating that CSF 

Aβ42 and p-tau explained only an additional 1.4% of the total Cluster 
variability. Table 3 displays the adjusted odds ratios (aOR) and their 
95% confidence intervals (CIs) for each model. For instance, in the 
AD biomarker model (the full model), compared with Cluster 1, there 
were consistent associations of membership to Cluster 2–4 with a 
clinical diagnosis of AD (aOR [95% CI]: 5.41 [2.54, 11.5], 12.6 [5.85, 
27.1], and 44.9 [16.6, 121], respectively). MMSE, aHV, FDG-PET, and 
CSF p-tau were also consistently associated with cluster membership 
to Cluster 2–4. However, there were no significant associations 
between CSF Aβ42 levels and cluster membership.

A simpler predictive model for enrichment 
of clinical trials involving early AD

Model simplification was conducted using stepwise variable 
selection with AIC as the stopping rule (see the seventh point in the 
statistical analyses section). The variables screened for inclusion were 
the same predictors as those in the AD biomarker model (see Table 3). 
The reduced model included clinical diagnosis, MMSE score, and 
FDG-PET, and partial effects plots with 95% pointwise confidence 
bands are presented in Figure 6A. This model resulted in an Area 
Under the Curve (AUC) of 0.912 (95% confidence intervals: 0.88–
0.94; using DeLong statistics; Figure 6B). To evaluate the reliability of 
the model, a bootstrap overfitting-corrected calibration curve was 
generated with 1,000 iterations. Figure 6C demonstrates the excellent 
calibration of the model on the probability scale, as indicated by the 
close alignment of the calibration curve with the 45° line. Internal 
validation was performed using the bootstrap technique with 1,000 
iterations, resulting in an optimism-corrected AUC of 0.910. A 
nomogram was created to facilitate an easy and practical estimation 
of the probabilities of experiencing steep cognitive decline in early AD 
(Figure  6D). Finally, simulated clinical trials were performed to 
investigate whether the nomogram would be used to enrich for trial 
populations in order to reduce sample size for a clinical trial involving 
individuals with early AD. As shown in Figure 6E, when including all 
eligible patients (no restrictions), the required sample sizes were 926.8 
(95% CI: 822.6–1057.5). However, when including individuals 
predicted to experience steep cognitive decline using the nomogram, 
the required sample sizes were decreased to 400.9 (95% CI: 
306.9–516.8).

Discussion

In this study, we observed highly variable cognitive trajectories in 
patients with early AD with evidence of abnormal amyloid in the brain 
already and demonstrated that AD does not affect different individuals 
in a uniform manner. In addition, our clustering analysis categorized 
patients with early AD into four subgroups and visualized these 
individual differences in patterns of cognitive trajectories. Overall, the 
findings of the current study provide evidence of (1) heterogeneous 
patterns of cognitive decline between patients with early AD, (2) 
associations of cognitive heterogeneity with other commonly used 
cognitive and functional measures, neurodegenerative markers, CSF 
AD biomarkers, and clinical progression from the MCI stage to a 
dementia diagnosis, (3) relationships of several baseline predictors 
with membership in the identified subtypes, and (4) the clinical 

FIGURE 5

Progression from MCI to dementia.
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TABLE 3 Summary of multinomial logistic regression models.

Clusters 2 vs 1 Clusters 3 vs 1 Clusters 4 vs 1

Predictors aOR (95% CI) p-value aOR (95%CI) p-value aOR (95%CI) p-value

The base model

Age, continuous (1-year increment) 1.03 (0.99–1.07) 0.2 1.04 (1.00, 1.10) 0.076 0.99 (0.93, 1.06) 0.8

Female gender, categorical (male as reference) 0.92 (0.55–1.53) 0.7 0.85 (0.44, 1.64) 0.6 1.37 (0.54, 3.51) 0.5

Education, continuous (1-year increment) 0.95 (0.86–1.04) 0.3 0.92 (0.81, 1.03) 0.15 0.96 (0.80, 1.14) 0.6

APOE4 carriers, categorical (noncarriers as reference) 1.70 (1.00–2.89) 0.050 1.84 (0.92, 3.68) 0.084 1.84 (0.67, 5.04) 0.2

Clinical diagnosis, categorical (MCI as reference) 23.8 (3.13–181) 0.002 215 (28.5, 1,613) < 0.001 2,560 (223, 29,330) < 0.001

The cognition model

Age, continuous (1-year increment) 1.02 (0.98, 1.06) 0.4 1.03 (0.97, 1.08) 0.3 0.97 (0.91, 1.04) 0.3

Female gender, categorical (male as reference) 0.97 (0.57, 1.65) > 0.9 0.97 (0.47, 1.99) > 0.9 1.95 (0.69, 5.49) 0.2

Education, continuous (1-year increment) 0.99 (0.90, 1.09) 0.8 1.00 (0.87, 1.14) > 0.9 1.08 (0.89, 1.32) 0.4

APOE4 carriers, categorical (noncarriers as reference) 1.57 (0.91, 2.71) 0.11 1.54 (0.73, 3.26) 0.3 1.73 (0.57, 5.22) 0.3

Clinical diagnosis, categorical (MCI as reference) 7.86 (0.97, 63.7) 0.054 23.4 (2.88, 189) 0.003 105 (8.2, 1,352) < 0.001

MMSE, continuous (1-unit increment) 0.71 (0.60, 0.84) < 0.001 0.49 (0.40, 0.61) < 0.001 0.35 (0.26, 0.47) < 0.001

The neurodegeneration model

Age, continuous (1-year increment) 0.97 (0.93, 1.02) 0.3 0.97 (0.91, 1.03) 0.4 0.96 (0.88, 1.04) 0.3

Female gender, categorical (male as reference) 1.34 (0.74, 2.44) 0.3 1.6 (0.71, 3.61) 0.3 3.94 (1.21, 12.8) 0.023

Education, continuous (1-year increment) 0.95 (0.85, 1.06) 0.3 0.93 (0.81, 1.08) 0.4 0.99 (0.79, 1.25) > 0.9

APOE4 carriers, categorical (noncarriers as reference) 1.27 (0.68, 2.35) 0.5 1.34 (0.58, 3.10) 0.5 1.86 (0.53, 6.52) 0.3

Clinical diagnosis, categorical (MCI as reference) 5.14 (0.6, 44.2) 0.14 12 (1.35, 107) 0.026 40.4 (2.69, 605) 0.008

MMSE, continuous (1-unit increment) 0.73 (0.61, 0.88) < 0.001 0.52 (0.41, 0.66) < 0.001 0.4 (0.29, 0.55) < 0.001

aHV, continuous (1-unit increment) 0.43 (0.25, 0.72) 0.002 0.23 (0.11, 0.47) < 0.001 0.28 (0.10, 0.82) 0.020

FDG-PET, continuous (1-unit increment) 0.01 (0.00, 0.06) < 0.001 0.00 (0.00, 0.01) < 0.001 0.00 (0.00, 0.00) < 0.001

The AD biomarker model

Age, continuous (1-year increment) 0.97 (0.94, 1.01) 0.12 0.97 (0.92, 1.02) 0.2 0.96 (0.90, 1.02) 0.2

Female gender, categorical (male as reference) 1.25 (0.66, 2.36) 0.5 1.39 (0.59, 3.28) 0.5 3.45 (0.98, 12.2) 0.054

Education, continuous (1-year increment) 0.96 (0.86, 1.08) 0.5 0.95 (0.82, 1.10) 0.5 0.99 (0.80, 1.23) > 0.9

APOE4 carriers, categorical (noncarriers as reference) 0.91 (0.47, 1.76) 0.8 0.93 (0.39, 2.23) 0.9 1.14 (0.30, 4.30) 0.9

Clinical diagnosis, categorical (MCI as reference) 5.41 (2.54, 11.5) < 0.001 12.6 (5.85, 27.1) < 0.001 44.9 (16.6, 121) < 0.001

MMSE, continuous (1-unit increment) 0.75 (0.66, 0.86) < 0.001 0.54 (0.45, 0.64) < 0.001 0.42 (0.32, 0.55) < 0.001

aHV, continuous (1-unit increment) 0.42 (0.26, 0.69) < 0.001 0.21 (0.11, 0.40) < 0.001 0.23 (0.09, 0.60) 0.003

FDG-PET, continuous (1-unit increment) 0.01 (0.00, 0.05) < 0.001 0.00 (0.00, 0.00) < 0.001 0.00 (0.00, 0.00) < 0.001

CSF Aβ42 levels, continuous (1-unit increment) 1.00 (1.00, 1.00) 0.051 1.00 (1.00, 1.00) 0.093 1.00 (0.99, 1.00) 0.15

CSF p-tau levels, continuous (1-unit increment) 1.02 (1.00, 1.05) 0.043 1.04 (1.01, 1.07) 0.019 1.06 (1.01, 1.1,) 0.019

aOR, adjusted odds ratio; CI, confidence interval; APOE, Apolipoprotein E; MMSE, Mini-Mental State Examination; aHV, Adjusted hippocampal volume; FDG, fludeoxyglucose; Aβ, β-amyloid; p-tau, phosphorylated tau.
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relevance of a nomogram in predicting the probabilities of 
experiencing steep cognitive decline based on the simplified model.

Our data-driven clustering method successfully categorized 
patients with early AD into biologically and clinically different 

subgroups, as evidenced by the substantial differences in clinical 
characteristics and longitudinal changes in major AD biomarkers 
among the four identified clusters. Cluster 1, which represented 
approximately 31% of our study sample, showed a nearly negligible 

FIGURE 6

A simplified model for enrichment of clinical trials involving early AD. (A) Shows the partial effects of three predictors in the simplified model. The 
partial effect of a predictor was investigated when holding all other predictors constant (clinical diagnosis  =  MCI; median MMSE score  =  27; median 
FDG-PET  =  1.158). (B) Demonstrates the ROC curve for the simplified model (clinical diagnosis, MMSE score, and FDG-PET). (C) Shows a bootstrap 
overfitting-corrected calibration curve. The closeness of the calibration curve to the 45° line illustrates an excellent calibration on the probability scale. 
(D) Displays a nomogram for the prediction of probabilities of experiencing steep cognitive decline over time based on 3 predictors in the simplified 
model. Instructions for using the nomogram: start by identifying the individual’s clinical diagnosis (MCI or mild AD) and draw a vertical line to intersect 
on the Points axis (i.e., the top axis) to find the point. Repeat this process for the other predictors (MMSE and FDG-PET). Add up the points obtained for 
these three predictors. Locate the final sum on the Total Points scale and draw a vertical line downwards to identify the individual’s predicted 
probability of experiencing steep cognitive decline on the Probability axis (i.e., the bottom axis). (E) Shows that the usage of the nomogram for 
enrichment resulted in a substantial reduction of required sample sizes in simulated clinical trials of early AD. For each column of the (E) (no restrictions 
vs. Predicted rapid decliners), three different plots are presented, including a boxplot, raw data points, and a density plot. MCI, Mild cognitive 
impairment; AD, Alzheimer’s disease; MMSE, Mini-Mental State Examination; FDG, fludeoxyglucose; AUC, Area Under the Curve.
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rate of change in the ADAS-Cog-13 over a 5-year follow-up period 
(Figure  2A). This subgroup had significantly better baseline 
performance on other cognitive and functional measures, including 
the MMSE, CDR-SB, and FAQ, as well as a more favorable biomarker 
profile. These findings are consistent with previous studies conducted 
in clinical trial-based samples (Geifman et al., 2017; Levine et al., 
2021) and the ADNI dataset (Ziegler et al., 2020), which also identified 
a similar subgroup with less impaired baseline performance. More 
importantly, CSF Aβ42 levels of a number of individuals in cluster 1 
were well above the level that would be regarded CSF Aβ42 positive. 
In addition, cluster 1 was also experiencing minimal or no change in 
CSF Aβ42 over time, further indicating that these individuals might 
not be on the AD trajectory. One reasonable strategy to maximize the 
chances of finding a successful treatment is to identify and remove the 
subgroup with a very low rate of cognitive decline in clinical trials 
(Edmonds et al., 2018). Therefore, improved stratification of early AD 
populations prior to recruitment in clinical trials could enhance the 
likelihood of detecting treatment efficacy and aid in the development 
of more efficient study designs.

We identified the largest early AD subgroup of the study sample, 
Cluster 2 (n = 141, 34%), which initially performed worse on the 
ADAS-Cog-13, as shown by a greater intercept in Figure 2A, and 
exhibited a slightly faster rate of cognitive deterioration over time than 
Cluster 1. The two subgroups (Clusters 1 and 2) also differed 
significantly in their levels of AD-associated biomarkers, as indicated 
by Figures 3G–I. Specifically, participants in Cluster 2 had higher 
levels of CSF tau pathologies and lower levels of CSF Aβ42 at baseline 
compared to those in Cluster 1. These findings are consistent with 
several longitudinal studies showing that unfavorable CSF biomarker 
profiles at baseline are predictive of future cognitive decline in patients 
with very mild AD dementia or in healthy older adults (Snider et al., 
2009; Stomrud et al., 2010). Neurodegenerative markers, including 
aHV and FDG SUVRs (Figures 3E,F), were also significantly different 
between the two cognitive trajectories, suggesting that higher levels of 
aHV and FDG SUVRs (indicative of less severe neurodegeneration at 
baseline) are associated with slower cognitive deterioration over time 
in patients with early AD (de Leon et  al., 2001; Lo et  al., 2011). 
However, aVV did not show a significant difference between the two 
clusters (Figure 3D) despite that all three neuroimaging markers are 
considered indicators of neurodegeneration. These discrepancies may 
be attributed to the fact that ventricular enlargement is considered a 
more downstream event that is closely coupled with overt cognitive 
decline in the AD pathophysiological changes (Jack et  al., 2004). 
Therefore, aVV may be a less sensitive marker at baseline compared 
to aHV and FDG SUVRs to predict future cognitive decline and may 
not be  able to capture the subtle differences in cognitive decline 
between Clusters 1 and 2.

Clusters 3 (n = 108, 26%) and 4 (n = 41, 9%) demonstrated 
significantly steeper cognitive deterioration over time than Clusters 1 
and 2, with Cluster 4 exhibiting the fastest cognitive decline trajectory 
(Figure 2A). These findings have important implications for clinical 
trials involving patients with early AD. In a clinical trial, assuming that 
the rates of cognitive decline exceed the level of background noise, 
randomization procedures may not necessarily lead to equal rates of 
decline in cognitive function between the treatment and placebo 
groups (Deaton and Cartwright, 2016). As a consequence, the 
variation in cognitive decline may affect the result of a trial. For 

instance, although a statistically significant difference was found 
between the placebo and treatment groups in previous clinical trials, 
it cannot be entirely ruled out that the group difference may have been 
due to an over-representation of individuals from Clusters 3 and 4 
(fast cognitive decliners) in the placebo group, or an over-
representation of individuals from Clusters 1 and 2 (slow cognitive 
decliners) in the treatment group. One approach to overcome the 
problem of cognitive heterogeneity might thus be  to recruit trial 
participants based on risk factors that are able to predict cognitive 
trajectories they may fall into subsequently. Future trials may consider 
enrolling individuals predicted to fall into Clusters 3 and 4 in order to 
increase the chances of success, enhance statistical power to observe 
treatment effects, and reduce cost, duration, and required sample size 
of a trial. One of the first steps to testing this strategy might be to build 
a multinomial logistic regression model to predict the cluster 
membership using baseline AD-associated markers. Our findings, as 
shown in Table 3, illustrated that in patients with early AD (with 
evidence of abnormal amyloid), clinical status, MMSE scores, aHV, 
FDG SUVRs, and CSF p-tau levels, which are well known factors 
related with rate of clinical progression (Blanco et al., 2023), were 
associated with the cluster membership. For instance, the AD 
biomarker model can explain 68.8% of the variability of the cluster 
membership. However, we did not observe a significant association 
between CSF Aβ42 levels and the membership of cognitive trajectories 
in patients with early AD. This finding is somewhat expected and is 
probably explained by the fact that all included individuals were 
already amyloid-positive, and the variations in CSF Aβ42 levels were 
not large enough to effectively capture the cognitive change. In 
addition, amyloid accumulation is thought of as a very early event that 
occurs prior to hypometabolism, hippocampal atrophy, or cognitive 
decline and has an early and subclinical effect on cognition (Lo et al., 
2011). The simplified binary logistic regression model (Figure 6) may 
serve as the first crucial step in enrolling “right” participants 
(Cummings et al., 2019) and powering clinical trial design. Our model 
offers a valuable tool for the design and execution of new clinical 
trials. By complementing standard inclusion/exclusion criteria, they 
serve as an enhancement strategy to curate a cohort enriched with 
participants who are forecasted to exhibit cognitive decline. This 
approach simultaneously safeguards against the inadvertent 
enrollment of individuals anticipated to maintain cognitive stability, 
ensuring a more focused and efficient study population. Future studies 
that focus on replicating and validating our results in an independent 
cohort and testing whether our model is useful in the enrichment of 
clinical trials in early AD by identifying participants with faster 
cognitive trajectories are warranted.

The temporal ordering of changes in AD biomarkers can provide 
crucial information for our understanding of the pathophysiological 
alterations of the disease and for designing clinical trials for AD. The 
hypothetical cascade of AD biomarker changes has been proposed to 
follow a specific temporal ordering from amyloid deposition to tau 
aggregation, then to brain metabolic and structural changes, and 
finally to cognitive symptoms (Jack et al., 2013). However, this model 
remains to be tested. Our findings from these models largely support 
the hypothetical orderings of biomarker changes (Jack et al., 2013). 
Our analyses suggested that rates of cognitive progression were 
loosely coupled or even not associated with changes in markers 
presumed to be upstream events (i.e., changes in CSF Aβ42 and tau 
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proteins) while were relatively more coupled with changes in markers 
presumed to indicate neurodegeneration and neuronal injury (i.e., 
ventricular enlargement, hippocampal atrophy, and brain 
hypometabolism). Specifically, our analyses did not observe a 
significant difference in the rates of change in CSF Aβ42 or tau 
proteins between four cognitive trajectories (Figures  4G,H; 
Supplementary Figures S2G,H), indicating that amyloid accumulation 
or tau aggregation (CSF-based measures) may have reached a plateau 
at the MCI and mild dementia stages of the disease. The negative slope 
of Cluster 4 for CSF p-tau (Figure 4I; Supplementary Figure S2I) is 
unexpected. It may be possible that participants in Cluster 4 had the 
most severe cognitive impairment and the highest levels of CSF p-tau 
at baseline already, and thus the potential for CSF p-tau to further 
increase was limited, particularly at the later stages of the disease. 
Individuals in Cluster 4 who showed the most aggressive cognitive 
trajectory may also suffer from the most severely damaged blood–
brain barrier (BBB), which could lead to the outflow of proteins from 
the CSF to the blood (Sweeney et al., 2018). However, the relationship 
between BBB integrity and AD pathologies is complex and not yet 
fully understood, and further research on this is needed. Further, the 
negative slope observed in this cluster could potentially be influenced 
by the limitations of a small sample size and short follow-up time. 
These factors may introduce variability errors, and thus, caution is 
warranted in interpreting the results. With respect to the markers 
presumed to represent neurodegenerative changes, our analyses found 
a more tightly coupled association between rates of cognitive decline 
and the magnitude of change in neurodegenerative biomarkers (i.e., 
aVV, aHV, and FDG SUVRs; see Figures  4D–F and 
Supplementary Figures S2D–F). Across these three neuroimaging 
markers, however, the magnitude of the associations of rates of 
cognitive decline with changes in these markers was distinct. For 
instance, all four cognitive trajectories exhibited significantly different 
slopes for ventricular enlargement, while the rates of hippocampal 
atrophy or brain hypometabolism of these four cognitive trajectories 
were not all different for each pairwise comparison, suggesting that 
ventricular enlargement is more closely coupled with cognitive 
changes than hippocampal atrophy or hypometabolism and thus 
maybe a more downstream event that follows hippocampal atrophy 
or hypometabolism (Jack et al., 2004, 2013). With regard to other 
cognitive and functional measures, as shown in Figures 4A–C and 
Supplementary Figures S2A–C (clusters 1 to 4 represented incremental 
rates of cognitive decline), rates of cognitive progression of the four 
clusters were the most closely coupled with changes in other cognitive 
and functional measures over time, as measured by MMSE, CDR-SB, 
and FAQ. These findings further supported the robustness of our 
clustering results as the pattern of the four cognitive trajectories was 
similar across distinct cognitive measures.

Several limitations of this study should be  taken into account 
when interpreting our results. First, the individual trajectories on the 
ADAS-Cog-13 among patients with early AD were highly variable, as 
shown by the thin grey lines in Figure 2A. The cluster analysis used in 
this study should be interpreted as an exploratory analysis, rather than 
a confirmatory one. Indeed, it is possible that some patients could 
be categorized into a different cluster if the number of clusters changes. 
In this study, the 4-cluster solution was selected according to several 
considerations, including the BIC, the elbow method, and ensuring 
that each cluster had an adequate sample size. We acknowledge that a 
larger sample size of our study sample, especially the cluster 4 group, 

would be needed to yield more robust and generalizable findings. 
However, our linear mixed effects models with distinct rates of 
cognitive changes as the independent variable and other cognitive and 
functional outcomes (i.e., MMSE, CDR-SB, and FAQ) yielded a very 
consistent profile of cognitive decline across different cognitive 
assessments (Figures  4A–C and Supplementary Figures S2A–C), 
strengthening the notion that the four cognitive trajectories identified 
in the cluster analysis were stable and robust. Second, in the cluster 
analysis, the longitudinal measurements on ADAS-Cog-13, rather 
than other AD markers, were used as our clustering variable due to 
the fact that the primary objective was to investigate the variations in 
cognitive decline among patients with early AD, and the ADAS-
Cog-13 is one of the most commonly used assessment to track 
cognitive progression in AD clinical trials. Third, although changes in 
AD biomarkers over extended periods (e.g., several decades) are 
nonlinear (Jack et al., 2013), our linear mixed-effects models assumed 
that they were linear. However, during shorter periods (e.g., within a 
period of 5-year follow-up), AD biomarker changes can be modeled 
as linear functions because the nonlinearity appears to be minimal 
(Luo et al., 2022). The fourth limitation of our study is that our analysis 
was based on the ADNI cohort, a highly educated sample, with limited 
diversity with respect to racial and ethnic characteristics. This has 
restricted the generalizability of our findings, and thus independent 
and large cohorts, population-based studies in particular, are needed 
to replicate and validate our results. However, the ADNI study was 
designed to represent a potential AD clinical trial population, and, in 
this study, we applied a largely similar inclusion and exclusion criteria 
compared to those used in recent and current clinical trials of early 
AD. Hence, our results may seem to be relevant in the context of early 
AD clinical trials. Fifth, it could be  argued that our data-driven 
approach was capturing disease stages instead of different rates of 
cognitive trajectories based on the observation that these four clusters 
had different intercepts. It should be noted that our strategy to ensure 
a similar disease stage was to select individuals with similar baseline 
levels of cognitive performance, as reflected by the inclusion criteria 
of a global CDR score of 0.5 or 1 and an MMSE score of 20–30. This 
group of individuals included in the current study is classified as early 
AD and is also commonly used in clinical trials (van Dyck et al., 2023). 
Furthermore, the observation that baseline cognitive performance was 
an important predictor for future cognitive decline is consistent with 
previous findings (Schaeverbeke et  al., 2021). Therefore, it would 
be not unexpected to observe that those with more severe cognitive 
impairment at baseline are also more likely to decline in the future. 
However, worse cognitive performance at baseline does not necessarily 
determine future cognitive decline, as there are several other variables 
(Table 3) or unobserved factors that also contribute to the variance in 
cognitive decline. For example, 22 out of 141 individuals in the Cluster 
2 were diagnosed as mild AD at baseline, while 40 out of 108 
individuals in the Cluster 3 were diagnosed as MCI at baseline 
(Figure  2D). Finally, our decision to combine MCI and mild AD 
dementia into a single group was primarily driven by the recent 
success of clinical trials in the field of AD, which achieved statistical 
significance (Sims et al., 2023; van Dyck et al., 2023). These trials 
employed similar inclusion criteria, notably combining individuals 
with MCI and mild AD dementia who are amyloid-positive into an 
“early AD” group. Motivated by these studies, we  undertook the 
present study to delve deeper into the heterogeneity of cognitive 
decline within this participant group. Our goal was to potentially 
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refine the recruitment process, thereby enhancing the likelihood of 
successful trials targeting patients in the early stages of AD.

Our study emphasizes the relevance of considering the 
heterogeneity of disease progression in early AD and provides further 
understanding of the temporal sequence of changes in AD biomarkers 
that correspond to different rates of cognitive decline. These findings 
have practical implications for the stratification of patients with early 
AD, potentially increasing the likelihood of identifying effective 
treatments for future AD clinical trials.
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