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Background: Themost e�ective approach tomanaging Alzheimer’s disease (AD)

lies in identifying reliable biomarkers for AD to forecast the disease in advance,

followed by timely early intervention for patients.

Methods: Transcriptomic data on peripheral blood mononuclear cells (PBMCs)

from patients with AD and the control group were collected, and preliminary

data processing was completed using standardized analytical methods. PBMCs

were initially segmented into distinct subpopulations, and the divisions were

progressively refined until the most significantly altered cell populations were

identified. A combination of high-dimensional weighted gene co-expression

analysis (hdWGCNA), cellular communication, pseudotime analysis, and

single-cell regulatory network inference and clustering (SCENIC) analysis was

used to conduct single-cell transcriptomics analysis and identify key gene

modules from them. Genes were screened using machine learning (ML) in the

key gene modules, and internal and external dataset validations were performed

using multiple ML methods to test predictive performance. Finally, bidirectional

Mendelian randomization (MR) analysis, regional linkage analysis, and the Steiger

test were employed to analyze the key gene.

Result: A significant decrease in non-classical monocytes was detected in

PMBC of AD patients. Subsequent analyses revealed the inherent connection of

non-classical monocytes to AD, and the NAP1L1 gene identified within its gene

module appeared to exhibit some association with AD as well.

Conclusion: The NAP1L1 gene is a potential predictive biomarker for AD.

KEYWORDS

single-cell sequencing, machine learning, Mendelian randomization analysis, NAP1L1

gene, biomarker, Alzheimer’s disease

1 Introduction

Alzheimer’s disease (AD) is a neurodegenerative condition characterized by

progressive memory impairment, cognitive decline, and behavioral abnormalities

(Scheltens et al., 2021). The total cost of treating AD was estimated at $305 billion in

2020, and it is expected to exceed $1 trillion by 2050. Additionally, the prevalence of AD

is rising every year, with approximately 50 million people worldwide currently living with
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dementia. This number is projected to triple by 2050 (Dubois

et al., 2016; Wong, 2020). Unfortunately, there is still no treatment

available to provide a complete cure for AD. AD is a progressive

condition that starts with mild memory problems, gradually

leading to cognitive impairment and difficulty performing daily

activities in about a decade. Administering neuroprotective drugs

early—before mild symptoms appear—is a key strategy for treating

AD. Therefore, identifying pre-AD stages and finding biomarkers

to detect the pre-AD condition are especially important. Current

research on AD biomarkers mainly uses techniques such as

positron emission tomography (PET), cerebrospinal fluid Aβ1-42,

and magnetic resonance imaging (MRI). However, none of these

methods has been completely effective in identifying individuals at

risk of developing early or full-blown AD (Fiandaca et al., 2014).

The advent of single-cell sequencing and transcriptomics

has led to the introduction of new methods for identifying

biomarkers for AD. Wang and Wang (2020) identified UBB,

UBA52, SRC, MMP9, VWF, GP6, and PF4 as potential key genes

for predicting AD. Yu et al. (2023) found that the lysosome-related

gene ATP6V1E1 demonstrated a strong predictive performance

for AD. These studies found potential biomarkers for AD but

did not explore the causal relationship between AD and these

biomarkers. In this study, Mendelian randomization (MR) analysis

was introduced to establish a causal link between genes and

AD. MR analysis was utilized to assess the causality of observed

associations between modifiable exposures or risk factors and

clinically relevant outcomes (Sekula et al., 2016). This study also

revealed that monocytes were initially found to decline most

significantly in the peripheral blood mononuclear cells (PMBCs)

of AD patients. An imbalance between the production of Aβ and

its clearance is thought to be an important cause of AD production.

It has been shown that bone marrow- or blood-derived monocytes

bind to Aβ deposits and are more effective phagocytes of Aβ than

resident microglia (Zuroff et al., 2017).

Inspired by previous study, we hypothesized that a decrease

in certain components of monocytes may impair Aβ clearance,

contributing to the development of AD. Subsequently, we

observed the greatest decrease in non-classical monocytes in

AD patients, prompting us to perform single-cell transcriptome

analyses on these monocytes, such as single-cell regulatory

network inference and clustering (SCENIC) analysis. Eventually,

we discovered the NAP1L1 gene. NAP1L1 is a member of

the nucleosome assembly protein (NAP) family, ubiquitously

expressed and involved in DNA replication, cell adhesion,

migration, and proliferation (Yan et al., 2016; Dominguez et al.,

2021; Peng et al., 2023). NAP1L1 has primarily been studied as

a potential biomarker for tumors, but recent findings suggest it

may have novel value in other areas as well (Nagashio et al.,

2020; Shen et al., 2022). The study found that rats with a

knockout of Nap1L1 exhibited slower proliferation of neural

progenitor cells (NPCs) and premature differentiation of neurons

during cortical development. Similarly, AD-induced pluripotent

stem cell (AD-iPSC)-derived neural progenitor cells (AD-NPCs)

showed premature neuronal differentiation, resulting in decreased

proliferation and increased apoptosis, along with elevated levels

of Aβ42 and phosphorylated tau (Vanova et al., 2023). This

finding suggests that premature neuronal differentiation may be

a contributing factor to AD. Therefore, NAP1L1 has significant

potential as an AD biomarker.

In this study, we used high-dimensional weighted gene co-

expression network analysis (hdWGCNA) to identify key genes,

followed by machine learning (ML) to screen for predictive genes.

Subsequently, we employed MR correlation analysis to explore

the causal relationship between these genes and AD. Finally, we

identified the NAP1L1 gene as a potential biomarker for AD as

shown in the flow chart in Figure 1.

2 Materials and methods

2.1 Single-cell sequencing data download
and processing

The Gene Expression Omnibus (GEO) database (https://

www.ncbi.nlm.nih.gov/geo/) was searched using the keywords

“Alzheimer’s disease”, “peripheral blood”, and “human”.

Subsequently, the dataset GSE226602 was retrieved, comprising

AD (n = 28) and the control groups (n = 22). The R package

“Seurat” was used for subpopulation annotation of single cells.

To ensure data quality, we conducted quality control, data

normalization, and other pre-processing steps to eliminate low-

quality cells and alleviate inter-sample variability. During the

downscaling and clustering process, we initially selected the genes

with the highest variability for principal component analysis.

Furthermore, we utilized the Harmony algorithm and employed

the uniform manifold approximation and projection (UMAP)

technique to visualize the data in two dimensions, showing diverse

cell subpopulations in an unsupervised manner. In addition to

manual annotation, we investigated automated annotation using

the SingleR package and presented the results through DimPlot.

2.2 Training and validation of set data for
ML downloads

GSE140829 and GSE97760 were retrieved from the GEO

database using the GEO query R package (version 4.0.2). We

designated GSE140829 containing peripheral blood samples from

AD (n = 204) and the control groups (n = 249) as the training

set. GSE97760 (Naughton et al., 2015) containing peripheral blood

samples from AD (n = 9) and the control groups (n = 10) was

designated as the validation set.

2.3 Pseudotime analysis and cellular
communication analysis

For datasets involving time series or developmental processes,

we employed the Monocle package to reconstruct cell track and

utilized the Cellchat package to investigate cellular communication

and regulatory dynamics.
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FIGURE 1

The workflow of the study.

2.4 SCENIC analysis

SCENIC analysis was performed using pySCENIC (v0.10.0)

from the hg19-tss-centered-10 kb-10species database (https://

github.com/aertslab/pySCENIC).

2.5 hdWGCNA networking

hdWGCNA was established using the “hd-WGCNA” R

package, a widely utilized method for identifying potential

biomarkers of interest.

2.6 Enrichment analysis

The hub genes obtained from hdWGCNA were selected for

enrichment analysis of the top 50 genes of the key modules.

Functional enrichment analysis of the key module hub genes was

performed using the Metascape website (https://metascape.org/gp/

index.html).

2.7 LASSO regression and logistic
regression analysis

LASSO regression analysis was conducted using the “glmnet”

R package, while logistic regression analysis was conducted using

the “glm” R package. Key genes obtained from “hdWGCNA” were

selected and integrated with GSE140829. The initial screening of

the gene was performed through LASSO regression and logistic

regression analysis to identify genes suitable for use as the training

set in ML.

2.8 Predictive model construction based
on multiple ML algorithms

The R package “mlr3” was applied to build ML models,

including k-nearest neighbor algorithm (kknn), linear discriminant

analysis (lda), naive_bayes, logistic regression (log_reg), random

forest (ranger), support vector machine (svm), and recursive

partitioning with regression trees (rpart). The ROC curve analysis

was performed using the “pROC” R package and visualized using

the “ggplot2” R package. The ROC curve analysis was used to

validate the diagnostic value of these models in GSE140829, using

data GSE97760 as an external validation set.

2.9 Bidirectional MR analysis

The genes predicted by ML were used to find expression

quantitative trait loci (eQTL) matching the genes available on

the genome-wide association study (GWAS) website (http://

gwas.mrcieu.ac.uk/datasets). MR analysis was performed using

the TwoSampleMR software package. The eQTL data for gene

expression were subsequently processed using the vcfR package

using reverse Mendelian correlation tool variables.

2.10 Regional correlation maps and the
Steiger test

Genotype data and associated data were examined to extract

eQTL information relevant to the target genes. Subsequently,

eQTLs located within specified regions were selected and formatted

for mapping the regional associations. The mapping process

employed the locus-comparer software package to visualize the

association information between eQTLs and GWAS, providing

an intuitive graphical representation for subsequent analyses.

Finally, single nucleotide polymorphism (SNP) with the most
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significant combinations for each trait and their corresponding

PMID were filtered using the Steiger filter test and summarized in

a comprehensive results table.

2.11 GWAS summary statistics for AD and
NAP1L1 eQTL

Our GWAS summary statistics for AD were sourced from the

dataset ebi-a-GCST90027158 (Bellenguez et al., 2022), including

individuals (nAD = 111,326, nControl 677663) of European ancestry.

The majority of the patients are aged over 60 years and represent

both sexes. Furthermore, eQTL data fromGWAS (OpenGWAS ID:

eqtl-a-ESG00000187109) include whole blood NAP1L1 expression

data sourced from Europe, with 17,270 SNPs collected from

9,188 samples.

3 Results

3.1 Single-cell analysis of the
transcriptome of the AD and control groups

In this study, PBMC samples from the AD (n = 28) and

control groups (n = 22) from the dataset GSE226602 scRNA-

seq were selected for analysis. Batch effects across samples

were mitigated using the Harmony method to integrate and

standardize the samples, followed by normalization, downscaling,

and clustering. All cells were classified into 20 subpopulations

using FindNeighbors and FindClusters functions of the Seurat

software package, following quality control and clustering analyses

of the data (Figure 2A). Using the SingleR software package, all

cells were annotated into five cell types, namely, T cells, NK

cells, monocytes, B cells, and platelets (Figure 2B). Subsequently,

the ratios of five cell types are presented in Figure 2C. Notably,

monocytes exhibited the most significant reduction and were

consequently selected for subsequent analyses. Segmentation was

continued based on monocytes, which were further segmented into

non-classical monocytes, classical monocytes, myeloid dendritic

cells, and intermediate monocytes. The distribution of monocytes

was visualized utilizing the UMAP algorithm andDimPlot function

and subsequently segmented based on cell type (Figures 2D,

E). Finally, the ratios of four monocyte types are presented in

Figure 2F. It was found that non-classical monocytes were the

most significantly different among monocytes between the AD

and control groups, and therefore non-classical monocytes were

selected for subsequent analyses.

3.2 Single-cell transcriptomic analysis of
non-classical monocytes

Non-classical monocytes, which exhibited the most substantial

decline in AD compared to the control group, were the focus of

further single-cell transcriptomic analyses. To transition from the

control group to an AD state, there must have been changes at the

cellular level, including changes in intercellular communication.

The aim was to comprehend the communication between non-

classical monocytes and other monocytes. Initially, CellChat was

used to infer the number of interactions between non-classical

monocytes and other monocytes in both the AD and control

groups. The results revealed that non-classical monocytes in

AD did not exhibit interactions with other monocytes to the

same extent as the control group (Figures 3A, B). To gain

deeper insights into this cellular communication discrepancy,

upregulated and downregulated signaling ligand–receptor pairs

were identified through differential gene expression analysis.

Subsequently, signaling differences were assessed based on the

fold change of the ligand from the sending cell to the receptor

in the receiving cell. The results indicated that NAMPT-(ITGA5-

ITGB1), TNF-TNFRSF1B, and TNF-TNFRSF1A were signaling

pathways upregulated in AD, while LGALS9-CD45 and ANXA1-

FPR1 were signaling pathways downregulated in AD. The most

prominent disparities in cellular communication between non-

classical monocytes and other monocytes in both AD and control

groups were observed in the TNF-TNFRSF1A signaling pathway

(Figures 3C, D).

To comprehend the distinctions in single-cell transcriptional

regulators between non-classical monocytes and other monocytes,

the top 10 specific regulators in different monocytes were analyzed

using the regulator specificity score (RSS). SCENIC analysis

revealed that the top seven transcription factors in non-classical

monocytes were CUX1, ZBTB7A, FL1, MBD2, POU2F2, CEBPA,

and KLF3 (Figure 4A). Further examination of the distribution

of these transcription factors in monocytes demonstrated that

they were most prevalent in non-classical monocytes, which was

consistent with previous findings (Figure 4B). To explore the

potential association with AD, the top 100 transcription factors

based on the RSS score were selected from non-classical monocytes.

The differential expression of these transcription factors in the

AD and control groups was observed. Notably, these transcription

factors exhibited both upregulation and downregulation in both the

AD and control groups (Figure 4C).

To identify AD-related gene modules in non-classical

monocytes, hdWGCNA was used. All genes were collectively

clustered into six non-gray modules. Among these modules, the

turquoise and blue modules exhibited the highest expressions

(Figure 5A). Visualization of these modular genes revealed that

the turquoise module and the blue module were the most widely

distributed in the non-classical monocyte region (Figure 5B).

Plotting the expression levels of different modules in monocytes

illustrated that the turquoise and bluemodules were predominantly

distributed in non-classical monocytes (Figure 5C). Consequently,

2,262 genes from the turquoise module and 817 genes from the

blue module were selected for inclusion in subsequent analyses.

To investigate changes in gene expression during development

or transcriptional dynamics in non-classical monocytes,

pseudotime analysis was utilized on the integrated dataset to

illustrate the on/off status of various genes across pseudotime. The

pseudotime analysis revealed that the expression of non-classical

monocyte marker genes increased as the pseudotemporal time

advanced, indicating a trend for non-classical monocytes to

express genes more fully toward the end of the pseudotemporal

time compared to other monocytes (Figures 6A, B). To validate this

observation, the top 50 differential genes representing non-classical
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FIGURE 2

Single-cell analysis of the transcriptome of the AD and control groups. (A) The classification of cells into 20 subpopulations after the cluster analysis.

(B) The classification of cells into five cell types after annotation using SingleR. (C) The ratios of five cell types. (D) The classification of monocytes

into 15 subpopulations after the cluster analysis. (E) The classification of monocytes into four types after annotation using SingleR. (F) The ratios of

four monocyte types.

monocytes from the turquoise module and the blue module were

clustered into six classes. Visualization of these gene clusters

demonstrated that the turquoise module and the blue module were

positioned at the end of the pseudotime analysis with more fully

expressed genes (Figure 6C). Due to the higher representation

of non-classical monocyte genes in the turquoise module, it

was selected for further analysis, confirming the same trend as

before (Figure 6D). Enrichment analysis of the op 50 genes from

the turquoise module and the blue module indicated that these

modules were predominantly enriched in immunity, infection, and

other related pathways. Their functions were closely associated

with hematopoiesis and monocyte differentiation (Figure 6E).
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FIGURE 3

Cellular interactions between non-classical monocytes and other cells in the AD and control groups. (A) non-classical monocytes → other

monocytes. (B) other monocytes → non-classical monocytes. Upregulated and downregulated signaling ligand-receptor pairs. (C) non-classical

monocytes → other monocytes. (D) Other monocytes → non-classical monocytes.
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FIGURE 4

The case of non-classical monocyte transcription factors. (A) The RSS analysis of the top 10 specific regulators in di�erent monocyte types. (B)

Visualization of key transcription factors in non-classical monocytes. (C) Di�erences in the expression of the AD and control groups transcription

factors in non-classical monocytes.
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FIGURE 5

A search for key genetic modules. (A) hdWGCNA of non-classical monocytes. (B) Visualization of the distribution of each gene module in di�erent

monocytes. (C) The expression levels of di�erent gene modules in di�erent monocyte cell types.
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FIGURE 6

Proposed time-series analysis. (A) Indicates di�erent cell clusters; (B) Indicates the order of the proposed time from dark to light. (C) Visualization of

proposed temporal clustering of the blue and turquoise modules. (D) Visualization of proposed time-series clustering of the turquoise module. (E)

Gene enrichment analysis of the top 50 genes in the blue and turquoise modules.

3.3 Predictive model construction results
for multiple ML algorithms

LASSO regression and logistic regression were used to initially

screen the previously obtained genes, and 44 genes including

“PPM1N”, “CX3CR1”, “WASF2”, “HES4”, “RGS19”, and “CSTB”

were obtained and continued to the next step of the analysis. Using

the dataset GSE140829 as an internal validation set to verify the

accuracy of the machine learning model, the lda and log_reg results

show the best test efficacy (AUC= 0.80) (Figures 7A, B). Therefore,

Frontiers in AgingNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnagi.2024.1406160
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Chen et al. 10.3389/fnagi.2024.1406160

FIGURE 7

Predictive model construction results for multiple ML algorithms. (A) Mean AUC for di�erent ML models. (B) Diagnostic ROC curves for di�erent ML

models. (C) External validation set for ML.
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FIGURE 8

The key genes and AD relationships. (A) The volcano map illustrates the relationship between the key genes and AD risk. (B) Forest plot depicting the

association between key genes and AD risk.

the external validation set GSE97760 is selected for lda for the

machine learning model, which also shows a good test efficacy

(AUC=0.733) (Figure 7C).

3.4 MR analysis using predicted genes
identified five genes for AD

The 44 predicted genes obtained from ML were utilized, and

eQTL matching the genes was identified on the GWAS website

for MR analysis. This finding aims to identify downstream genes

associated with a high risk of AD. Finally, the analysis identified

five genes, namely, NAP1L1, SON, L1LRB2, PLD4, and CAP1 that

were significantly associated with AD. A volcano plot highlighting

genes with significant p-values (Figure 8A) was generated to

visually illustrate the p-value of each gene in relation to the -

log10 transformation of ln(OR). The plot clearly displays genes

with significant positive and negative correlations. Subsequently,

a forest plot was created to visualize the odds ratio (OR) and

95% confidence interval (CI) of each significant gene, emphasizing

the robustness and direction of each gene association (Figure 8B).

As depicted in the figure, the NAP1L1 gene exhibited a negative

correlation with AD. In other words, the risk of AD increased with

a decrease in the gene’s expression level. Consequently, the NAP1L1

gene was selected for further analysis.

3.5 Reverse MR analysis, regional linkage
analysis, and the Steiger test of the NAP1L1
genes with AD risk

Reverse MR analysis was conducted to assess the causal effect

of AD on the NAP1L1 gene, with AD as the exposure and the

NAP1L1 gene as the outcome. The analysis revealed no causal

relationship between AD and the NAP1L1 gene (OR = 1.0064,

95% CI = 0.8961–1.1304, p = 0.9136838 by the IVW method).

Additionally, the Steiger test was conducted, and the evaluation

between AD and the NAP1L1 genes yielded a TRUE result,

signifying the absence of reverse causality. Consistent results were

obtained using MR Egger, weighted median, simple mode, and

weighted mode methods (Figure 9A). Initially, regional association

plots for the NAP1L1 gene eQTL were displayed in tandem with
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FIGURE 9

The relationship between the NAP1L1 gene and AD. (A) Inverse MR using di�erent MR methods to describe the relationship between AD and the

NAP1L1 gene. (B) Regional correlation map.

the AD GWAS results. SNPs indicating a significant association

between the NAP1L1 gene and AD were identified through the

comparison of the strength of their associations. It can be noted

that specific SNP associated with eQTLs for the NAP1L1 gene, such

as rs2043359, showed a significant correlation in GWAS for AD.

This finding provides preliminary evidence suggesting a potential

link between the NAP1L1 gene and AD (Figure 9B). Our findings

are generally consistent with our initial hypothesis, suggesting that

alterations in the NAP1L1 gene expressionmodulate the risk of AD.

4 Discussion

Single-cell sequencing addresses the limitation of traditional

transcriptomics, which only provides an average expression signal

for a collection of cells (Du et al., 2023). It can also aid in

elucidating the reasons for poor production or clearance of Aβ at

the cellular level. Non-classical monocytes travel along the vascular

endothelium (Malm et al., 2010; Ong et al., 2018). Intriguingly,

these traveling monocytes have been demonstrated to recognize

and clear Aβ from the venous lumen of APP/PS1 mice (van de

Veerdonk and Netea, 2010). However, the mechanism behind the

failure of non-classical monocytes to clear Aβ remains unknown.

We initially verified that non-classical monocytes in AD

did not interact with other monocytes as much as in the

control group, suggesting that the reduced interactions of non-

classical monocytes with other cells have likely led to its reduced

clearance of Aβ. This reduction in interactions leads to results

that may be related to the TNF-TNFRSF1A signaling pathway.

TNFRSF1A, identified as the TNF-alpha receptor, functions as

a genetic plasmid that exclusively binds to TNF-alpha. Aβ1-40

induces the activation of several TNF-α-dependent intracellular

signaling pathways that play a key role in controlling COX-2

upregulation and activation, synaptic loss, and cognitive decline

in mice, which may ultimately lead to AD (Medeiros et al.,

2010). Therefore, it is reasonable to assume that a decline in

TNF-TNFRSF1A in non-classical monocytes causes a reduction

in binding to TNF-α, giving TNF-α the opportunity to be

activated by Aβ1-40, causing a series of cascading reactions

that ultimately lead to AD. Previous studies and the single-

cell sequencing analyses of our study suggest that non-classical

monocytes are a key cell population in AD genesis, thus its

transcription factors should also be closely related to AD.

Furthermore, we conducted literature research on the top-ranked

transcription factor, CUX1. Recent studies have shown that the

APP intracellular domain (AICD) of the amyloid-β precursor gene

is a potential contributor to the development and progression of
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AD (Konietzko, 2012), and that activation of CUX1 transcriptional

activity by the AICD may be implicated in its contribution to AD

(Yang et al., 2012). The pseudotime analysis revealed that non-

classical monocytes are more likely to exhibit the characteristics

of AD cells. Moreover, existing studies have identified cellular

senescence in AD (Liu, 2022). Cellular senescence typically occurs

at the terminal stage of the cell’s growth and development

process. We assumed the proliferation of the cell as the starting

point and observed the expression of the number of genes

in the cell in different states of the cell and found that the

expression of non-classical monocytes increased at the end of the

pseudotime, in the cellular senescence stage. Enrichment analysis

of the turquoise and blue gene modules indicated that these

modules are primarily focused on pathways and functions such

as hematopoiesis, immunity, monocyte differentiation, infectious

disease, and apoptosis. These pathways and functions have also

been suggested to be potentially related to AD (Behl, 2000; Feng

et al., 2011; Chong et al., 2013; Douros et al., 2021; Chen and

Holtzman, 2022).

Because ML is a powerful tool for gene expression analysis,

we chose it to screen for genes with high predictive performance

(Deo, 2015). To address the limitations of GWAS in fully

revealing genetic susceptibility factors for complex diseases, we

combined GWAS with eQTL analysis (Zhu et al., 2016; Cano-

Gamez and Trynka, 2020). Additionally, we used reverse MR

analysis, regional association analysis, and the Steiger test to further

validate our findings. Regional association analysis supports the

relationship between the NAP1L1 gene and AD. Reverse MR

analysis revealed that this causal association did not exist in

the reverse direction. Furthermore, the Steiger test confirmed

this result. The downregulation of NAP1L1 was found to render

cells susceptible to apoptotic cell death by attenuating nuclear

factor-κB (NF-κB) transcriptional activity on the anti-apoptotic

Mcl-1 gene (Tanaka et al., 2017). Similarly, increased NF-

κB expression was found in PBMC samples of AD patients,

suggesting that a decrease in the NAP1L1 gene in monocytes

might be responsible for AD (Ascolani et al., 2012). NF-κB is a

well-recognized inflammatory transcription factor that promotes

neurodegeneration and has a huge impact on AD formation

(Ju Hwang et al., 2019). In addition, it was experimentally

demonstrated that the knockdown of the NAP1L1 gene increased

Lys382 acetylation and enhanced the level of pro-apoptotic Bax,

thereby promoting cell death (Tanaka et al., 2019). In contrast, Bax

is from the Bcl2 family and has pro-apoptotic effects, apoptosis

brought about by Bax is thought to be closely related to AD

formation (Kumari et al., 2023).

5 Conclusion

In summary, our study suggests that the NAP1L1 gene in

non-classical monocytes has the potential to serve as a biomarker

for predicting AD. However, further functional experiments are

required to verify our hypothesis.
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